Skip to main content

Obesity: Nature or Nurture?

  • Chapter
  • First Online:
Obesity Before Birth

Part of the book series: Endocrine Updates ((ENDO,volume 30))

Abstract

The debate about the causes of the current obesity epidemic rages on. The issue of “Whose fault is it?” frequently devolves into a related question: “Is it ‘nature’ (i.e., inherent in our genes and biochemistry before birth, and therefore out of our control) or ‘nurture’ (i.e., behaviors learned after birth and within our control to change)?” This chapter explores the phenomena and evidence which support and refute both sides of this argument. A conceptual framework is offered, whereby two of the biochemical mediators of obesity (hyperinsulinemia and glucocorticoids) can be applied throughout the life cycle. In this formulation, the question of “nature” versus “nurture” becomes merely a manifestation of the timing of the query. The results of such a rethinking of the nature–nurture argument argue for adding an “environmental safety” approach to the current “personal responsibility” approach, in order to more effectively combat the obesity epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FORESIGHT. Tackling obesity: future choices – project report. 2nd ed. 2007. Government Office for Science http://www.foresight.gov.uk/Obesity/Obesity_final_part1.pdf.

  2. Troiano RP, Briefel RR, Carroll MD, Bialostosky K. Energy and fat intakes of children and adolescents in the United States: data from the National Health and Nutrition Examination Surveys. Am J Clin Nutr. 2000;72:1343s–53s.

    PubMed  CAS  Google Scholar 

  3. Centers for Disease Control. Trends in intake of energy and macronutrients – United States, 1971–2000. Morb Mortal Wkly Rep. 2004;53:80–2.

    Google Scholar 

  4. Swinburn B. Increased energy intake alone virtually explains all the increase in body weight in the United States from the 1970s to the 2000s. Eur Congr Obes (Amsterdam (Abstr.)). 2009;T1:RS3.3.

    Google Scholar 

  5. Duffey KJ, Popkin BM. Shifts in patterns and consumption of beverages between 1965 and 2002. Obesity. 2007;15:2739–47.

    Article  PubMed  Google Scholar 

  6. Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr. 2006;84:274–88.

    PubMed  CAS  Google Scholar 

  7. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health. 2007;97:667–75.

    Article  PubMed  Google Scholar 

  8. Le KA, Tappy L. Metabolic effects of fructose. Curr Opin Nutr Metab Care. 2006;9:469–75.

    Article  CAS  Google Scholar 

  9. Rutledge AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev. 2007;65:S13–23.

    Article  PubMed  Google Scholar 

  10. Johnson RJ, Segal MS, Sautin Y, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr. 2007;86:899–906.

    PubMed  CAS  Google Scholar 

  11. Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev. 2005;63:133–57.

    Article  PubMed  Google Scholar 

  12. Gross LS, Li S, Ford ES, Liu S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am J Clin Nutr. 2004;79:774–9.

    PubMed  CAS  Google Scholar 

  13. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002;76:911–22.

    PubMed  CAS  Google Scholar 

  14. Dhingra R, Sullivan L, Jacques PF, et al. Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation. 2007;116:480–8.

    Article  PubMed  Google Scholar 

  15. Brown CM, Dulloo AG, Montani JP. Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. Int J Obes. 2008;32:528–34.

    Article  CAS  Google Scholar 

  16. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7:251–264.

    Article  PubMed  CAS  Google Scholar 

  17. Kimm SYS, Glynn NW, Kriska AM, et al. Decline in physical activity in black girls and white girls in adolescence. N Engl J Med. 2002;347:709–15.

    Article  PubMed  Google Scholar 

  18. Goran MI, Treuth MS. Energy expenditure, physical activity, and obesity in children. Pediatr Clin North Am. 2001;48:931–53.

    Article  PubMed  CAS  Google Scholar 

  19. Li S, Treuth MS, Wang Y. How active are American adolescents and have they become less active? Obes Rev. 2009; [epub Oct 27, 2009].

    Google Scholar 

  20. Marshall SJ, Biddle SJ, Gorely T, Cameron N, Murdey I. Relationships between media use, body fatness and physical activity in children and youth: a meta-analysis. Int J Obes Relat Metab Disord. 2004;28:1238–46.

    Article  PubMed  CAS  Google Scholar 

  21. Mark AE, Janssen I. Relationship between screen time and metabolic syndrome in adolescents. J Public Health. 2008;30:153–60.

    Article  Google Scholar 

  22. Keith SW, Redden DT, Katzmaryk PT, et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int J Obes. 2006;30:1585–94.

    Article  CAS  Google Scholar 

  23. Atkinson RL, Dhurandhar NV, Allison DB, et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes. 2005;29:281–6.

    Article  CAS  Google Scholar 

  24. Jasik CB, Lustig RH. Adolescent obesity and puberty: the “perfect storm”. Ann N Y Acad Sci. 2008;1135:265–79.

    Article  PubMed  CAS  Google Scholar 

  25. Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. N Engl J Med. 2007;357:370–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kamath CC, Vickers KS, Ehrlich A, et al. Clinical review: behavioral interventions to prevent childhood obesity: a systematic review and metaanalyses of randomized trials. J Clin Endocrinol Metab. 2008;93:4606–15.

    Article  PubMed  CAS  Google Scholar 

  27. McGovern L, Johnson JN, Paulo R, et al. Clinical review: treatment of pediatric obesity: a systematic review and meta-analysis of randomized trials. J Clin Endocrinol Metab. 2007;93:4600–5.

    Article  CAS  Google Scholar 

  28. Shaw K, Gennat H, O’Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;CD003817.

    Google Scholar 

  29. Schwimmer JB, Burwinkle TM, Varni JW. Health-related quality of life of severely obese children and adolescents. JAMA. 2003;289:1813–9.

    Article  PubMed  Google Scholar 

  30. Latner JD, Stunkard AJ. Getting worse: the stigmatization of obese children. Obes Res. 2003;11:452–6.

    Article  PubMed  Google Scholar 

  31. Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA. 2002;288:1728–32.

    Article  PubMed  Google Scholar 

  32. Kim J, Peterson KE, Scanlon KS, et al. Trends in overweight from 1980 through 2001 among preschool-aged children enrolled in a health maintenance organization. Obesity. 2006;14:1164–71.

    Article  PubMed  CAS  Google Scholar 

  33. Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30:345–54.

    Article  PubMed  CAS  Google Scholar 

  34. Mieda M, Yanigasawa M. Sleep feeding, and neuropeptides: roles of orexins and orexin receptors. Curr Opin Neurobiol. 2002;12:339–46.

    Article  PubMed  CAS  Google Scholar 

  35. Biederman J. Attention-deficit/hyperactivity disorder: a selective overview. Biol Psychiatry. 2005;57:1215–20.

    Article  PubMed  Google Scholar 

  36. Franco M, Orduñez P, Caballero B, et al. Impact of energy intake, physical activity, and population-wide weight loss on cardiovascular disease and diabetes mortality in Cuba, 1980–2005. Am J Epidemiol. 2007;166:1374–80.

    Article  PubMed  Google Scholar 

  37. Epstein LH, Roemmich JN, Raynor HA. Behavioral therapy in the treatment of pediatric obesity. Pediatr Clin North Am. 2001;48:981–93.

    Article  PubMed  CAS  Google Scholar 

  38. Mellin LM, Slinkard LA, Irwin CE. Adolescent obesity intervention: validation of the SHAPEDOWN program. J Am Diet Assoc. 1987;87:333–8.

    PubMed  CAS  Google Scholar 

  39. Mun EC, Blackburn GL, Matthews JB. Current status of medical and surgical therapy for obesity. Gastroenterology. 2001;120:669–81.

    Article  PubMed  CAS  Google Scholar 

  40. Center for Weight and Health. Pediatric overweight: a review of the literature June 2001. http://www.cnr.berkeley.edu/cwh/news/announcements.shtml#lit_review (2001). Accessed Dec 1, 2009.

  41. Leibel RL. The role of leptin in the control of body weight. Nutr Rev. 2002;60:S15–9.

    Article  PubMed  Google Scholar 

  42. Keim NL, Stern JS, Havel PJ. Relation between circulating leptin concentrations and appetite during a prolonged, moderate energy deficit in women. Am J Clin Nutr. 1998;68:794–801.

    PubMed  CAS  Google Scholar 

  43. Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metab. 1996;81:454–8.

    Article  Google Scholar 

  44. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med. 1995;332:621–8.

    Article  PubMed  CAS  Google Scholar 

  45. Champigny O, Ricquier D. Effects of fasting and refeeding on the level of uncoupling protein mRNA in rat brown adipose tissue: evidence for diet-induced and cold-induced responses. J Nutr. 1990;120:1730–6.

    PubMed  CAS  Google Scholar 

  46. Aronne LJ, Mackintosh R, Rosenbaum M, Leibel RL, Hirsch J. Autonomic nervous system activity in weight gain and weight loss. Am J Physiol. 1995;269:R222–5.

    CAS  Google Scholar 

  47. Lustig RH. The efferent arm of the energy balance regulatory pathway: neuroendocrinology and pathology. In: Donahoue PA, editor. Obesity and energy metabolism: research and clinical applications. Totowa, NJ: Humana; 2007. pp. 69–86.

    Google Scholar 

  48. Bray GA, Greenway FL. Current and potential drugs for treatment of obesity. Endocr Rev. 1999;20:805–75.

    Article  PubMed  CAS  Google Scholar 

  49. Elmquist JK, Maratos-Flier E, Saper CB, Flier JS. Unraveling the central nervous system pathways underlying responses to leptin. Nat Neurosci. 1998;1:445–50.

    Article  PubMed  CAS  Google Scholar 

  50. Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel RL. Effects of weight change on plasma leptin concentrations and energy expenditure. J Clin Endocrinol Metab. 1997;82:3647–64.

    Article  PubMed  CAS  Google Scholar 

  51. Rosenbaum M, Vandenborne K, Goldsmith R, et al. Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. Am J Physiol Regul Integr Comp Physiol. 2003;285:R183–92.

    PubMed  CAS  Google Scholar 

  52. Boden G. Free fatty acids (FFA), a link between obesity and insulin resistance. Front Biosci. 1998;3:169–75.

    Google Scholar 

  53. Lustig RH. The “skinny” on childhood obesity: how our Western environment starves kids’ brains. Pediatr Ann. 2006;35:898–907.

    PubMed  Google Scholar 

  54. Flier JS. What’s in a name? In search of leptin’s physiologic role. J Clin Endocrinol Metab. 1998;83:1407–13.

    Article  PubMed  CAS  Google Scholar 

  55. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T-cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110:1093–103.

    PubMed  CAS  Google Scholar 

  56. Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282:1568–75.

    Article  PubMed  CAS  Google Scholar 

  57. Ulijaszek SJ. Secular trend in birthweight among the Purari delta population, Papua New Guinea. Ann Hum Biol. 2001;28:246–55.

    Article  PubMed  CAS  Google Scholar 

  58. Davidson S, Litwin A, Peleg D, Erlich A. Are babies getting bigger? Secular trends in fetal growth in Israel – a retrospective hospital-based cohort study. Isr Med Assoc J. 2007;9:649–51.

    PubMed  Google Scholar 

  59. Ludwig DS, Currie J. The relationship between pregnancy weight gain and birth weight: a within family comparison. Lancet. 2010 Aug 4. [Epub ahead of print].

    Google Scholar 

  60. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Frougel P. Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 2000;106:253–62.

    Article  PubMed  CAS  Google Scholar 

  61. Cecil JE, Tavendale R, Watt P, Hetherington MM, Palmer CN. An obesity-associated FTO gene variant and increased energy intake in children. N Engl J Med. 2008;359:2558–66.

    Article  PubMed  CAS  Google Scholar 

  62. Dina C, Meyre DGS, Durand E, Körner A, Jacobson P, Carlsson LM, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39:724–6.

    Article  PubMed  CAS  Google Scholar 

  63. Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM. Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 1988;11:107–11.

    Article  PubMed  CAS  Google Scholar 

  64. Muntzel M, Morgan DA, Mark AL, Johnson AK. Intracerebroventricular insulin produces non-uniform regional increases in sympathetic nerve activity. Am J Physiol. 1994;267:R1350–5.

    PubMed  CAS  Google Scholar 

  65. Niswender KD, Schwartz MW. Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol. 2003;24:1–10.

    Article  PubMed  CAS  Google Scholar 

  66. Bence KK, Delibegovic M, Xue B, et al. Neuronal PTP1B regulates body weight, adiposity, and leptin action. Nat Med. 2006;12:917–24.

    Article  PubMed  CAS  Google Scholar 

  67. Mori H, Hanada R, Hanada T, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10:739–43.

    Article  PubMed  CAS  Google Scholar 

  68. Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjorbaek C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of SOCS3. Nat Med. 2004;10:734–8.

    Article  PubMed  CAS  Google Scholar 

  69. Kubota N, Terauchi Y, Tobe K, et al. Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. J Clin Invest. 2004;114:917–27.

    PubMed  CAS  Google Scholar 

  70. Choudhury AI, Heffron H, Smith MA, et al. The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest. 2005;115:940–50.

    PubMed  CAS  Google Scholar 

  71. Lin X, Taguchi A, Park S, et al. Dysregulation of insulin receptor substrate 2 in β-cells and brain causes obesity and diabetes. J Clin Invest. 2004;114:908–16.

    PubMed  CAS  Google Scholar 

  72. Plum L, Ma X, Hampel B, et al. Enhanced PIP(3) signaling in POMC neurons causes K(ATP) channel activation and leads to diet-sensitive obesity. J Clin Invest. 2006;116:1886–901.

    Article  PubMed  CAS  Google Scholar 

  73. Munzberg H, Myers MG. Molecular and anatomical determinants of central leptin resistance. Nat Neurosci. 2005;8:566–70.

    Article  PubMed  CAS  Google Scholar 

  74. Kellerer M, Lammers R, Fritsche A, et al. Insulin inhibits leptin receptor signalling in HEK293 cells at the level of janus kinase-2: a potential mechanism for hyperinsulinaemia-associated leptin resistance. Diabetologia. 2001;44:1125–32.

    Article  PubMed  CAS  Google Scholar 

  75. Hill JW, Williams KW, Ye C, et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest. 2008;118:1796–805.

    Article  PubMed  CAS  Google Scholar 

  76. Lustig RH. Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the first law of thermodynamics. Nat Clin Pract Endocrinol Metab. 2006;2:447–58.

    Article  PubMed  CAS  Google Scholar 

  77. Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL. Low dose leptin administration reverses effects of sustained weight reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab. 2002;87:2391–4.

    Article  PubMed  CAS  Google Scholar 

  78. Rosenbaum M, Goldsmith R, Bloomfield D, et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005;115:3579–86.

    Article  PubMed  CAS  Google Scholar 

  79. Poretti A, Grotzer MA, Ribi K, Schonle E, Boltshauser E. Outcome of craniopharyngioma in children: long-term complications and quality of life. Dev Med Child Neurol. 2004;46:220–9.

    Article  PubMed  Google Scholar 

  80. Lustig RH, Post SM, Srivannaboon K, et al. Risk factors for the development of obesity in children surviving brain tumors. J Clin Endocrinol Metab. 2003;88:611–6.

    Article  PubMed  CAS  Google Scholar 

  81. Harz KJ, Muller HL, Waldeck E, Pudel V, Roth C. Obesity in patients with craniopharyngioma: assessment of food intake and movement counts indicating physical activity. J Clin Endocrinol Metab. 2003;88:5227–31.

    Article  PubMed  CAS  Google Scholar 

  82. Bray GA, Gallagher TF. Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a review of the literature. Medicine. 1975;54:301–33.

    Article  PubMed  CAS  Google Scholar 

  83. Lustig RH, Rose SR, Burghen GA, et al. Hypothalamic obesity in children caused by cranial insult: altered glucose and insulin dynamics, and reversal by a somatostatin agonist. J Pediatr. 1999;135:162–8.

    Article  PubMed  CAS  Google Scholar 

  84. Lustig RH, Hinds PS, Ringwald-Smith K, et al. Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J Clin Endocrinol Metab. 2003;88:2586–92.

    Article  PubMed  CAS  Google Scholar 

  85. Velasquez-Mieyer PA, Cowan PA, Arheart KL, et al. Suppression of insulin secretion promotes weight loss and alters macronutrient preference in a subset of obese adults. Int J Obes. 2003;27:219–26.

    Article  CAS  Google Scholar 

  86. Lustig RH, Greenway F, Velasquez-Mieyer P, et al. A multicenter, randomized, double-blind, placebo-controlled, dose-finding trial of a long-acting formulation of octreotide in promoting weight loss in obese adults with insulin hypersecretion. Int J Obes. 2006;30(2):331–41.

    Article  CAS  Google Scholar 

  87. Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA. Obesity, leptin resistance, and the effects of insulin suppression. Int J Obes. 2004;28:1344–8.

    Article  CAS  Google Scholar 

  88. Li HJ, Ji CY, Wang W, Hu YH. A twin study for serum leptin, soluble leptin receptor, and free insulin-like growth factor-1 in pubertal females. J Clin Endocrinol Metab. 2005;90:3659–64.

    Article  PubMed  CAS  Google Scholar 

  89. Castracane VD, Hendrickx AG, Henson MC. Serum leptin in nonpregnant and pregnant women and in old and new world nonhuman primates. Exp Biol Med. 2005;230:251–4.

    CAS  Google Scholar 

  90. McLachlan KA, O’Neal D, Jenkins A, Alford FP. Do adiponectin, TNFα, leptin, and CRP relate to insulin resistance in pregnancy? Studies in women with and without gestational diabetes, during and after pregnancy. Diab Metab Res Rev. 2006;22:131–8.

    Article  CAS  Google Scholar 

  91. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 2007;61:5R–10R.

    Article  PubMed  Google Scholar 

  92. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    Article  PubMed  CAS  Google Scholar 

  93. Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001;185:93–8.

    Article  PubMed  CAS  Google Scholar 

  94. Yajnik CS, Lubree HG, Rege SS, et al. Adiposity and hyperinsulnemia in Indians are present at birth. J Clin Endocrinol Metab. 2002;87:5575–80.

    Article  PubMed  CAS  Google Scholar 

  95. Arends NJ, Boonstra VH, Duivenvoorden HJ, Hofman PL, Cutfield WS, Hokken-Koelega AC. Reduced insulin sensitivity and the presence of cardiovascular risk factors in short prepubertal children born small for gestational age (SGA). Clin Endocrinol. 2005;62:44–50.

    Article  CAS  Google Scholar 

  96. Potau N, Gussinye M, Sanchez Ufarte C, Rique S, Vicens-Calvet E, Carrascosa A. Hyperinsulinemia in pre- and post-pubertal children born small for gestational age. Horm Res. 2001;56:146–50.

    Article  PubMed  CAS  Google Scholar 

  97. Yajnik CS, Fall CH, Vaidya U, et al. Fetal growth and glucose and insulin metabolism in four-year-old Indian children. Diabet Med. 1995;12:330–6.

    Article  PubMed  CAS  Google Scholar 

  98. Silverman BL, Landsberg L, Metzger BE. Fetal hyperinsulinism in offspring of diabetic mothers: association with the subsequent development of childhood obesity. Ann N Y Acad Sci. 1993;699:36–45.

    Article  PubMed  CAS  Google Scholar 

  99. Silverman BL, Rizzo TA, Cho NH, Metzger BE. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diab Care. 1998;21 Suppl 2:B142–9.

    Google Scholar 

  100. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes. Pediatrics. 2005;115:e290–6.

    Article  PubMed  Google Scholar 

  101. Knowler WC, Pettitt DJ, Savage PJ, Bennett PH. Diabetes incidence in Pima Indians: contributions of obesity and parental diabetes. Am J Epidemiol. 1981;113:144–56.

    PubMed  CAS  Google Scholar 

  102. Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risk for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;42:2208–11.

    Article  Google Scholar 

  103. Marceau P, Biron S, Hould FS, et al. Outcome of pregnancies after obesity surgery. In: Guy-Grand B, Ailhaud G, editors. Progress in obesity research. John Libbey Eurotext, Montrouge, France 8th ed. 1999. pp. 795–802.

    Google Scholar 

  104. Kral JG, Biron S, Simard S, et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics. 2006;118:e1664–9.

    Article  Google Scholar 

  105. Hofman PL, Regan F, Jackson WE, et al. Premature birth and later insulin resistance. N Engl J Med. 2004;351:2179–86.

    Article  PubMed  CAS  Google Scholar 

  106. Petry CJ, Ozanne SE, Wang CL, Hales CN. Effects of early protein restriction and adult obesity on rat pancreatic hormone content and glucose tolerance. Horm Metab Res. 2000;32:233–9.

    Article  PubMed  CAS  Google Scholar 

  107. Simmons RA, Templeton LJ, Gertz SJ. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes. 2001;50:2279–86.

    Article  PubMed  CAS  Google Scholar 

  108. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279:E83–7.

    PubMed  CAS  Google Scholar 

  109. Boloker J, Gertz SJ, Simmons RA. Gestational diabetes leads to the development of diabetes in adulthood in the rat. Diabetes. 2002;51:1499–506.

    Article  PubMed  CAS  Google Scholar 

  110. Franke K, Harder T, Aerts L, et al. ‘Programming’ of orexigenic and anorexigenic hypothalamic neurons in offspring of treated and untreated diabetic mother rats. Brain Res. 2005;1031:276–83.

    Article  PubMed  CAS  Google Scholar 

  111. Harder T, Franke K, Fahrenkrog S, et al. Prevention by maternal pancreatic islet transplantation of hypothalamic malformation in offspring of diabetic mother rats is already detectable at weaning. Neurosci Lett. 2003;352(3):163–6.

    Article  PubMed  CAS  Google Scholar 

  112. Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science. 2004;304:108–10.

    Article  PubMed  CAS  Google Scholar 

  113. Pinto S, Roseberry AG, Liu H, et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science. 2004;304:110–5.

    Article  PubMed  CAS  Google Scholar 

  114. Vickers MH, Gluckman PD, Coveny AH, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146:4211–6.

    Article  PubMed  CAS  Google Scholar 

  115. Davis M, Whelan PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6:13–34.

    Article  PubMed  CAS  Google Scholar 

  116. LeDoux J. Emotion circuits in the brain. Ann Rev Neurosci. 2000;23:155–84.

    Article  PubMed  CAS  Google Scholar 

  117. Sapolsky R, Krey L, McEwen B. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrinol Rev. 1986;7:284–301.

    Article  CAS  Google Scholar 

  118. Brown MR, Fisher LA. Corticotropin-releasing factor: effects on the autonomic nervous system and visceral systems. Fed Proc. 1985;44:243–8.

    PubMed  CAS  Google Scholar 

  119. Smagin GN, Dunn AJ. The role of CRF receptor subtypes in stress-induced behavioural responses. Eur J Pharmacol. 2000;405:199–206.

    Article  PubMed  CAS  Google Scholar 

  120. Bakshi VP, Smith-Roe S, Newman SM, Grigoriadis DE, Kalin NH. Reduction of stress-induced behavior by antagonism of corticotropin-releasing hormone 2 (CRH2) receptors in lateral septum, or CRH1 receptors in amygdala. J Neurosci. 2002;22:7926–35.

    Google Scholar 

  121. La Fleur SE, Akana SF, Manalo SL, Dallman MF. Interaction between corticosterone and insulin in obesity: regulation of lard intake and fat stores. Endocrinology. 2004;145:2174–85.

    Article  PubMed  CAS  Google Scholar 

  122. Dallman MF, Pecoraro N, Akana SF, et al. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci. 2003;100:11696–701.

    Article  PubMed  CAS  Google Scholar 

  123. Tataranni PA, Larson DE, Snitker S, Young JB, Flatt JP, Ravussin E. Effects of glucocorticoids on energy metabolism and food intake in humans. Am J Physiol. 1996;271:E317–25.

    PubMed  CAS  Google Scholar 

  124. Adam TC, Epel ES. Stress, eating, and the reward system. Physiol Behav. 2007;91:449–58.

    Article  PubMed  CAS  Google Scholar 

  125. Epel ES, McEwen BS, Seeman T, et al. Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosom Med. 2000;62:623–32.

    PubMed  CAS  Google Scholar 

  126. Appelhans BM, Pagoto SL, Peters EN, Spring BJ. HPA axis response to stress predicts short-term snack intake in obese women. Appetite. 2010 Feb;54(1):217–20.

    Google Scholar 

  127. Epel ES, Lapidus R, McEwen BS, Brownell KD. Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology. 2001;26:37–49.

    Article  PubMed  CAS  Google Scholar 

  128. Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav. 2007 Jul 24;91:449–58.

    Google Scholar 

  129. Dallman MF, Pecoraro NC, La Fleur SE. Chronic stress and comfort foods: self-medication and abdominal obesity. Brain, Behav Immun. 2005;19:275–80.

    Article  Google Scholar 

  130. Bjorntorp P, Rosmond R. Hypothalamic origin of the metabolic syndrome. Ann. N Y Acad Sci. 1999;892:297–307.

    Article  PubMed  CAS  Google Scholar 

  131. Epel E, McEwen B, Seeman T, et al. Can stress shape your body? Consistently greater stress-induced cortisol secretion among women with abdominal fat. Psychosom Med. 2000;62:623–32.

    PubMed  CAS  Google Scholar 

  132. Thakore J, Richards P, Reznek R, Martin A, Dinan T. Increased intraabdominal fat in major depression. Biol Psychiatry 1997;41:1140–2.

    Article  PubMed  CAS  Google Scholar 

  133. Weber-Hamann B, Hentschel F, Kneist A, et al. Hypercortisolemic depression is associated with increased intra-abdominal fat. Psychosom Med. 2002;64:274–7.

    PubMed  Google Scholar 

  134. Rosmond R, Dallman M, Bjorntorp P. Stress related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic, and hemodynamic abnormalities. J Clin Endocrinol Metab. 1998;83:1853–9.

    Article  PubMed  CAS  Google Scholar 

  135. Rosmond R, Lapidus L, Marin P, Bjorntorp P. Mental distress, obesity, and body fat distribution in middle-aged men. Obes Res. 1996;4:245–52.

    Article  PubMed  CAS  Google Scholar 

  136. Ahlberg AC, Ljung T, Rosmond R, et al. Depression and anxiety symptoms in relation to anthropometry and metabolism in men. Psychiatry Res. 2002;112:101–10.

    Article  PubMed  Google Scholar 

  137. Wallerius S, Rosmond R, Ljung T, Holm G, Bjorntorp P. Rise in morning saliva cortisol is associated with abdominal obesity in men: a preliminary report. J Endocrinol Invest. 2003;26:616–9.

    PubMed  CAS  Google Scholar 

  138. Vitaliano P, Scanlan J, Zhang J, Savage M, Hirsch I, Siegler I. A path model of chronic stress, the metabolic syndrome, and coronary heart disease. Psychosom Med. 2002;64:418–35.

    PubMed  CAS  Google Scholar 

  139. Raikkonen K, Matthews KA, Kuller LH. The relationship between psychological risk attributes and the metabolic syndrome in healthy women: antecedent or consequence? Metabolism. 2002;51:1573–7.

    Article  PubMed  CAS  Google Scholar 

  140. Chandola T, Brunner E, Marmot M. Chronic stress at work and the metabolic syndrome: prospective study. BMJ. 2006;332:521–5.

    Article  PubMed  Google Scholar 

  141. Rosengren A, Hawken S, Ounpuu S, et al. Association of psychosocial risk factors with risk of acute myocardial infarction in 11,119 cases and 13,648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953–62.

    Article  PubMed  Google Scholar 

  142. Brunner EJ, Hemingway H, Walker BR, et al. Adrenocortical, autonomic, and inflammatory causes of the metabolic syndrome: nested case-control study. Circulation. 2002;106:2659–65.

    Article  PubMed  CAS  Google Scholar 

  143. Andrew R, Gale CR, Walker BR, Seckl JR, Martyn CN. Glucocorticoid metabolism and the metabolic syndrome: associations in an elderly cohort. Exp Clin Endocrinol Diab. 2002;110:284–90.

    Article  CAS  Google Scholar 

  144. Faggiano A, Pivonello R, Spiezia S, et al. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab. 2003;88:2527–33.

    Article  PubMed  CAS  Google Scholar 

  145. Reynolds RM, Walker BR. Human insulin resistance: the role of glucocorticoids. Diab Obes Metab. 2003;5:5–12.

    Article  CAS  Google Scholar 

  146. Charmandari E, Kino T, Souvatzoglou E, Chrousos GP. Pediatric stress: hormonal mediators and human development. Horm Res. 2003;59:161–79.

    Article  PubMed  CAS  Google Scholar 

  147. Greenfield EA, Marks NF. Violence from parents in childhood and obesity in adulthood: using food in response to stress as a mediator of risk. Soc Sci Med. 2009;68:791–8.

    Article  PubMed  Google Scholar 

  148. Danese A, Moffitt TE, Harrington H, et al. Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med. 2009;163:1135–43.

    Article  PubMed  Google Scholar 

  149. Oliver G, Wardle J. Perceived effects of stress on food choice. Physiol. Behav. 1999;66:511–5.

    Article  PubMed  CAS  Google Scholar 

  150. Roemmich JN, Wright SM, Epstein LH. Dietary restraint and stress-induced snacking in youth. Obes Res. 2002;10:1120–6.

    Article  PubMed  Google Scholar 

  151. Johnson JG, Cohen P, Kasen S, Brook JS. Childhood adversities associated with risk for eating disorders or weight problems during adolescence or early adulthood. Am J Psychiatry. 2002;159:394–400.

    Article  PubMed  Google Scholar 

  152. Reilly JJ, Brougham M, Montgomery C, Richardson F, Kelly A, Gibson BE. Effect of glucocorticoid therapy on energy intake in children treated for acute lymphoblastic leukemia. J Clin Endocrinol Metab. 2001;86:3742–5.

    Article  PubMed  CAS  Google Scholar 

  153. Reilly JJ, Ventham JC, Newell J, Aitchison T, Wallace WH, Gibson BE. Risk factors for excess weight gain in children treated for acute lymphoblastic leukaemia. Int J Obes Relat Metab Disord. 2000;24:1537–41.

    Article  PubMed  CAS  Google Scholar 

  154. French NP, Hagan R, Evans SF, Godfrey M, Newnham JP. Repeated antenatal corticosteroids: size at birth and subsequent development. Am J Obstet Gynecol. 1999;180:114–21.

    Article  PubMed  CAS  Google Scholar 

  155. Bloom SL, Sheffield JS, McIntire DD, Leveno KJ. Antenatal dexamethasone and decreased birth weight. Obstet Gynecol. 2001;97:485–90.

    Article  PubMed  CAS  Google Scholar 

  156. Entringer S, Wüst S, Kumsta R, et al. Prenatal psychosocial stress exposure is associated with insulin resistance in young adults. Am J Obstet Gynecol. 2008;199:e1–7.

    Article  PubMed  CAS  Google Scholar 

  157. Phillips DI, Barker DJ, Fall CH, et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metab. 1998;83:757–60.

    Article  CAS  Google Scholar 

  158. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3:97–106.

    Article  PubMed  Google Scholar 

  159. Lajic S, Nordenström A, Hirvikoski T. Long-term outcome of prenatal treatment of congenital adrenal hyperplasia. Endocrinol Dev. 2008;13:82–98.

    Article  CAS  Google Scholar 

  160. Tamashiro KL, Terrillion CE, Hyun J, Koenig JI, Moran TH. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009;58:1116–25.

    Article  PubMed  CAS  Google Scholar 

  161. Drake AJ, Raubenheimer PJ, Kerrigan D, McInnes KJ, Seckl JR, Walker BR. Prenatal dexamethasone programs expression of genes in liver and adipose tissue and increased hepatic lipid accumulation but not obesity on a high-fat diet. Endocrinology. 2010;151:1581–7.

    Article  PubMed  CAS  Google Scholar 

  162. De Vries A, Holmes MC, Heijnis A, et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest. 2007;117:1058–67.

    Article  PubMed  CAS  Google Scholar 

  163. Nyirenda MJ, Carter R, Tang JI, et al. Prenatal programming of metabolic syndrome in the common marmoset is associated with increased expression of 11beta-hydroxysteroid dehydrogenase type 1. Diabetes. 2009;58:2873–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Drs. Elissa Epel, Mary Dallman, Clement Cheung, Amanda Drake, Mark Tremblay, and Anastasia Hadjiyannakis for their collegiality and for their intellectual contributions to this treatise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Lustig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lustig, R.H. (2011). Obesity: Nature or Nurture?. In: Lustig, R. (eds) Obesity Before Birth. Endocrine Updates, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7034-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7034-3_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7033-6

  • Online ISBN: 978-1-4419-7034-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics