Skip to main content

¹H Magnetic Resonance Spectroscopy of the Brain During Adolescence: Normal Brain Development and Neuropsychiatric Disorders

  • Chapter
  • First Online:
MR Spectroscopy of Pediatric Brain Disorders

Abstract

Adolescence, a transitional period between childhood and adulthood (12–18 years of age), is characterized by maturation of cognitive and behavioral abilities. Compared to brain development in perinatal and early childhood, neurobiological changes occurring during later childhood and adolescence are less dramatic but have critical importance for development of normal brain functions. The combinations of genetic vulnerability, endocrine changes during puberty, and environmental factors render adolescents at risk for developing psychiatric disorders. In the developed world, mental and addictive disorders can be considered the primary chronic diseases of childhood and adolescence. Attention Deficit/Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD) are associated with childhood. The onset of mood and anxiety disorders generally occurs in adolescence, although the diagnoses may be delayed until adulthood. Many psychiatric disorders that emerge in childhood and adolescence can be understood as dysfunctions within established brain circuits. Therefore, an understanding of normal development of the brain and its circuitry is important for both identifying the causes of psychiatric disorders and for development of effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 2000.

    Google Scholar 

  2. Arnold PD, Macmaster FP, Richter MA, Hanna GL, Sicard T, Burroughs E, Mirza Y, Easter PC, Rose M, Kennedy JL, Rosenberg DR. Glutamate receptor gene (GRIN2B) associated with reduced anterior cingulate glutamatergic concentration in pediatric obsessive-compulsive disorder. Psychiatry Res. 2009;172(2):136–9.

    PubMed  CAS  Google Scholar 

  3. Arslanoglu A, Bonekamp D, Barker PB, Horska A. Quantitative proton MR spectroscopic imaging of the mesial temporal lobe. J Magn Reson Imaging. 2004;20(5):772–8.

    PubMed  Google Scholar 

  4. Ashtari M, Cervellione KL, Hasan KM, Wu J, McIlree C, Kester H, Ardekani BA, Roofeh D, Szeszko PR, Kumra S. White matter development during late adolescence in healthy males: a cross-sectional diffusion tensor imaging study. Neuroimage. 2007;35(2):501–10.

    PubMed  Google Scholar 

  5. Atmaca M, Yildirim H, Ozdemir H, Tezcan E, Poyraz AK. Volumetric MRI study of key brain regions implicated in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(1):46–52.

    PubMed  Google Scholar 

  6. Auer DP, Wilke M, Grabner A, Heidenreich JO, Bronisch T, Wetter TC. Reduced NAA in the thalamus and altered membrane and glial metabolism in schizophrenic patients detected by 1H-MRS and tissue segmentation. Schizophr Res. 2001;52(1–2):87–99.

    PubMed  CAS  Google Scholar 

  7. Bak LK, Schousboe A, Waagepetersen HS. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem. 2006;98(3):641–53.

    PubMed  CAS  Google Scholar 

  8. Baker EH, Basso G, Barker PB, Smith MA, Bonekamp D, Horska A. Regional apparent metabolite concentrations in young adult brain measured by (1)H MR spectroscopy at 3 Tesla. J Magn Reson Imaging. 2008;27(3):489–99.

    PubMed  Google Scholar 

  9. Barker P, Bizzi A, De Stefano N, Gullapalli R, Lin D. Clinical MR spectroscopy. Cambridge, UK: Cambridge University Press; 2010.

    Google Scholar 

  10. Barker PB, Szopinski K, Horska A. Metabolic heterogeneity at the level of the anterior and posterior commissures. Magn Reson Med. 2000;43(3):348–54.

    PubMed  CAS  Google Scholar 

  11. Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997;121(1):65–94.

    PubMed  CAS  Google Scholar 

  12. Benazon NR, Moore GJ, Rosenberg DR. Neurochemical analyses in pediatric obsessive-compulsive disorder in patients treated with cognitive-behavioral therapy. J Am Acad Child Adolesc Psychiatry. 2003;42(11):1279–85.

    PubMed  Google Scholar 

  13. Bertolino A, Kumra S, Callicott JH, Mattay VS, Lestz RM, Jacobsen L, Barnett IS, Duyn JH, Frank JA, Rapoport JL, Weinberger DR. Common pattern of cortical pathology in childhood-onset and adult-onset schizophrenia as identified by proton magnetic resonance spectroscopic imaging. Am J Psychiatry. 1998;155(10):1376–83.

    PubMed  CAS  Google Scholar 

  14. Bonekamp D, Nagae LM, Degaonkar M, Matson M, Abdalla WM, Barker PB, Mori S, Horska A. Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. Neuroimage. 2007;34(2):733–42.

    PubMed  Google Scholar 

  15. Brambilla P, Bellani M, Yeh PH, Soares JC, Tansella M. White matter connectivity in bipolar disorder. Int Rev Psychiatry. 2009;21:380–6.

    PubMed  Google Scholar 

  16. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci. 1993;15(3–5):289–98.

    PubMed  CAS  Google Scholar 

  17. Brocki KC, Bohlin G. Executive functions in children aged 6 to 13: a dimensional and developmental study. Dev Neuropsychol. 2004;26(2):571–93.

    PubMed  Google Scholar 

  18. Brooks WM, Hodde-Vargas J, Vargas LA, Yeo RA, Ford CC, Hendren RL. Frontal lobe of children with schizophrenia spectrum disorders: a proton magnetic resonance spectroscopic study. Biol Psychiatry. 1998;43(4):263–9.

    PubMed  CAS  Google Scholar 

  19. Brugger S, Davis JM, Leucht S, Stone JM. Proton magnetic resonance spectroscopy and illness stage in schizophrenia–a systematic review and meta-analysis. Biol Psychiatry. 2011;69(5):495–503.

    PubMed  Google Scholar 

  20. Bustillo JR, Rowland LM, Lauriello J, Petropoulos H, Hammond R, Hart B, Brooks WM. High choline concentrations in the caudate nucleus in antipsychotic-naive patients with schizophrenia. Am J Psychiatry. 2002;159(1):130–3.

    PubMed  Google Scholar 

  21. Caetano S, Olvera RL, Glahn DC, Fonseca M, Pliszka SR, Soares JC. Fronto-limbic brain abnormalities in juvenile onset bipolar disorder. Biol Psychiatry. 2005;58:525–31.

    PubMed  Google Scholar 

  22. Caetano SC, Olvera RL, Hatch JP, Sanches M, Chen HH, Nicoletti M, Stanley JA, Fonseca M, Hunter K, Lafer B, Pliszka SR, Soares JC. Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a (1)H magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry. 2011;50(1):85–94.

    PubMed  Google Scholar 

  23. Castillo M, Kwock L, Courvoisie H, Hooper SR. Proton MR spectroscopy in children with bipolar affective disorder: preliminary observations. AJNR Am J Neuroradiol. 2000;21(5):832–8.

    PubMed  CAS  Google Scholar 

  24. Cecil KM, DelBello MP, Sellars MC, Strakowski SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol. 2003;13(4):545–55.

    PubMed  Google Scholar 

  25. Chamberlain SR, Menzies L, Hampshire A, Suckling J, Fineberg NA, del Campo N, Aitken M, Craig K, Owen AM, Bullmore ET, Robbins TW, Sahakian BJ. Orbitofrontal dysfunction in patients with obsessive-compulsive disorder and their unaffected relatives. Science. 2008;321(5887):421–2.

    PubMed  CAS  Google Scholar 

  26. Chang K, Adleman N, Dienes K, Barnea-Goraly N, Reiss A, Ketter T. Decreased N-acetylaspartate in children with familial bipolar disorder. Biol Psychiatry. 2003;53(11):1059–65.

    PubMed  CAS  Google Scholar 

  27. Chang K, Karchemskiy A, Kelley R, Howe M, Garrett A, Adleman N, Reiss A. Effect of divalproex on brain morphometry, chemistry, and function in youth at high-risk for bipolar disorder: a pilot study. J Child Adolesc Psychopharmacol. 2009;19(1):51–9.

    PubMed  Google Scholar 

  28. Chugani HT. A critical period of brain development: studies of cerebral glucose utilization with PET. Prev Med. 1998;27(2):184–8.

    PubMed  CAS  Google Scholar 

  29. Dager SR, Corrigan NM, Richards TL, Posse S. Research applications of magnetic resonance spectroscopy to investigate psychiatric disorders. Top Magn Reson Imaging. 2008;19(2):81–96.

    PubMed  Google Scholar 

  30. Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry. 2004;61(5):450–8.

    PubMed  CAS  Google Scholar 

  31. Davanzo P, Thomas MA, Yue K, Oshiro T, Belin T, Strober M, McCracken J. Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology. 2001;24(4):359–69.

    PubMed  CAS  Google Scholar 

  32. Davanzo P, Yue K, Thomas MA, Belin T, Mintz J, Venkatraman TN, Santoro E, Barnett S, McCracken J. Proton magnetic resonance spectroscopy of bipolar disorder versus intermittent explosive disorder in children and adolescents. Am J Psychiatry. 2003;160(8):1442–52.

    PubMed  Google Scholar 

  33. de Graaf RA, Rothman DL. Detection of gamma-aminobutyric acid (GABA) by longitudinal scalar order difference editing. J Magn Reson. 2001;152(1):124–31.

    PubMed  Google Scholar 

  34. Degaonkar MN, Pomper MG, Barker PB. Quantitative proton magnetic resonance spectroscopic imaging: regional variations in the corpus callosum and cortical gray matter. J Magn Reson Imaging. 2005;22(2):175–9.

    PubMed  Google Scholar 

  35. Deicken RF, Johnson C, Eliaz Y, Schuff N. Reduced concentrations of thalamic N-acetylaspartate in male patients with schizophrenia. Am J Psychiatry. 2000;157(4):644–7.

    PubMed  CAS  Google Scholar 

  36. DelBello MP, Adler CM, Strakowski SM. The neurophysiology of childhood and adolescent bipolar disorder. CNS Spectr. 2006;11(4):298–311.

    PubMed  Google Scholar 

  37. DelBello MP, Cecil KM, Adler CM, Daniels JP, Strakowski SM. Neurochemical effects of olanzapine in first-hospitalization manic adolescents: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology. 2006;31(6):1264–73.

    PubMed  CAS  Google Scholar 

  38. DeVito TJ, Drost DJ, Pavlosky W, Neufeld RW, Rajakumar N, McKinlay BD, Williamson PC, Nicolson R. Brain magnetic resonance spectroscopy in Tourette’s disorder. J Am Acad Child Adolesc Psychiatry. 2005;44(12):1301–8.

    PubMed  Google Scholar 

  39. Dickstein D, Gorrostieta C, Ombao H, Goldberg LD, Brazel AC, Gable CJ, Kelly C, Gee DG, Zuo X-N, Castellanos FX, Milham MP. Fronto-temporal spontaneous resting state functional connectivity in pediatric bipolar disorder. Biol Psychiatry. 2010;68:839–46.

    PubMed  Google Scholar 

  40. Dickstein D, Milham MP, Nugent AC, et al. Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study. Arch Gen Psychiatry. 2005;62:734–41.

    PubMed  Google Scholar 

  41. Douaud G, Mackay C, Andersson J, James S, Quested D, Ray MK, Connell J, Roberts N, Crow TJ, Matthews PM, Smith S, James A. Schizophrenia delays and alters maturation of the brain in adolescence. Brain. 2009;132(Pt 9):2437–48.

    PubMed  Google Scholar 

  42. Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010. doi:10.1016/j.biopsych.2010.07.037.

  43. Ende G, Braus DF, Walter S, Henn FA. Lower concentration of thalamic n-acetylaspartate in patients with schizophrenia: a replication study. Am J Psychiatry. 2001;158(8):1314–6.

    PubMed  CAS  Google Scholar 

  44. Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA. Multiregional 1H-MRSI of the hippocampus, thalamus, and basal ganglia in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2003;253(1):9–15.

    PubMed  Google Scholar 

  45. Ernst M, Mueller SC. The adolescent brain: insights from functional neuroimaging research. Dev Neurobiol. 2008;68(6):729–43.

    PubMed  Google Scholar 

  46. Farber NB, Newcomer JW, Olney JW. The glutamate synapse in neuropsychiatric disorders. Focus on schizophrenia and Alzheimer’s disease. Prog Brain Res. 1998;116:421–37.

    PubMed  CAS  Google Scholar 

  47. Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31(7):361–70.

    PubMed  CAS  Google Scholar 

  48. Filley CM. White matter and behavioral neurology. Ann N Y Acad Sci. 2005;1064:162–83.

    PubMed  Google Scholar 

  49. Fitzgerald KD, Moore GJ, Paulson LA, Stewart CM, Rosenberg DR. Proton spectroscopic imaging of the thalamus in treatment-naive pediatric obsessive-compulsive disorder. Biol Psychiatry. 2000;47(3):174–82.

    PubMed  CAS  Google Scholar 

  50. Fontenelle LF, Harrison BJ, Yucel M, Pujol J, Fujiwara H, Pantelis C. Is there evidence of brain white-matter abnormalities in obsessive-compulsive disorder?: a narrative review. Top Magn Reson Imaging. 2009;20(5):291–8.

    PubMed  Google Scholar 

  51. Frazier J, Ahn MS, DeJong S, Bent EK, Breeze JL, Giuliano AJ. Magnetic resonance imaging studies in early onset bipolar disorder: a critical review. Harv Rev Psychiatry. 2005;13:125–40.

    PubMed  Google Scholar 

  52. Fredericksen KA, Cutting LE, Kates WR, Mostofsky SH, Singer HS, Cooper KL, Lanham DC, Denckla MB, Kaufmann WE. Disproportionate increases of white matter in right frontal lobe in Tourette syndrome. Neurology. 2002;58:85–9.

    PubMed  CAS  Google Scholar 

  53. Frey R, Metzler D, Fischer P, Heiden A, Scharfetter J, Moser E, Kasper S. Myo-inositol in depressive and healthy subjects determined by frontal 1H-magnetic resonance spectroscopy at 1.5 tesla. J Psychiatr Res. 1998;32(6):411–20.

    PubMed  CAS  Google Scholar 

  54. Gallelli KA, Wagner CM, Karchemskiy A, Howe M, Spielman D, Reiss A, Chang KD. N-acetylaspartate levels in bipolar offspring with and at high-risk for bipolar disorder. Bipolar Disord. 2005;7(6):589–97.

    PubMed  CAS  Google Scholar 

  55. Giedd JN. The teen brain: insights from neuroimaging. J Adolesc Health. 2008;42(4):335–43.

    PubMed  Google Scholar 

  56. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861–3.

    PubMed  CAS  Google Scholar 

  57. Giedd JN, Jeffries NO, Blumenthal J, Castellanos FX, Vaituzis AC, Fernandez T, Hamburger SD, Liu H, Nelson J, Bedwell J, Tran L, Lenane M, Nicolson R, Rapoport JL. Childhood-onset schizophrenia: progressive brain changes during adolescence. Biol Psychiatry. 1999;46(7):892–8.

    PubMed  CAS  Google Scholar 

  58. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex. 1996;6(4):551–60.

    PubMed  CAS  Google Scholar 

  59. Giedd JN, Stockman M, Weddle C, Liverpool M, Alexander-Bloch A, Wallace GL, Lee NR, Lalonde F, Lenroot RK. Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation. Neuropsychol Rev. 2010;20(4):349–61.

    PubMed  Google Scholar 

  60. Gimenez M, Junque C, Narberhaus A, Caldu X, Segarra D, Vendrell P, Bargallo N, Mercader JM. Medial temporal MR spectroscopy is related to memory performance in normal adolescent subjects. Neuroreport. 2004;15(4):703–7.

    PubMed  Google Scholar 

  61. Gimenez M, Soria-Pastor S, Junque C, Caldu X, Narberhaus A, Botet F, Bargallo N, Falcon C, Mercader JM. Proton magnetic resonance spectroscopy reveals medial temporal metabolic abnormalities in adolescents with history of preterm birth. Pediatr Res. 2008;64(5):572–7.

    PubMed  CAS  Google Scholar 

  62. Giorgio A, Watkins KE, Chadwick M, James S, Winmill L, Douaud G, De Stefano N, Matthews PM, Smith SM, Johansen-Berg H, James AC. Longitudinal changes in grey and white matter during adolescence. Neuroimage. 2010;49(1):94–103.

    PubMed  CAS  Google Scholar 

  63. Giorgio A, Watkins KE, Douaud G, James AC, James S, De Stefano N, Matthews PM, Smith SM, Johansen-Berg H. Changes in white matter microstructure during adolescence. Neuroimage. 2008;39(1):52–61.

    PubMed  CAS  Google Scholar 

  64. Gogtay N, Lu A, Leow AD, Klunder AD, Lee AD, Chavez A, Greenstein D, Giedd JN, Toga AW, Rapoport JL, Thompson PM. Three-dimensional brain growth abnormalities in childhood-onset schizophrenia visualized by using tensor-based morphometry. Proc Natl Acad Sci USA. 2008;105(41):15979–84.

    PubMed  CAS  Google Scholar 

  65. Goldstein G, Panchalingam K, McClure RJ, Stanley JA, Calhoun VD, Pearlson GD, Pettegrew JW. Molecular neurodevelopment: an in vivo 31P-1H MRSI study. J Int Neuropsychol Soc. 2009;15(5):671–83.

    PubMed  Google Scholar 

  66. Govindan RM, Makki MI, Wilson BJ, Behen ME, Chugani HT. Abnormal water diffusivity in corticostriatal projections in children with Tourette syndrome. Hum Brain Mapp. 2010;31(11):1665–74.

    PubMed  Google Scholar 

  67. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129–53.

    PubMed  CAS  Google Scholar 

  68. Grados MA, Mathews CA. Clinical phenomenology and phenotype variability in Tourette syndrome. J Psychosom Res. 2009;67(6):491–6.

    PubMed  Google Scholar 

  69. Haga KK, Khor YP, Farrall A, Wardlaw JM. A systematic review of brain metabolite changes, measured with 1H magnetic resonance spectroscopy, in healthy aging. Neurobiol Aging. 2009;30(3):353–63.

    PubMed  CAS  Google Scholar 

  70. Hajek T, Bernier D, Slaney C, Propper L, Schmidt M, Carrey N, MacQueen G, Duffy A, Alda M. A comparison of affected and unaffected relatives of patients with bipolar disorder using proton magnetic resonance spectroscopy. J Psychiatry Neurosci. 2008;33(6):531–40.

    PubMed  Google Scholar 

  71. Hendren RL, Hodde-Vargas J, Yeo RA, Vargas LA, Brooks WM, Ford C. Neuropsychophysiological study of children at risk for schizophrenia: a preliminary report. J Am Acad Child Adolesc Psychiatry. 1995;34(10):1284–91.

    PubMed  CAS  Google Scholar 

  72. Heng S, Song AW, Sim K. White matter abnormalities in bipolar disorder: insights from diffusion tensor imaging studies. J Neural Transm. 2010;117:639–54.

    PubMed  Google Scholar 

  73. Hollis C. Adult outcomes of child- and adolescent-onset schizophrenia: diagnostic stability and predictive validity. Am J Psychiatry. 2000;157(10):1652–9.

    PubMed  CAS  Google Scholar 

  74. Horska A, Kaufmann WE, Brant LJ, Naidu S, Harris JC, Barker PB. In vivo quantitative proton MRSI study of brain development from childhood to adolescence. J Magn Reson Imaging. 2002;15(2):137–43.

    PubMed  Google Scholar 

  75. Insel TR. Disruptive insights in psychiatry: transforming a clinical discipline. J Clin Invest. 2009;119(4):700–5.

    PubMed  CAS  Google Scholar 

  76. Jackson SR, Parkinson A, Jung J, Ryan SE, Morgan PS, Hollis C, Jackson GM. Compensatory neural reorganization in tourette syndrome. Curr Biol. 2011;21:580–5.

    PubMed  CAS  Google Scholar 

  77. Jacobs MA, Horska A, van Zijl PC, Barker PB. Quantitative proton MR spectroscopic imaging of normal human cerebellum and brain stem. Magn Reson Med. 2001;46(4):699–705.

    PubMed  CAS  Google Scholar 

  78. James A, Hough M, James S, Burge L, Winmill L, Nijhawan S, Matthews PM, Zarei M. Structural brain and neuropsychometric changes associated with pediatric bipolar disorder with psychosis. Bipolar Disord. 2011;13(1):16–27.

    PubMed  Google Scholar 

  79. Jernigan TL, Trauner DA, Hesselink JR, Tallal PA. Maturation of human cerebrum observed in vivo during adolescence. Brain. 1991;114(Pt 5):2037–49.

    PubMed  Google Scholar 

  80. Joseph M, Frazier TW, Youngstrom EA, Soares JC. A quantitative and qualitative review of neurocognitive performance in pediatric bipolar disorder. J Child Adolesc Psychopharmacol. 2008;18:595–605.

    PubMed  Google Scholar 

  81. Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy. AJNR Am J Neuroradiol. 2001;22(1):128–35.

    PubMed  CAS  Google Scholar 

  82. Kaur S, Sassi RB, Axelson D, et al. Cingulate cortex anatomical abnormalities in children and adolescents with bipolar disorder. Am J Psychiatry. 2005;162:1637–43.

    PubMed  Google Scholar 

  83. Keshavan MS. Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. J Psychiatr Res. 1999;33(6):513–21.

    PubMed  CAS  Google Scholar 

  84. Keshavan MS, Anderson S, Pettegrew JW. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res. 1994;28(3):239–65.

    PubMed  CAS  Google Scholar 

  85. Keshavan MS, Dick RM, Diwadkar VA, Montrose DM, Prasad KM, Stanley JA. Striatal metabolic alterations in non-psychotic adolescent offspring at risk for schizophrenia: a (1)H spectroscopy study. Schizophr Res. 2009;115(1):88–93.

    PubMed  Google Scholar 

  86. Keshavan MS, Diwadkar VA, Montrose DM, Rajarethinam R, Sweeney JA. Premorbid indicators and risk for schizophrenia: a selective review and update. Schizophr Res. 2005;79(1):45–57.

    PubMed  Google Scholar 

  87. Keshavan MS, Hogarty GE. Brain maturational processes and delayed onset in schizophrenia. Dev Psychopathol. 1999;11(3):525–43.

    PubMed  CAS  Google Scholar 

  88. Keshavan MS, Montrose DM, Pierri JN, Dick EL, Rosenberg D, Talagala L, Sweeney JA. Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: preliminary studies. Prog Neuropsychopharmacol Biol Psychiatry. 1997;21(8):1285–95.

    PubMed  CAS  Google Scholar 

  89. Keshavan MS, Prasad KM, Pearlson G. Are brain structural abnormalities useful as endophenotypes in schizophrenia? Int Rev Psychiatry. 2007;19(4):397–406.

    PubMed  Google Scholar 

  90. Kinros J, Reichenberg A, Frangou S. The neurodevelopmental theory of schizophrenia: evidence from studies of early onset cases. Isr J Psychiatry Relat Sci. 2010;47(2):110–7.

    PubMed  Google Scholar 

  91. Kitamura H, Shioiri T, Kimura T, Ohkubo M, Nakada T, Someya T. Parietal white matter abnormalities in obsessive-compulsive disorder: a magnetic resonance spectroscopy study at 3-Tesla. Acta Psychiatr Scand. 2006;114(2):101–8.

    PubMed  CAS  Google Scholar 

  92. Klemm S, Rzanny R, Riehemann S, Volz HP, Schmidt B, Gerhard UJ, Filz C, Schonberg A, Mentzel HJ, Kaiser WA, Blanz B. Cerebral phosphate metabolism in first-degree relatives of patients with schizophrenia. Am J Psychiatry. 2001;158(6):958–60.

    PubMed  CAS  Google Scholar 

  93. Kondziella D, Brenner E, Eyjolfsson EM, Sonnewald U. How do glial-neuronal interactions fit into current neurotransmitter hypotheses of schizophrenia? Neurochem Int. 2007;50(2):291–301.

    PubMed  CAS  Google Scholar 

  94. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett. 2000;285(2):107–10.

    PubMed  CAS  Google Scholar 

  95. Kreis R, Ernst T, Ross BD. Development of the human brain: in vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy. Magn Reson Med. 1993;30(4):424–37.

    PubMed  CAS  Google Scholar 

  96. Kumra S, Giedd JN, Vaituzis AC, Jacobsen LK, McKenna K, Bedwell J, Hamburger S, Nelson JE, Lenane M, Rapoport JL. Childhood-onset psychotic disorders: magnetic resonance imaging of volumetric differences in brain structure. Am J Psychiatry. 2000;157(9):1467–74.

    PubMed  CAS  Google Scholar 

  97. Kurlan R. Clinical practice. Tourette’s Syndrome. N Engl J Med. 2010;363(24):2332–8.

    PubMed  CAS  Google Scholar 

  98. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage. 2008;40(3):1044–55.

    PubMed  CAS  Google Scholar 

  99. Leckman JF, Bloch MH, Smith ME, Larabi D, Hampson M. Neurobiological substrates of Tourette’s disorder. J Child Adolesc Psychopharmacol. 2010;20(4):237–47.

    PubMed  Google Scholar 

  100. Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30(6):718–29.

    PubMed  Google Scholar 

  101. Lewinsohn P, Klein DN, Seeley JR. Bipolar disorders in a community sample of older adolescents: prevalence, phenomenology, comorbidity, and course. J Am Acad Child Adolesc Psychiatry. 1995;34:454–63.

    PubMed  CAS  Google Scholar 

  102. Lieberman JA, Sheitman BB, Kinon BJ. Neurochemical sensitization in the pathophysiology of schizophrenia: deficits and dysfunction in neuronal regulation and plasticity. Neuropsychopharmacology. 1997;17(4):205–29.

    PubMed  CAS  Google Scholar 

  103. MacMaster FP, Carrey N, Sparkes S, Kusumakar V. Proton spectroscopy in medication-free pediatric attention-deficit/hyperactivity disorder. Biol Psychiatry. 2003;53(2):184–7.

    PubMed  Google Scholar 

  104. MacMaster FP, O’Neill J, Rosenberg DR. Brain imaging in pediatric obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry. 2008;47(11):1262–72.

    PubMed  Google Scholar 

  105. Makki MI, Behen M, Bhatt A, Wilson B, Chugani HT. Microstructural abnormalities of striatum and thalamus in children with Tourette syndrome. Mov Disord. 2008;23(16):2349–56.

    PubMed  Google Scholar 

  106. Makki MI, Govindan RM, Wilson BJ, Behen ME, Chugani HT. Altered fronto-striato-thalamic connectivity in children with Tourette syndrome assessed with diffusion tensor MRI and probabilistic fiber tracking. J Child Neurol. 2009;24(6):669–78.

    PubMed  Google Scholar 

  107. Marenco S, Weinberger DR. The neurodevelopmental hypothesis of schizophrenia: following a trail of evidence from cradle to grave. Dev Psychopathol. 2000;12(3):501–27.

    PubMed  CAS  Google Scholar 

  108. Marsh R, Maia TV, Peterson BS. Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am J Psychiatry. 2009;166(6):664–74.

    PubMed  Google Scholar 

  109. Masi G, Millepiedi S, Mucci M, Bertini N, Pfanner C, Arcangeli F. Comorbidity of obsessive-compulsive disorder and attention-deficit/hyperactivity disorder in referred children and adolescents. Compr Psychiatry. 2006;47(1):42–7.

    PubMed  Google Scholar 

  110. McAnarney ER. Adolescent brain development: forging new links? J Adolesc Health. 2008;42(4):321–3.

    PubMed  Google Scholar 

  111. Meyer T, Fuhr K, Hautzinger M, Schlarb AA. Recognizing mania in children and adolescents—age does not matter, but decreased need for sleep does. Comp Psychiatry. 2011;52:132–8.

    Google Scholar 

  112. Mick E, Spencer T, Wozniak J, Biederman J. Heterogeneity of irritability in attention-deficit/hyperactivity disorder subjects with and without mood disorders. Biol Psychiatry. 2005;58:570–82.

    Google Scholar 

  113. Milev P, Miranowski S, Lim K. Magnetic resonance spectroscopy. In: Lajtha A, Javitt D, Kantrowitz J, editors. Handbook of neurochemistry and molecular neurobiology. Heidelberg: Springer; 2009. p. 406–42.

    Google Scholar 

  114. Mirza Y, O’Neill J, Smith EA, Russell A, Smith JM, Banerjee SP, Bhandari R, Boyd C, Rose M, Ivey J, Renshaw PF, Rosenberg DR. Increased medial thalamic creatine-phosphocreatine found by proton magnetic resonance spectroscopy in children with obsessive-compulsive disorder versus major depression and healthy controls. J Child Neurol. 2006;21(2):106–11.

    PubMed  Google Scholar 

  115. Moore CM, Demopulos CM, Henry ME, Steingard RJ, Zamvil L, Katic A, Breeze JL, Moore JC, Cohen BM, Renshaw PF. Brain-to-serum lithium ratio and age: an in vivo magnetic resonance spectroscopy study. Am J Psychiatry. 2002;159(7):1240–2.

    PubMed  Google Scholar 

  116. Moore CM, Frazier JA, Glod CA, Breeze JL, Dieterich M, Finn CT, Frederick B, Renshaw PF. Glutamine and glutamate levels in children and adolescents with bipolar disorder: a 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Am Acad Child Adolesc Psychiatry. 2007;46(4):524–34.

    PubMed  Google Scholar 

  117. Nagae-Poetscher LM, Bonekamp D, Barker PB, Brant LJ, Kaufmann WE, Horska A. Asymmetry and gender effect in functionally lateralized cortical regions: a proton MRS imaging study. J Magn Reson Imaging. 2004;19(1):27–33.

    PubMed  Google Scholar 

  118. Nagy Z, Westerberg H, Klingberg T. Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci. 2004;16(7):1227–33.

    PubMed  Google Scholar 

  119. Nicolson R, Lenane M, Hamburger SD, Fernandez T, Bedwell J, Rapoport JL. Lessons from childhood-onset schizophrenia. Brain Res Brain Res Rev. 2000;31(2–3):147–56.

    PubMed  CAS  Google Scholar 

  120. O’Neill J, Levitt J, Caplan R, Asarnow R, McCracken JT, Toga AW, Alger JR. 1H MRSI evidence of metabolic abnormalities in childhood-onset schizophrenia. Neuroimage. 2004;21(4):1781–9.

    PubMed  Google Scholar 

  121. Olvera RL, Caetano SC, Fonseca M, Nicoletti M, Stanley JA, Chen HH, Hatch JP, Hunter K, Pliszka SR, Soares JC. Low levels of N-acetyl aspartate in the left dorsolateral prefrontal cortex of pediatric bipolar patients. J Child Adolesc Psychopharmacol. 2007;17(4):461–73.

    PubMed  Google Scholar 

  122. Ozturk A, Degaonkar M, Matson MA, Wells CT, Mahone EM, Horska A. Proton MR spectroscopy correlates of frontal lobe function in healthy children. AJNR Am J Neuroradiol. 2009;30(7):1308–14.

    PubMed  CAS  Google Scholar 

  123. Panigrahy A, Nelson Jr MD, Bluml S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol. 2010;40(1):3–30.

    PubMed  Google Scholar 

  124. Passarotti A, Sweeney JA, Pavuluri MN. Fronto-limbic dysfunction in mania pre-treatment and persistent amygdala over-activity post-treatment in pediatric bipolar disorder. Psychopharmacology. 2010. doi:10.1007/s00213-011-2243-2.

  125. Patel NC, Cecil KM, Strakowski SM, Adler CM, DelBello MP. Neurochemical alterations in adolescent bipolar depression: a proton magnetic resonance spectroscopy pilot study of the prefrontal cortex. J Child Adolesc Psychopharmacol. 2008;18(6):623–7.

    PubMed  Google Scholar 

  126. Patel NC, DelBello MP, Cecil KM, Adler CM, Bryan HS, Stanford KE, Strakowski SM. Lithium treatment effects on Myo-inositol in adolescents with bipolar depression. Biol Psychiatry. 2006;60(9):998–1004.

    PubMed  CAS  Google Scholar 

  127. Patel NC, DelBello MP, Cecil KM, Stanford KE, Adler CM, Strakowski SM. Temporal change in N-acetyl-aspartate concentrations in adolescents with bipolar depression treated with lithium. J Child Adolesc Psychopharmacol. 2008;18(2):132–9.

    PubMed  Google Scholar 

  128. Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG, Allen M. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry. 1991;48(6):563–8.

    PubMed  CAS  Google Scholar 

  129. Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol. 1994;51(9):874–87.

    PubMed  CAS  Google Scholar 

  130. Plessen KJ, Gruner R, Lundervold A, Hirsch JG, Xu D, Bansal R, Hammar A, Lundervold AJ, Wentzel-Larsen T, Lie SA, Gass A, Peterson BS, Hugdahl K. Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome. J Child Psychol Psychiatry. 2006;47(10):1013–22.

    PubMed  Google Scholar 

  131. Posner MI, Rothbart MK. Developing mechanisms of self-regulation. Dev Psychopathol. 2000;12:427–41.

    Google Scholar 

  132. Pouwels PJ, Brockmann K, Kruse B, Wilken B, Wick M, Hanefeld F, Frahm J. Regional age dependence of human brain metabolites from infancy to adulthood as detected by quantitative localized proton MRS. Pediatr Res. 1999;46(4):474–85.

    PubMed  CAS  Google Scholar 

  133. Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchon JM, Deus J, Vallejo J. Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry. 2004;61(7):720–30.

    PubMed  Google Scholar 

  134. Pujol J, Soriano-Mas C, Gispert JD, Bossa M, Reig S, Ortiz H, Alonso P, Cardoner N, Lopez-Sola M, Harrison BJ, Deus J, Menchon JM, Desco M, Olmos S. Variations in the shape of the frontobasal brain region in obsessive-compulsive disorder. Hum Brain Mapp. 2010;32:1100–8.

    PubMed  Google Scholar 

  135. Rapoport JL, Giedd J, Kumra S, Jacobsen L, Smith A, Lee P, Nelson J, Hamburger S. Childhood-onset schizophrenia. Progressive ventricular change during adolescence. Arch Gen Psychiatry. 1997;54(10):897–903.

    PubMed  CAS  Google Scholar 

  136. Rickards H. Functional neuroimaging in Tourette syndrome. J Psychosom Res. 2009;67(6):575–84.

    PubMed  Google Scholar 

  137. Rosenberg DR, Amponsah A, Sullivan A, MacMillan S, Moore GJ. Increased medial thalamic choline in pediatric obsessive-compulsive disorder as detected by quantitative in vivo spectroscopic imaging. J Child Neurol. 2001;16(9):636–41.

    PubMed  CAS  Google Scholar 

  138. Rosenberg DR, MacMaster FP, Keshavan MS, Fitzgerald KD, Stewart CM, Moore GJ. Decrease in caudate glutamatergic concentrations in pediatric obsessive-compulsive disorder patients taking paroxetine. J Am Acad Child Adolesc Psychiatry. 2000;39(9):1096–103.

    PubMed  CAS  Google Scholar 

  139. Rosenberg DR, Mirza Y, Russell A, Tang J, Smith JM, Banerjee SP, Bhandari R, Rose M, Ivey J, Boyd C, Moore GJ. Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J Am Acad Child Adolesc Psychiatry. 2004;43(9):1146–53.

    PubMed  Google Scholar 

  140. Ross AJ, Sachdev PS. Magnetic resonance spectroscopy in cognitive research. Brain Res Brain Res Rev. 2004;44(2–3):83–102.

    PubMed  CAS  Google Scholar 

  141. Rostain A. Frontal lobe disorders in pediatric neuropsychology: attention-deficit hyperactivity disorder and Tourette disorder. In: Armstrong C, Morrow L, editors. Handbook of medical neuropsychology. Heidelberg: Springer Science + Business Media, LLC; 2010. p. 251–73.

    Google Scholar 

  142. Rotge JY, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, Burbaud P, Aouizerate B. Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry. 2009;65(1):75–83.

    PubMed  Google Scholar 

  143. Russell A, Cortese B, Lorch E, Ivey J, Banerjee SP, Moore GJ, Rosenberg DR. Localized functional neurochemical marker abnormalities in dorsolateral prefrontal cortex in pediatric obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 2003;13 Suppl 1:S31–8.

    PubMed  Google Scholar 

  144. Russell AT. The clinical presentation of childhood-onset schizophrenia. Schizophr Bull. 1994;20(4):631–46.

    PubMed  CAS  Google Scholar 

  145. Rzanny R, Klemm S, Reichenbach JR, Pfleiderer SO, Schmidt B, Volz HP, Blanz B, Kaiser WA. 31P-MR spectroscopy in children and adolescents with a familial risk of schizophrenia. Eur Radiol. 2003;13(4):763–70.

    PubMed  CAS  Google Scholar 

  146. Sassi RB, Stanley JA, Axelson D, Brambilla P, Nicoletti MA, Keshavan MS, Ramos RT, Ryan N, Birmaher B, Soares JC. Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients. Am J Psychiatry. 2005;162(11):2109–15.

    PubMed  Google Scholar 

  147. Scherk H, Backens M, Schneider-Axmann T, Usher J, Kemmer C, Reith W, Falkai P, Gruber O. Cortical neurochemistry in euthymic patients with bipolar I disorder. World J Biol Psychiatry. 2009;10(4):285–94.

    PubMed  Google Scholar 

  148. Selemon LD, Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry. 1999;45(1):17–25.

    PubMed  CAS  Google Scholar 

  149. Silverstone PH, McGrath BM, Kim H. Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord. 2005;7(1):1–10.

    PubMed  CAS  Google Scholar 

  150. Singer HS. Discussing outcome in Tourette syndrome. Arch Pediatr Adolesc Med. 2006;160(1):103–5.

    PubMed  Google Scholar 

  151. Singh M, Spielman D, Adleman N, Alegria D, Howe M, Reiss A, Chang K. Brain glutamatergic characteristics of pediatric offspring of parents with bipolar disorder. Psychiatry Res. 2010;182(2):165–71.

    PubMed  CAS  Google Scholar 

  152. Singh MK, Spielman D, Libby A, Adams E, Acquaye T, Howe M, Kelley R, Reiss A, Chang KD. Neurochemical deficits in the cerebellar vermis in child offspring of parents with bipolar disorder. Bipolar Disord. 2011;13(2):189–97.

    PubMed  Google Scholar 

  153. Smith EA, Russell A, Lorch E, Banerjee SP, Rose M, Ivey J, Bhandari R, Moore GJ, Rosenberg DR. Increased medial thalamic choline found in pediatric patients with obsessive-compulsive disorder versus major depression or healthy control subjects: a magnetic resonance spectroscopy study. Biol Psychiatry. 2003;54(12):1399–405.

    PubMed  CAS  Google Scholar 

  154. Sonuga Barke E, Bitsakou P, Thompson M. Beyond the dual pathway model: evidence for the dissociation of timing, inhibitory, and delay-related impairments in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2010;49:345–55.

    PubMed  Google Scholar 

  155. Sowell ER, Kan E, Yoshii J, Thompson PM, Bansal R, Xu D, Toga AW, Peterson BS. Thinning of sensorimotor cortices in children with Tourette syndrome. Nat Neurosci. 2008;11(6):637–9.

    PubMed  CAS  Google Scholar 

  156. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24(4):417–63.

    PubMed  CAS  Google Scholar 

  157. Stanley JA. In vivo magnetic resonance spectroscopy and its application to neuropsychiatric disorders. Can J Psychiatry. 2002;47(4):315–26.

    PubMed  Google Scholar 

  158. Steen RG, Hamer RM, Lieberman JA. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology. 2005;30(11):1949–62.

    PubMed  CAS  Google Scholar 

  159. Strakowski SM, Delbello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry. 2005;10(1):105–16.

    PubMed  CAS  Google Scholar 

  160. Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35(1):147–68.

    PubMed  Google Scholar 

  161. Thomas MA, Ke Y, Levitt J, Caplan R, Curran J, Asarnow R, McCracken J. Preliminary study of frontal lobe 1H MR spectroscopy in childhood-onset schizophrenia. J Magn Reson Imaging. 1998;8(4):841–6.

    PubMed  CAS  Google Scholar 

  162. Thompson PM, Sowell ER, Gogtay N, Giedd JN, Vidal CN, Hayashi KM, Leow A, Nicolson R, Rapoport JL, Toga AW. Structural MRI and brain development. Int Rev Neurobiol. 2005;67:285–323.

    PubMed  Google Scholar 

  163. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, Toga AW, Rapoport JL. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA. 2001;98(20):11650–5.

    PubMed  CAS  Google Scholar 

  164. Thomsen PH. Schizophrenia with childhood and adolescent onset–a nationwide register-based study. Acta Psychiatr Scand. 1996;94(3):187–93.

    PubMed  CAS  Google Scholar 

  165. Tibbo P, Hanstock C, Valiakalayil A, Allen P. 3-T proton MRS investigation of glutamate and glutamine in adolescents at high genetic risk for schizophrenia. Am J Psychiatry. 2004;161(6):1116–8.

    PubMed  Google Scholar 

  166. Tkac I, Oz G, Adriany G, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4 T vs. 7 T. Magn Reson Med. 2009;62(4):868–79.

    PubMed  CAS  Google Scholar 

  167. Uhl I, Mavrogiorgou P, Norra C, Forstreuter F, Scheel M, Witthaus H, Ozgurdal S, Gudlowski Y, Bohner G, Gallinat J, Klingebiel R, Heinz A, Juckel G. 1H-MR spectroscopy in ultra-high risk and first episode stages of schizophrenia. J Psychiatr Res. 2011;45:1135–9.

    PubMed  Google Scholar 

  168. Uhlhaas PJ. The adolescent brain: implications for the understanding, pathophysiology, and treatment of schizophrenia. Schizophr Bull. 2011;37(3):480–3.

    PubMed  Google Scholar 

  169. Valleni-Basile LA, Garrison CZ, Waller JL, Addy CL, McKeown RE, Jackson KL, Cuffe SP. Incidence of obsessive-compulsive disorder in a community sample of young adolescents. J Am Acad Child Adolesc Psychiatry. 1996;35(7):898–906.

    PubMed  CAS  Google Scholar 

  170. Vastag B. Imaging studies reveal brain changes in children with bipolar disorder. JAMA. 2003;289(16):2057.

    PubMed  Google Scholar 

  171. Vyas NS, Patel NH, Puri BK. Neurobiology and phenotypic expression in early onset schizophrenia. Early Interv Psychiatry. 2011;5(1):3–14.

    PubMed  Google Scholar 

  172. Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM. Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp. 2007;28(3):228–37.

    PubMed  Google Scholar 

  173. Wilke M, Kowatch RA, DelBello MP, Mills NP, Holland SK. Voxel-based morphometry in adolescents with bipolar disorder: first results. Psychiatry Res. 2004;131:57–69.

    PubMed  Google Scholar 

  174. Wood SJ, Berger GE, Wellard RM, Proffitt TM, McConchie M, Berk M, McGorry PD, Pantelis C. Medial temporal lobe glutathione concentration in first episode psychosis: a 1H-MRS investigation. Neurobiol Dis. 2009;33(3):354–7.

    PubMed  CAS  Google Scholar 

  175. Wozniak J, Biederman J, Kwon A, Mick E, Faraone SV, Orlovsky K. How cardinal are cardinal symptoms in pediatric bipolar disorder?: an examination of clinical correlates. Biol Psychiatry. 2005;58:583–8.

    PubMed  Google Scholar 

  176. Yeo RA, Hill D, Campbell R, Vigil J, Brooks WM. Developmental instability and working memory ability in children: a magnetic resonance spectroscopy investigation. Dev Neuropsychol. 2000;17(2):143–59.

    PubMed  CAS  Google Scholar 

  177. Youngstrom EA, Birmaher B, Findling RL. Pediatric bipolar disorder: validity, phenomenology, and recommendations for diagnosis. Bipolar Disord. 2008;10(1 Pt 2):194–214.

    PubMed  Google Scholar 

  178. Zabala A, Sanchez-Gonzalez J, Parellada M, Moreno DM, Reig S, Burdalo MT, Robles O, Desco M, Arango C. Findings of proton magnetic resonance spectometry in the dorsolateral prefrontal cortex in adolescents with first episodes of psychosis. Psychiatry Res. 2007;156(1):33–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena Horská Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horská, A., Mahone, E.M. (2013). ¹H Magnetic Resonance Spectroscopy of the Brain During Adolescence: Normal Brain Development and Neuropsychiatric Disorders. In: Blüml, S., Panigrahy, A. (eds) MR Spectroscopy of Pediatric Brain Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5864-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5864-8_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5863-1

  • Online ISBN: 978-1-4419-5864-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics