Skip to main content

Magnetic Resonance Spectroscopy in Epilepsy

  • Chapter
  • First Online:
MR Spectroscopy of Pediatric Brain Disorders

Abstract

Magnetic Resonance Spectroscopy (MRS) enables us to assess the metabolic changes in the brain of patients with epilepsy. Therefore it can provide complementary information to structural imaging. Structural MRI plays an important role in identifying the underlying epileptogenic substrate responsible for epilepsy. MRS identifies metabolic changes in the epileptogenic brain, which could be used to lateralize seizure focus, detect bilateral brain abnormalities such as bilateral temporal lobe epilepsy, identify the metabolic abnormalities in the epileptic brain, assess metabolic abnormalities in the epileptogenic zone that appears normal on structural MRI, predict surgical outcome, and improve our understanding of the pathophysiology of epileptogenic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Urenjak J, Williams SR, Gadian DG, Noble M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem. 1992;59(1):55–61.

    PubMed  CAS  Google Scholar 

  2. Najm IM, Wang Y, Hong SC, Luders HO, Ng TC, Comair YG. Temporal changes in proton MRS metabolites after kainic acid-induced seizures in rat brain. Epilepsia. 1997;38(1):87–94.

    PubMed  CAS  Google Scholar 

  3. Baslow MH. Evidence supporting a role for N-acetyl-L-aspartate as a molecular water pump in myelinated neurons in the central nervous system. An analytical review. Neurochem Int. 2002;40(4):295–300.

    PubMed  CAS  Google Scholar 

  4. Varho T, Komu M, Sonninen P, Lahdetie J, Holopainen IE. Quantitative HMRS and MRI volumetry indicate neuronal damage in the hippocampus of children with focal epilepsy and infrequent seizures. Epilepsia. 2005;46(5):696–703.

    PubMed  Google Scholar 

  5. Hiremath GK, Najm IM. Magnetic resonance spectroscopy in animal models of epilepsy. Epilepsia. 2007;48 Suppl 4:47–55.

    PubMed  Google Scholar 

  6. Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia. 2010;51(4):676–85.

    PubMed  Google Scholar 

  7. Najm IM, Wang Y, Shedid D, Luders HO, Ng TC, Comair YG. MRS metabolic markers of seizures and seizure-induced neuronal damage. Epilepsia. 1998;39(3):244–50.

    PubMed  CAS  Google Scholar 

  8. Woermann FG, McLean MA, Bartlett PA, Parker GJ, Barker GJ, Duncan JS. Short echo time single-voxel 1 H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis. Ann Neurol. 1999;45(3):369–76.

    PubMed  CAS  Google Scholar 

  9. Simister RJ, McLean MA, Barker GJ, Duncan JS. A proton magnetic resonance spectroscopy study of metabolites in the occipital lobes in epilepsy. Epilepsia. 2003;44(4):550–8.

    PubMed  CAS  Google Scholar 

  10. Sherwin A, Robitaille Y, Quesney F, et al. Excitatory amino acids are elevated in human epileptic cerebral cortex. Neurology. 1988;38(6):920–3.

    PubMed  CAS  Google Scholar 

  11. Petroff OA, Pleban LA, Spencer DD. Symbiosis between in vivo and in vitro NMR spectroscopy: the creatine, N-acetylaspartate, glutamate, and GABA content of the epileptic human brain. Magn Reson Imaging. 1995;13(8):1197–211.

    PubMed  CAS  Google Scholar 

  12. Pfund Z, Chugani DC, Juhasz C, et al. Evidence for coupling between glucose metabolism and glutamate cycling using FDG PET and 1 H magnetic resonance spectroscopy in patients with epilepsy. J Cereb Blood Flow Metab. 2000;20(5):871–8.

    PubMed  CAS  Google Scholar 

  13. Ohtahara S, Yamatogi Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol. 2003;20(6):398–407.

    PubMed  Google Scholar 

  14. Seo JH, Lee YM, Lee JS, Kim SH, Kim HD. A case of Ohtahara syndrome with mitochondrial respiratory chain complex I deficiency. Brain Dev. 2010;32(3):253–7.

    PubMed  Google Scholar 

  15. Kellaway P, Hrachovy RA, Frost Jr JD, Zion T. Precise characterization and quantification of infantile spasms. Ann Neurol. 1979;6(3):214–8.

    PubMed  CAS  Google Scholar 

  16. Maeda H, Furune S, Nomura K, et al. Decrease of N-acetylaspartate after ACTH therapy in patients with infantile spasms. Neuropediatrics. 1997;28(5):262–7.

    PubMed  CAS  Google Scholar 

  17. Coppola G, Plouin P, Chiron C, Robain O, Dulac O. Migrating partial seizures in infancy: a malignant disorder with developmental arrest. Epilepsia. 1995;36(10):1017–24.

    PubMed  CAS  Google Scholar 

  18. Wilmshurst JM, Appleton DB, Grattan-Smith PJ. Migrating partial seizures in infancy: two new cases. J Child Neurol. 2000;15(11):717–22.

    PubMed  CAS  Google Scholar 

  19. Coppola G, Dulac O. Malignant migrating partial seizures in infancy. In: Roger J, Bureau M, Dravet C, Genton P, Tassinari C, Wolf P, editors. Epileptic syndromes in infancy, childhood and adolescence. 3rd ed. London: John Libbey & Company Ltd; 1995. p. 65–8.

    Google Scholar 

  20. Gross-Tsur V, Ben-Zeev B, Shalev RS. Malignant migrating partial seizures in infancy. Pediatr Neurol. 2004;31(4):287–90.

    PubMed  Google Scholar 

  21. Guerrini R, Dravet C. Severe epileptic encephalopathies of infancy, other than West syndrome. In: Engel Jr J, Pedley A, editors. Epilepsy: a comprehensive textbook. Philadelphia: Lippincott-Raven; 1997. p. 2285–302.

    Google Scholar 

  22. Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O. Severe myoclonic epilepsy in infancy: Dravet syndrome. In: Delgado-Escueta AV GR, Medina MT, Genton P, Bureau M, Dravet C., ed. Advance in Neurology. Philadelphia: Lippincott Williams and Wilkins; 2005:71–102.

    Google Scholar 

  23. Nabbout R, Gennaro E, Dalla Bernardina B, et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology. 2003;60(12):1961–7.

    PubMed  CAS  Google Scholar 

  24. Siegler Z, Barsi P, Neuwirth M, et al. Hippocampal sclerosis in severe myoclonic epilepsy in infancy: a retrospective MRI study. Epilepsia. 2005;46(5):704–8.

    PubMed  Google Scholar 

  25. Striano P, Mancardi MM, Biancheri R, et al. Brain MRI findings in severe myoclonic epilepsy in infancy and genotype-phenotype correlations. Epilepsia. 2007;48(6):1092–6.

    PubMed  Google Scholar 

  26. Berg AT, Shinnar S, Darefsky AS, et al. Predictors of recurrent febrile seizures. A prospective cohort study. Arch Pediatr Adolesc Med. 1997;151(4):371–8.

    PubMed  CAS  Google Scholar 

  27. Cendes F. Febrile seizures and mesial temporal sclerosis. Curr Opin Neurol. 2004;17(2):161–4.

    PubMed  Google Scholar 

  28. Davies KG, Hermann BP, Dohan Jr FC, Foley KT, Bush AJ, Wyler AR. Relationship of hippocampal sclerosis to duration and age of onset of epilepsy, and childhood febrile seizures in temporal lobectomy patients. Epilepsy Res. 1996;24(2):119–26.

    PubMed  CAS  Google Scholar 

  29. Kobayashi E, Facchin D, Steiner CE, et al. Mesial temporal lobe abnormalities in a family with 15q26qter trisomy. Arch Neurol. 2002;59(9):1476–9.

    PubMed  Google Scholar 

  30. Berkovic SF, Scheffer IE. Febrile seizures: genetics and relationship to other epilepsy syndromes. Curr Opin Neurol. 1998;11(2):129–34.

    PubMed  CAS  Google Scholar 

  31. Holopainen IE, Valtonen ME, Komu ME, et al. Proton spectroscopy in children with epilepsy and febrile convulsions. Pediatr Neurol. 1998;19(2):93–9.

    PubMed  CAS  Google Scholar 

  32. Wu WC, Huang CC, Chung HW, et al. Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: evaluations with MR volumetry and proton MR spectroscopy. AJNR Am J Neuroradiol. 2005;26(5):1270–5.

    PubMed  Google Scholar 

  33. Parker AP, Ferrie CD, Keevil S, et al. Neuroimaging and spectroscopy in children with epileptic encephalopathies. Arch Dis Child. 1998;79(1):39–43.

    PubMed  CAS  Google Scholar 

  34. Otsubo H, Chitoku S, Ochi A, et al. Malignant rolandic-sylvian epilepsy in children: diagnosis, treatment, and outcomes. Neurology. 2001;57(4):590–6.

    PubMed  CAS  Google Scholar 

  35. Lundberg S, Weis J, Eeg-Olofsson O, Raininko R. Hippocampal region asymmetry assessed by 1 H-MRS in rolandic epilepsy. Epilepsia. 2003;44(2):205–10.

    PubMed  Google Scholar 

  36. Bhardwaj RD, Mahmoodabadi SZ, Otsubo H, Snead 3rd OC, Rutka JT, Widjaja E. Diffusion tensor tractography detection of functional pathway for the spread of epileptiform activity between temporal lobe and Rolandic region. Childs Nerv Syst. 2010;26(2):185–90.

    PubMed  Google Scholar 

  37. Lee YJ, Kang HC, Lee JS, et al. Resective pediatric epilepsy surgery in Lennox-Gastaut syndrome. Pediatrics. 2010;125(1):e58–66.

    PubMed  Google Scholar 

  38. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia. Jul–Aug 1989;30(4):389–399.

    Google Scholar 

  39. Porter RJ. The absence epilepsies. Epilepsia. 1993;34 Suppl 3:S42–48.

    PubMed  Google Scholar 

  40. Futatsugi Y, Riviello Jr JJ. Mechanisms of generalized absence epilepsy. Brain Dev. 1998;20(2):75–9.

    PubMed  CAS  Google Scholar 

  41. Chan CH, Briellmann RS, Pell GS, Scheffer IE, Abbott DF, Jackson GD. Thalamic atrophy in childhood absence epilepsy. Epilepsia. 2006;47(2):399–405.

    PubMed  Google Scholar 

  42. Gloor P, Fariello RG. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci. 1988;11(2):63–8.

    PubMed  CAS  Google Scholar 

  43. Fojtikova D, Brazdil M, Horky J, et al. Magnetic resonance spectroscopy of the thalamus in patients with typical absence epilepsy. Seizure. 2006;15(7):533–40.

    PubMed  Google Scholar 

  44. Kabay SC, Gumustas OG, Karaman HO, Ozden H, Erdinc O. A proton magnetic resonance spectroscopic study in juvenile absence epilepsy in early stages. Eur J Paediatr Neurol. 2010;14(3):224–8.

    PubMed  Google Scholar 

  45. Nehlig A, Valenti MP, Thiriaux A, Hirsch E, Marescaux C, Namer IJ. Ictal and interictal perfusion variations measured by SISCOM analysis in typical childhood absence seizures. Epileptic Disord. 2004;6(4):247–53.

    PubMed  Google Scholar 

  46. Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR. Functional magnetic resonance imaging of human absence seizures. Ann Neurol. 2003;53(5):663–7.

    PubMed  Google Scholar 

  47. Dreifuss FE. Juvenile myoclonic epilepsy: characteristics of a primary generalized epilepsy. Epilepsia. 1989;30 Suppl 4:S1–7. discussion S24–27.

    PubMed  Google Scholar 

  48. Holmes MD, Quiring J, Tucker DM. Evidence that juvenile myoclonic epilepsy is a disorder of frontotemporal corticothalamic networks. Neuroimage. 2010;49(1):80–93.

    PubMed  Google Scholar 

  49. Mory SB, Li LM, Guerreiro CA, Cendes F. Thalamic dysfunction in juvenile myoclonic epilepsy: a proton MRS study. Epilepsia. 2003;44(11):1402–5.

    PubMed  CAS  Google Scholar 

  50. Haki C, Gumustas OG, Bora I, Gumustas AU, Parlak M. Proton magnetic resonance spectroscopy study of bilateral thalamus in juvenile myoclonic epilepsy. Seizure. 2007;16(4):287–95.

    PubMed  Google Scholar 

  51. Lin K, Carrete Jr H, Lin J, et al. Magnetic resonance spectroscopy reveals an epileptic network in juvenile myoclonic epilepsy. Epilepsia. 2009;50(5):1191–200.

    PubMed  CAS  Google Scholar 

  52. Baykan B, Striano P, Gianotti S, et al. Late-onset and slow-progressing Lafora disease in four siblings with EPM2B mutation. Epilepsia. 2005;46(10):1695–7.

    PubMed  CAS  Google Scholar 

  53. Villanueva V, Alvarez-Linera J, Gomez-Garre P, Gutierrez J, Serratosa JM. MRI volumetry and proton MR spectroscopy of the brain in Lafora disease. Epilepsia. 2006;47(4):788–92.

    PubMed  Google Scholar 

  54. Pichiecchio A, Veggiotti P, Cardinali S, Longaretti F, Poloni GU, Uggetti C. Lafora disease: spectroscopy study correlated with neuropsychological findings. Eur J Paediatr Neurol. 2008;12(4):342–7.

    PubMed  Google Scholar 

  55. Harvey AS, Berkovic SF, Wrennall JA, Hopkins IJ. Temporal lobe epilepsy in childhood: clinical, EEG, and neuroimaging findings and syndrome classification in a cohort with new-onset seizures. Neurology. 1997;49(4):960–8.

    PubMed  CAS  Google Scholar 

  56. Harvey AS, Grattan-Smith JD, Desmond PM, Chow CW, Berkovic SF. Febrile seizures and hippocampal sclerosis: frequent and related findings in intractable temporal lobe epilepsy of childhood. Pediatr Neurol. 1995;12(3):201–6.

    PubMed  CAS  Google Scholar 

  57. Grattan-Smith JD, Harvey AS, Desmond PM, Chow CW. Hippocampal sclerosis in children with intractable temporal lobe epilepsy: detection with MR imaging. AJR Am J Roentgenol. 1993;161(5):1045–8.

    PubMed  CAS  Google Scholar 

  58. Mohamed A, Wyllie E, Ruggieri P, et al. Temporal lobe epilepsy due to hippocampal sclerosis in pediatric candidates for epilepsy surgery. Neurology. 2001;56(12):1643–9.

    PubMed  CAS  Google Scholar 

  59. Cendes F, Caramanos Z, Andermann F, Dubeau F, Arnold DL. Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol. 1997;42(5):737–46.

    PubMed  CAS  Google Scholar 

  60. Simister RJ, Woermann FG, McLean MA, Bartlett PA, Barker GJ, Duncan JS. A short-echo-time proton magnetic resonance spectroscopic imaging study of temporal lobe epilepsy. Epilepsia. 2002;43(9):1021–31.

    PubMed  Google Scholar 

  61. Riederer F, Bittsansky M, Schmidt C, et al. 1 H magnetic resonance spectroscopy at 3 T in cryptogenic and mesial temporal lobe epilepsy. NMR Biomed. 2006;19(5):544–53.

    PubMed  CAS  Google Scholar 

  62. Ng TC, Comair YG, Xue M, et al. Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging. Radiology. 1994;193(2):465–72.

    PubMed  CAS  Google Scholar 

  63. Novotny E, Ashwal S, Shevell M. Proton magnetic resonance spectroscopy: an emerging technology in pediatric neurology research. Pediatr Res. 1998;44(1):1–10.

    PubMed  CAS  Google Scholar 

  64. Blumcke I, Pauli E, Clusmann H, et al. A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol. 2007;113(3):235–44.

    PubMed  Google Scholar 

  65. Hammen T, Hildebrandt M, Stadlbauer A, et al. Non-invasive detection of hippocampal sclerosis: correlation between metabolite alterations detected by (1)H-MRS and neuropathology. NMR Biomed. 2008;21(6):545–52.

    PubMed  CAS  Google Scholar 

  66. Miller SP, Li LM, Cendes F, et al. Neuronal dysfunction in children with newly diagnosed temporal lobe epilepsy. Pediatr Neurol. 2000;22(4):281–6.

    PubMed  CAS  Google Scholar 

  67. Hugg JW, Kuzniecky RI, Gilliam FG, Morawetz RB, Fraught RE, Hetherington HP. Normalization of contralateral metabolic function following temporal lobectomy demonstrated by 1 H magnetic resonance spectroscopic imaging. Ann Neurol. 1996;40(2):236–9.

    PubMed  CAS  Google Scholar 

  68. Serles W, Li LM, Antel SB, et al. Time course of postoperative recovery of N-acetyl-aspartate in temporal lobe epilepsy. Epilepsia. 2001;42(2):190–7.

    PubMed  CAS  Google Scholar 

  69. Kuzniecky R, Hugg J, Hetherington H, et al. Predictive value of 1 H MRSI for outcome in temporal lobectomy. Neurology. 1999;53(4):694–8.

    PubMed  CAS  Google Scholar 

  70. Mueller SG, Suhy J, Laxer KD, et al. Reduced extrahippocampal NAA in mesial temporal lobe epilepsy. Epilepsia. 2002;43(10):1210–6.

    PubMed  Google Scholar 

  71. Capizzano AA, Vermathen P, Laxer KD, et al. Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. AJNR Am J Neuroradiol. 2002;23(8):1359–68.

    PubMed  Google Scholar 

  72. Garcia PA, Laxer KD, van der Grond J, Hugg JW, Matson GB, Weiner MW. Proton magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann Neurol. 1995;37(2):279–81.

    PubMed  Google Scholar 

  73. Stanley JA, Cendes F, Dubeau F, Andermann F, Arnold DL. Proton magnetic resonance spectroscopic imaging in patients with extratemporal epilepsy. Epilepsia. 1998;39(3):267–73.

    PubMed  CAS  Google Scholar 

  74. Auvin S, Devisme L, Maurage CA, et al. Neuropathological and MRI findings in an acute presentation of hemiconvulsion-hemiplegia: a report with pathophysiological implications. Seizure. 2007;16(4):371–6.

    PubMed  Google Scholar 

  75. Freeman JL, Coleman LT, Smith LJ, Shield LK. Hemiconvulsion-hemiplegia-epilepsy syndrome: characteristic early magnetic resonance imaging findings. J Child Neurol. 2002;17(1):10–6.

    PubMed  Google Scholar 

  76. Meencke HJ, Veith G. Migration disturbances in epilepsy. In: Engel Jr J, Wasterlain C, Cavalheiro EA, editors. Molecular neurobiology of epilepsy. New York: Elsevier; 1992. p. 31–40.

    Google Scholar 

  77. Woermann FG, McLean MA, Bartlett PA, Barker GJ, Duncan JS. Quantitative short echo time proton magnetic resonance spectroscopic imaging study of malformations of cortical development causing epilepsy. Brain. 2001;124(Pt 2):427–36.

    PubMed  CAS  Google Scholar 

  78. Lee BC, Schmidt RE, Hatfield GA, Bourgeois B, Park TS. MRI of focal cortical dysplasia. Neuroradiology. 1998;40(10):675–83.

    PubMed  CAS  Google Scholar 

  79. Mueller SG, Laxer KD, Barakos JA, et al. Metabolic characteristics of cortical malformations causing epilepsy. J Neurol. 2005;252(9):1082–92.

    PubMed  CAS  Google Scholar 

  80. Simister RJ, McLean MA, Barker GJ, Duncan JS. Proton magnetic resonance spectroscopy of malformations of cortical development causing epilepsy. Epilepsy Res. 2007;74(2–3):107–15.

    PubMed  Google Scholar 

  81. Leite CC, Lucato LT, Sato JR, Valente KD, Otaduy MC. Multivoxel proton MR spectroscopy in malformations of cortical development. AJNR Am J Neuroradiol. 2007;28(6):1071–5. discussion 1076–1077.

    PubMed  CAS  Google Scholar 

  82. Hanefeld F, Kruse B, Holzbach U, et al. Hemimegalencephaly: localized proton magnetic resonance spectroscopy in vivo. Epilepsia. 1995;36(12):1215–24.

    PubMed  CAS  Google Scholar 

  83. Taylor DC, Falconer MA, Bruton CJ, Corsellis JA. Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry. 1971;34(4):369–87.

    PubMed  CAS  Google Scholar 

  84. Colon AJ, Hofman P, Ossenblok PP, et al. MRS-lateralisation index in patients with epilepsy and focal cortical dysplasia or a MEG-focus using bilateral single voxels. Epilepsy Res. 2010;89(1):148–53.

    PubMed  CAS  Google Scholar 

  85. Battaglia G, Arcelli P, Granata T, et al. Neuronal migration disorders and epilepsy: a morphological analysis of three surgically treated patients. Epilepsy Res. 1996;26(1):49–58.

    PubMed  CAS  Google Scholar 

  86. Widjaja E, Griffiths PD, Wilkinson ID. Proton MR spectroscopy of polymicrogyria and heterotopia. AJNR Am J Neuroradiol. 2003;24(10):2077–81.

    PubMed  Google Scholar 

  87. Kuzniecky R, Hetherington H, Pan J, et al. Proton spectroscopic imaging at 4.1 tesla in patients with malformations of cortical development and epilepsy. Neurology. 1997;48(4):1018–24.

    PubMed  CAS  Google Scholar 

  88. Kaminaga T, Kobayashi M, Abe T. Proton magnetic resonance spectroscopy in disturbances of cortical development. Neuroradiology. 2001;43(7):575–80.

    PubMed  CAS  Google Scholar 

  89. Li LM, Cendes F, Bastos AC, Andermann F, Dubeau F, Arnold DL. Neuronal metabolic dysfunction in patients with cortical developmental malformations: a proton magnetic resonance spectroscopic imaging study. Neurology. 1998;50(3):755–9.

    PubMed  CAS  Google Scholar 

  90. Simone IL, Federico F, Tortorella C, et al. Metabolic changes in neuronal migration disorders: evaluation by combined MRI and proton MR spectroscopy. Epilepsia. 1999;40(7):872–9.

    PubMed  CAS  Google Scholar 

  91. Preul MC, Leblanc R, Cendes F, et al. Function and organization in dysgenic cortex. Case report. J Neurosurg. 1997;87(1):113–21.

    PubMed  CAS  Google Scholar 

  92. Castillo M, Kwock L, Mukherji SK. Clinical applications of proton MR spectroscopy. AJNR Am J Neuroradiol. 1996;17(1):1–15.

    PubMed  CAS  Google Scholar 

  93. des Portes V, Francis F, Pinard JM, et al. Doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH). Hum Mol Genet. 1998;7(7):1063–70.

    PubMed  CAS  Google Scholar 

  94. Munakata M, Haginoya K, Soga T, et al. Metabolic properties of band heterotopia differ from those of other cortical dysplasias: a proton magnetic resonance spectroscopy study. Epilepsia. 2003;44(3):366–71.

    PubMed  Google Scholar 

  95. Yapici Z, Dincer A, Eraksoy M. Proton spectroscopic findings in children with epilepsy owing to tuberous sclerosis complex. J Child Neurol. 2005;20(6):517–22.

    PubMed  Google Scholar 

  96. Mizuno S, Takahashi Y, Kato Z, Goto H, Kondo N, Hoshi H. Magnetic resonance spectroscopy of tubers in patients with tuberous sclerosis. Acta Neurol Scand. 2000;102(3):175–8.

    PubMed  CAS  Google Scholar 

  97. de Carvalho Neto A, Gasparetto EL, Bruck I. Subependymal giant cell astrocytoma with high choline/creatine ratio on proton MR spectroscopy. Arq Neuropsiquiatr. 2006;64(3B):877–80.

    PubMed  Google Scholar 

  98. Moore GJ, Slovis TL, Chugani HT. Proton magnetic resonance spectroscopy in children with Sturge-Weber syndrome. J Child Neurol. 1998;13(7):332–5.

    PubMed  CAS  Google Scholar 

  99. Sijens PE, Gieteling EW, Meiners LC, et al. Diffusion tensor imaging and magnetic resonance spectroscopy of the brain in a patient with Sturge-Weber syndrome. Acta Radiol. 2006;47(9):972–6.

    PubMed  CAS  Google Scholar 

  100. Benifla M, Otsubo H, Ochi A, et al. Temporal lobe surgery for intractable epilepsy in children: an analysis of outcomes in 126 children. Neurosurgery. 2006;59(6):1203–13. discussion 1213–1204.

    PubMed  Google Scholar 

  101. Mittal S, Montes JL, Farmer JP, et al. Long-term outcome after surgical treatment of temporal lobe epilepsy in children. J Neurosurg. 2005;103(5 Suppl):401–12.

    PubMed  Google Scholar 

  102. Luyken C, Blumcke I, Fimmers R, et al. The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia. 2003;44(6):822–30.

    PubMed  Google Scholar 

  103. Clusmann H, Kral T, Gleissner U, et al. Analysis of different types of resection for pediatric patients with temporal lobe epilepsy. Neurosurgery. 2004;54(4):847–59. discussion 859–860.

    PubMed  Google Scholar 

  104. Blumcke I, Lobach M, Wolf HK, Wiestler OD. Evidence for developmental precursor lesions in epilepsy-associated glioneuronal tumors. Microsc Res Tech. 1999;46(1):53–8.

    PubMed  CAS  Google Scholar 

  105. Luyken C, Blumcke I, Fimmers R, Urbach H, Wiestler OD, Schramm J. Supratentorial gangliogliomas: histopathologic grading and tumor recurrence in 184 patients with a median follow-up of 8 years. Cancer. 2004;101(1):146–55.

    PubMed  Google Scholar 

  106. Koeller KK, Henry JM. From the archives of the AFIP: superficial gliomas: radiologic-pathologic correlation. Armed Forces Institute of Pathology. Radiographics. 2001;21(6):1533–56.

    PubMed  CAS  Google Scholar 

  107. Im SH, Chung CK, Cho BK, Lee SK. Supratentorial ganglioglioma and epilepsy: postoperative seizure outcome. J Neurooncol. 2002;57(1):59–66.

    PubMed  Google Scholar 

  108. Ostertun B, Wolf HK, Campos MG, et al. Dysembryoplastic neuroepithelial tumors: MR and CT evaluation. AJNR Am J Neuroradiol. 1996;17(3):419–30.

    PubMed  CAS  Google Scholar 

  109. Stanescu Cosson R, Varlet P, Beuvon F, et al. Dysembryoplastic neuroepithelial tumors: CT, MR findings and imaging follow-up: a study of 53 cases. J Neuroradiol. 2001;28(4):230–40.

    PubMed  CAS  Google Scholar 

  110. Vuori K, Kankaanranta L, Hakkinen AM, et al. Low-grade gliomas and focal cortical developmental malformations: differentiation with proton MR spectroscopy. Radiology. 2004;230(3):703–8.

    PubMed  Google Scholar 

  111. Lee DY, Chung CK, Hwang YS, et al. Dysembryoplastic neuroepithelial tumor: radiological findings (including PET, SPECT, and MRS) and surgical strategy. J Neurooncol. 2000;47(2):167–74.

    PubMed  CAS  Google Scholar 

  112. Pillai JJ, Hessler RB, Allison JD, Park YD, Lee MR, Lavin T. Advanced MR imaging of cortical dysplasia with or without neoplasm: a report of two cases. AJNR Am J Neuroradiol. 2002;23(10):1686–91.

    PubMed  Google Scholar 

  113. Ende G, Braus DF, Walter S, Weber-Fahr W, Henn FA. The hippocampus in patients treated with electroconvulsive therapy: a proton magnetic resonance spectroscopic imaging study. Arch Gen Psychiatry. 2000;57(10):937–43.

    PubMed  CAS  Google Scholar 

  114. Wakai S, Nikaido K, Nihira H, Kawamoto Y, Hayasaka H. Gelastic seizure with hypothalamic hamartoma: proton magnetic resonance spectrometry and ictal electroencephalographic findings in a 4-year-old girl. J Child Neurol. 2002;17(1):44–6.

    PubMed  Google Scholar 

  115. Freeman JL, Coleman LT, Wellard RM, et al. MR imaging and spectroscopic study of epileptogenic hypothalamic hamartomas: analysis of 72 cases. AJNR Am J Neuroradiol. 2004;25(3):450–62.

    PubMed  Google Scholar 

  116. Tasch E, Cendes F, Li LM, et al. Hypothalamic hamartomas and gelastic epilepsy: a spectroscopic study. Neurology. 1998;51(4):1046–50.

    PubMed  CAS  Google Scholar 

  117. Rasmussen T, Olszewski J, Lloydsmith D. Focal seizures due to chronic localized encephalitis. Neurology. 1958;8(6):435–45.

    PubMed  CAS  Google Scholar 

  118. Matthews PM, Andermann F, Arnold DL. A proton magnetic resonance spectroscopy study of focal epilepsy in humans. Neurology. 1990;40(6):985–9.

    PubMed  CAS  Google Scholar 

  119. Cendes F, Andermann F, Silver K, Arnold DL. Imaging of axonal damage in vivo in Rasmussen’s syndrome. Brain. 1995;118(Pt 3):753–8.

    PubMed  Google Scholar 

  120. Turkdogan-Sozuer D, Ozek MM, Sav A, Dincer A, Pamir MN. Serial MRI and MRS studies with unusual findings in Rasmussen’s encephalitis. Eur Radiol. 2000;10(6):962–6.

    PubMed  CAS  Google Scholar 

  121. Park YD, Allison JD, Weiss KL, Smith JR, Lee MR, King DW. Proton magnetic resonance spectroscopic observations of epilepsia partialis continua in children. J Child Neurol. 2000;15(11):729–33.

    PubMed  CAS  Google Scholar 

  122. Wellard RM, Briellmann RS, Wilson JC, et al. Longitudinal study of MRS metabolites in Rasmussen encephalitis. Brain. 2004;127(Pt 6):1302–12.

    PubMed  CAS  Google Scholar 

  123. Dracopoulos A, Widjaja E, Raybaud C, Westall CA, Snead 3rd OC. Vigabatrin-associated reversible MRI signal changes in patients with infantile spasms. Epilepsia. 2010;51(7):1297–304.

    PubMed  Google Scholar 

  124. Milh M, Villeneuve N, Chapon F, et al. Transient brain magnetic resonance imaging hyperintensity in basal ganglia and brain stem of epileptic infants treated with vigabatrin. J Child Neurol. 2009;24(3):305–15.

    PubMed  Google Scholar 

  125. Seymour KJ, Bluml S, Sutherling J, Sutherling W, Ross BD. Identification of cerebral acetone by 1 H-MRS in patients with epilepsy controlled by ketogenic diet. MAGMA. 1999;8(1):33–42.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elka Miller M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Miller, E., Widjaja, E. (2013). Magnetic Resonance Spectroscopy in Epilepsy. In: Blüml, S., Panigrahy, A. (eds) MR Spectroscopy of Pediatric Brain Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5864-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5864-8_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5863-1

  • Online ISBN: 978-1-4419-5864-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics