Skip to main content

Phenylketonuria

  • Chapter
  • First Online:
MR Spectroscopy of Pediatric Brain Disorders

Abstract

Phenylketonuria (PKU) is an autosomal recessive genetic disorder caused by a defect in the hepatic enzyme phenylalanine hydroxylase (PAH) characterized by elevated levels of blood phenylalanine (Phe) leading to severely impaired brain development. In addition to poor neurological outcomes, untreated PKU can lead to microcephaly, tremor of hands, epilepsy, spastic paraparesis, behavioral problems, and schizophrenia. Early diagnosis and inception of a Phe-restricted diet after the newborn period prevents mental retardation and other neurological symptoms in PKU patients. With PKU, various mutations of the PAH gene have been identified along with their severity based on their enzyme activity. One of the main motivations for measuring brain Phe levels is that new drugs may limit/reduce the transport of Phe into the brain. Thus, plasma Phe levels might be insufficient surrogate markers for brain Phe levels. However, the detection and quantitation of brain Phe with in vivo MR spectroscopy is uniquely challenging due to its low concentration and the position of Phe resonance (7.36 ppm) in a part of the spectrum that is generally not look at. Thus for measuring Phe accurately, a high level of expertise for acquiring high-quality data and advanced processing methods are required. It is for that reason, albeit phenylketonuria is a comparably frequently encountered metabolic disease that only few groups have attempted to explore the value of MRS in PKU.

Dr. Koch was a pioneer in providing medical services to the disabled and led the efforts that resulted in routine newborn screening for PKU and other inborn errors. We are grateful for his willingness to put together a chapter about MRS and PKU. Dr. Koch passed away on September 24th, 2011, at the age of 89.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Guldberg P, Rey F, Zschocke J, Romano V, Francois B, et al. A European multicenter study of phenylalanine hydroxylase deficiency: classification of 105 mutations and a general system for genotype-based prediction of metabolic phenotype. Am J Hum Genet. 1998;63:71–9.

    Article  PubMed  CAS  Google Scholar 

  2. Folling A. Ueber Ausscheidung von Phenylbrenztraubensaeure in den Harn als Stoffwechselanomalie in Verbindung mit Imbezillitaet. Ztschr Physiol Chem. 1934;227:169–76.

    Article  CAS  Google Scholar 

  3. Bickel H, Gerrard J, Hickmans EM. The influence of phenylalanine intake on the chemistry and behaviour of a phenylketonuria child. Acta Ped. 1954;43(64–77):1954.

    Google Scholar 

  4. Guthriem R. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Ada Susi. Pediatrics. 1963;32:338–43.

    Google Scholar 

  5. Zeman J, Bayer M, Stepán J. Bone mineral density in patients with phenylketonuria. Acta Paediatr. 1999;88(12):1348–51.

    Article  PubMed  CAS  Google Scholar 

  6. Allen J, Humphries I, Waters D, Roberts D, Lipson A, Howman-Giles R, Gaskin K. Decreased bone mineral density in children with phenylketonuria. Am J Clin Nutr. 1994;59(2):419–22.

    PubMed  CAS  Google Scholar 

  7. Hvas AM, Nexo E, Nielsen JB. Vitamin B12 and vitamin B6 supplementation is needed among adults with phenylketonuria (PKU). J Inherit Metab Dis. 2006;29(1):47–53.

    Article  PubMed  CAS  Google Scholar 

  8. Rupp A, Kreis R, Zschocke J, Slotboom J, Boesch C, Rating D, Pietz J. Variability of blood–brain ratios of phenylalanine in typical patients with phenylketonuria. J Cereb Blood Flow Metab. 2001;21(3):276–84.

    Article  PubMed  CAS  Google Scholar 

  9. Hoeksma M, Reijngoud D, Pruim J, de Valk HW, Paans AM, van Spronsen FJ. Phenylketonuria: high plasma phenylalanine decreases cerebral protein synthesis. Mol Genet Metabol. 2009;96(4):177–82.

    Article  CAS  Google Scholar 

  10. Matalon R, Surendran S, Matalon KM, Tyring S, Quast M, Jinga W, Ezell E, Szucs S. Future role of large neutral amino acids in transport of phenylalanine into the brain. Pediatrics. 2003;112(6):1570–4.

    PubMed  Google Scholar 

  11. Pietz J, Kreis R, Rupp A, Mayatepek E, Rating D, Boesch C, Bremer HJ. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest. 1999;103(8):1169–78.

    Article  PubMed  CAS  Google Scholar 

  12. Koch R, Moseley KD, Yano S, Nelson M, Moats RA. Large neutral amino acid therapy and phenylketonuria: a promising approach to treatment. Mol Genet Metabol. 2003;79(2):110–3.

    Article  CAS  Google Scholar 

  13. Phillips MD, McGraw P, Lowe MJ, Mathews VP, Hainline BE. Diffusion-weighted imaging of white matter abnormalities in patients with phenylketonuria. AJNR Am J Neuroradiol. 2001;22(8):1583–6.

    PubMed  CAS  Google Scholar 

  14. Kreis R, Pietz J, Penzien J, Herschkovitz N, Boesch C. Identification and quantitation of phenylalanine in the brain of patients with PKU by means of localized in vivo 1 H MRS. J Magn Reson B. 1995;107(3):242–51.

    Article  PubMed  CAS  Google Scholar 

  15. Rupp A, Kreis R, Zschocke J, Slotboom J, Boesch C, Rating D, Pietz J. Variability of blood–brain ratios of phenylalanine in typical patients with phenylketonuria. J Cereb Blood Flow Metab. 2001;21:276–84.

    Article  PubMed  CAS  Google Scholar 

  16. Leuzzi V, Tosetti M, Montanaro D, Carducci C, Artiola C, Antonozzi I, Burroni M, Carnevale F, Chiarotti F, Popolizio T, Giannatempo GM, D’Alesio V, Scarabino T. The pathogenesis of the white matter abnormalities in phenylketonuria. A multimodal 3.0 tesla MRI and magnetic resonance spectroscopy (1 H MRS) study. J Inherit Metab Dis. 2007;30:209–16.

    Article  PubMed  CAS  Google Scholar 

  17. Schindeler S, Ghosh-Jerath S, Thompson S, Rocca A, Joy P, Kemp A, Rae C, Green K, Wilcken B, Christodoulou J. The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab. 2007;91:48–54.

    Article  PubMed  CAS  Google Scholar 

  18. Moats RA, Koch R, Moseley K, Guldberg P, Guttler F, Boles RG, Nelson Jr MD. Brain phenylalanine concentration in the management of adults with phenylketonuria. J Inherit Metab Dis. 2000; 23:7–14.

    Article  PubMed  CAS  Google Scholar 

  19. Koch R, Moats R, Guttler F, Guldberg P, Nelson Jr M. Blood–brain phenylalanine relationships in persons with phenylketonuria. Pediatrics. 2000;106:1093–6.

    Article  PubMed  CAS  Google Scholar 

  20. Möller HE, Vermathen P, Ullrich K, Weglage J, Koch H-G, Peters PE. In-vivo NMR spectroscopy in patients with phenylketonuria: changes of cerebral phenylalanine levels under dietary treatment. Neuropediatrics. 1995;26(4):199–202.

    Article  PubMed  Google Scholar 

  21. Novotny EJ, Avison MJ, Herschkowitz N, Petroff OA, Prichard JW, Seashore MR, Rothman DL. In vivo measurement of phenylalanine in human brain by proton nuclear magnetic resonance spectroscopy. Pediatr Res. 1995;37(2):244–9.

    Article  PubMed  Google Scholar 

  22. Möller HE, Weglage J, Wiedermann D, Vermathen P, Bick U, Ullrich K. Kinetics of phenylalanine transport at the human blood–brain barrier investigated in vivo. Brain Res. 1997;778(2): 329–37.

    Article  PubMed  Google Scholar 

  23. Govindaraju V, Young K, Maudsley AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000;13(3):129–53.

    Article  PubMed  CAS  Google Scholar 

  24. Michals K, Matalon R. Phenylalanine metabolites, attention span and hyperactivity. Am J Clin Nutr. 1985;42(2):361–5.

    PubMed  CAS  Google Scholar 

  25. Clarke DD, Lajtha AL, Maker HS. Intermediary metabolism. In: Siegel GJ et al., editors. Basic neurochemisty. 4th ed. New York: Raven; 1989. p. 541.

    Google Scholar 

  26. Moats RA, Scadeng M, Nelson MD. MR imaging and spectroscopy in PKU. Ment Retard Dev Disabil Res Rev. 1999;5(2):132–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arabhi Nagasunder M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nagasunder, A., Koch, R. (2013). Phenylketonuria. In: Blüml, S., Panigrahy, A. (eds) MR Spectroscopy of Pediatric Brain Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5864-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5864-8_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5863-1

  • Online ISBN: 978-1-4419-5864-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics