Skip to main content

Leukodystrophies

  • Chapter
  • First Online:
MR Spectroscopy of Pediatric Brain Disorders

Abstract

The term “leukodystrophy” is generally reserved for those conditions that are both progressive and genetically determined. While these conditions may eventually involve and alter gray matter, the primary features impact the white matter. Leukodystrophies arise as a result of a gene defect that manages production or metabolism of exclusively one component of myelin. These defects cause imperfect growth and development or maintenance of myelin sheaths. For organizational purposes, the disorders described in this chapter can be classified as primary leukodystrophies, perioxisomal disorders producing a leukodystrophy and lysosomal disorders producing leukodystrophies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tallan HH, Moore S, Stein WH. N-Acetyl-L-aspartic acid in brain. J Biol Chem. 1956;219(1):257–64.

    PubMed  CAS  Google Scholar 

  2. Moffett JR, Tieman SB, Weinberger DR, Coyle JT, Namboodiri AMA. N-Acetylaspartate A unique neuronal molecule in the central nervous system; 2006, 2004; Bethesda, Maryland, USA.

    Google Scholar 

  3. Clark JF, Doepke A, Filosa JA, et al. N-acetylaspartate as a reservoir for glutamate. Med Hypotheses. 2006;67(3):506–12.

    Article  PubMed  CAS  Google Scholar 

  4. De Stefano N, Bartolozzi ML, Guidi L, Stromillo ML, Federico A. Magnetic resonance spectroscopy as a measure of brain damage in multiple sclerosis. J Neurol Sci. 2005;233(1–2):203–8.

    Article  PubMed  Google Scholar 

  5. van der Voorn JP, Pouwels PJ, Hart AA, et al. Childhood white matter disorders: quantitative MR imaging and spectroscopy. Radiology. 2006;241(2):510–7.

    Article  PubMed  Google Scholar 

  6. Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.

    PubMed  CAS  Google Scholar 

  7. Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry. 2005;10(10):900–19.

    Article  PubMed  CAS  Google Scholar 

  8. van der Knaap MS, Naidu S, Breiter SN, et al. Alexander disease: diagnosis with MR imaging. AJNR Am J Neuroradiol. 2001;22(3):541–52.

    PubMed  Google Scholar 

  9. van der Knaap MS, Ramesh V, Schiffmann R, et al. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology. 2006;66(4):494–8.

    Article  PubMed  Google Scholar 

  10. van der Knaap MS, Salomons GS, Li R, et al. Unusual variants of Alexander’s disease. Ann Neurol. 2005;57(3):327–38.

    Article  PubMed  Google Scholar 

  11. Dinopoulos A, Gorospe JR, Egelhoff JC, et al. Discrepancy between neuroimaging findings and clinical phenotype in Alexander disease. AJNR Am J Neuroradiol. 2006;27(10):2088–92.

    PubMed  CAS  Google Scholar 

  12. Brockmann K, Dechent P, Meins M, et al. Cerebral proton magnetic resonance spectroscopy in infantile Alexander disease. J Neurol. 2003;250(3):300–6.

    Article  PubMed  CAS  Google Scholar 

  13. Madhavarao CN, Moffett JR, Moore RA, Viola RE, Namboodiri MA, Jacobowitz DM. Immunohistochemical localization of aspartoacylase in the rat central nervous system. J Comp Neurol. 2004;472(3):318–29.

    Article  PubMed  CAS  Google Scholar 

  14. Matalon R, Rady PL, Platt KA, et al. Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system. J Gene Med. 2000;2(3):165–75.

    Article  PubMed  CAS  Google Scholar 

  15. Assadi M, Janson C, Wang DJ, et al. Lithium citrate reduces excessive intra-cerebral N-acetyl aspartate in Canavan disease. Eur J Paediatr Neurol. 2010;14(4):354–9.

    Article  PubMed  Google Scholar 

  16. Krawczyk H, Gradowska W. Characterisation of the 1 H and 13C NMR spectra of N-acetylaspartylglutamate and its detection in urine from patients with Canavan disease. J Pharm Biomed Anal. 2003;31(3):455–63.

    Article  PubMed  CAS  Google Scholar 

  17. Gordon N. Canavan disease: a review of recent developments. Eur J Paediatr Neurol. 2001;5(2):65–9.

    Article  PubMed  CAS  Google Scholar 

  18. Moreno A, Ross BD, Bluml S. Direct determination of the N-acetyl-L-aspartate synthesis rate in the human brain by (13)C MRS and [1-(13)C]glucose infusion. J Neurochem. 2001;77(1):347–50.

    Article  PubMed  CAS  Google Scholar 

  19. Bluml S, Moreno A, Hwang JH, Ross BD. 1-(13)C glucose magnetic resonance spectroscopy of pediatric and adult brain disorders. NMR Biomed. 2001;14(1):19–32.

    Article  PubMed  CAS  Google Scholar 

  20. Aydinli N, Caliskan M, Calay M, Ozmen M. Use of localized proton nuclear magnetic resonance spectroscopy in Canavan’s disease. Turk J Pediatr. 1998;40(4):549–57.

    PubMed  CAS  Google Scholar 

  21. Wittsack HJ, Kugel H, Roth B, Heindel W. Quantitative measurements with localized 1 H MR spectroscopy in children with Canavan’s disease. J Magn Reson Imaging. 1996;6(6):889–93.

    Article  PubMed  CAS  Google Scholar 

  22. Engelbrecht V, Rassek M, Gartner J, Kahn T, Modder U. Magnetic resonance tomography and localized proton spectroscopy in 2 siblings with Canavan’s disease. Rofo. 1995;163(3):238–44.

    Article  PubMed  CAS  Google Scholar 

  23. Toft PB, Geiss-Holtorff R, Rolland MO, et al. Magnetic resonance imaging in juvenile Canavan disease. Eur J Pediatr. 1993;152(9):750–3.

    Article  PubMed  CAS  Google Scholar 

  24. Leegwater PA, Vermeulen G, Konst AA, et al. Subunits of the translation initiation factor eIF2B are mutant in leukoencephalopathy with vanishing white matter. Nat Genet. 2001;29(4):383–8.

    Article  PubMed  CAS  Google Scholar 

  25. van der Knaap MS, Leegwater PA, Konst AA, et al. Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann Neurol. 2002;51(2):264–70.

    Article  PubMed  Google Scholar 

  26. van der Knaap MS, Breiter SN, Naidu S, Hart AA, Valk J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology. 1999;213(1):121–33.

    PubMed  Google Scholar 

  27. van der Knaap MS, Pronk JC, Scheper GC. Vanishing white matter disease. Lancet Neurol. 2006;5(5):413–23.

    Article  PubMed  Google Scholar 

  28. Pronk JC, van Kollenburg B, Scheper GC, van der Knaap MS. Vanishing white matter disease: a review with focus on its genetics. Ment Retard Dev Disabil Res Rev. 2006;12(2):123–8.

    Article  PubMed  Google Scholar 

  29. Bugiani M, Boor I, Powers JM, Scheper GC, van der Knaap MS. Leukoencephalopathy with Vanishing White Matter: A Review. J Neuropathol Exp Neurol. 2010;69(10):987–96.

    Article  PubMed  Google Scholar 

  30. Van Haren K, van der Voorn JP, Peterson DR, van der Knaap MS, Powers JM. The life and death of oligodendrocytes in vanishing white matter disease. J Neuropathol Exp Neurol. 2004;63(6):618–30.

    PubMed  Google Scholar 

  31. van der Knaap MS, Barth PG, Gabreels FJ, et al. A new leukoencephalopathy with vanishing white matter. Neurology. 1997; 48(4):845–55.

    Article  PubMed  Google Scholar 

  32. van der Knaap MS, Kamphorst W, Barth PG, Kraaijeveld CL, Gut E, Valk J. Phenotypic variation in leukoencephalopathy with vanishing white matter. Neurology. 1998;51(2):540–7.

    Article  PubMed  Google Scholar 

  33. Schiffmann R, Moller JR, Trapp BD, et al. Childhood ataxia with diffuse central nervous system hypomyelination. Ann Neurol. 1994;35(3):331–40.

    Article  PubMed  CAS  Google Scholar 

  34. Tedeschi G, Schiffmann R, Barton NW, et al. Proton magnetic resonance spectroscopic imaging in childhood ataxia with diffuse central nervous system hypomyelination. Neurology. 1995;45(8):1526–32.

    Article  PubMed  CAS  Google Scholar 

  35. Dreha-Kulaczewski SF, Dechent P, Finsterbusch J, et al. Early reduction of total N-acetyl-aspartate-compounds in patients with classical vanishing white matter disease. A long-term follow-up MRS study. Pediatr Res. 2008;63(4):444–9.

    Article  PubMed  CAS  Google Scholar 

  36. Hanefeld F, Holzbach U, Kruse B, Wilichowski E, Christen HJ, Frahm J. Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics. 1993;24(5):244–8.

    Article  PubMed  CAS  Google Scholar 

  37. Scheper GC, van der Klok T, van Andel RJ, et al. Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet. 2007;39(4):534–9.

    Article  PubMed  CAS  Google Scholar 

  38. van der Knaap MS, van der Voorn P, Barkhof F, et al. A new leukoencephalopathy with brainstem and spinal cord involvement and high lactate. Ann Neurol. 2003;53(2):252–8.

    Article  PubMed  Google Scholar 

  39. Labauge P, Dorboz I, Eymard-Pierre E, Dereeper O, Boespflug-Tanguy O. Clinically asymptomatic adult patient with extensive LBSL MRI pattern and DARS2 mutation. J Neurol. 2010;258:335–7. doi:10.1007/s00415-010-5755-5.

    Article  PubMed  Google Scholar 

  40. Labauge P, Roullet E, Boespflug-Tanguy O, et al. Familial, adult onset form of leukoencephalopathy with brain stem and spinal cord involvement: inconstant high brain lactate and very slow disease progression. Eur Neurol. 2007;58(1):59–61.

    Article  PubMed  Google Scholar 

  41. Petzold GC, Bohner G, Klingebiel R, Amberger N, van der Knaap MS, Zschenderlein R. Adult onset leucoencephalopathy with brain stem and spinal cord involvement and normal lactate. J Neurol Neurosurg Psychiatry. 2006;77(7):889–91.

    Article  PubMed  CAS  Google Scholar 

  42. Uluc K, Baskan O, Yildirim KA, et al. Leukoencephalopathy with brain stem and spinal cord involvement and high lactate: a genetically proven case with distinct MRI findings. J Neurol Sci. 2008;273(1–2):118–22.

    Article  PubMed  Google Scholar 

  43. Tavora DG, Nakayama M, Gama RL, Alvim TC, Portugal D, Comerlato EA. Leukoencephalopathy with brainstem and spinal cord involvement and high brain lactate: report of three Brazilian patients. Arq Neuropsiquiatr. 2007;65(2):506–11.

    Article  PubMed  Google Scholar 

  44. Linnankivi T, Lundbom N, Autti T, et al. Five new cases of a recently described leukoencephalopathy with high brain lactate. Neurology. 2004;63(4):688–92.

    Article  PubMed  CAS  Google Scholar 

  45. Serkov SV, Pronin IN, Bykova OV, et al. Five patients with a recently described novel leukoencephalopathy with brainstem and spinal cord involvement and elevated lactate. Neuropediatrics. 2004;35(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  46. Boor PK, de Groot K, Waisfisz Q, et al. MLC1: a novel protein in distal astroglial processes. J Neuropathol Exp Neurol. 2005;64(5):412–9.

    PubMed  CAS  Google Scholar 

  47. Blattner R, Von Moers A, Leegwater PA, Hanefeld FA, Van Der Knaap MS, Kohler W. Clinical and genetic heterogeneity in megalencephalic leukoencephalopathy with subcortical cysts (MLC). Neuropediatrics. 2003;34(4):215–8.

    Article  PubMed  CAS  Google Scholar 

  48. Patrono C, Di Giacinto G, Eymard-Pierre E, et al. Genetic heterogeneity of megalencephalic leukoencephalopathy and subcortical cysts. Neurology. 2003;61(4):534–7.

    Article  PubMed  CAS  Google Scholar 

  49. van der Knaap MS, Lai V, Kohler W, et al. Megalencephalic leukoencephalopathy with cysts without MLC1 defect. Ann Neurol. 2010;67(6):834–7.

    PubMed  Google Scholar 

  50. van der Knaap MS, Barth PG, Stroink H, et al. Leukoencephalopathy with swelling and a discrepantly mild clinical course in eight children. Ann Neurol. 1995;37(3):324–34.

    Article  PubMed  Google Scholar 

  51. Leegwater PA, Boor PK, Yuan BQ, et al. Identification of novel mutations in MLC1 responsible for megalencephalic leukoencephalopathy with subcortical cysts. Hum Genet. 2002;110(3):279–83.

    Article  PubMed  CAS  Google Scholar 

  52. Brockmann K, Finsterbusch J, Terwey B, Frahm J, Hanefeld F. Megalencephalic leukoencephalopathy with subcortical cysts in an adult: quantitative proton MR spectroscopy and diffusion tensor MRI. Neuroradiology. 2003;45(3):137–42.

    PubMed  CAS  Google Scholar 

  53. Hudson LD, Puckett C, Berndt J, Chan J, Gencic S. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder. Proc Natl Acad Sci USA. 1989;86(20):8128–31.

    Article  PubMed  CAS  Google Scholar 

  54. Gencic S, Abuelo D, Ambler M, Hudson LD. Pelizaeus-Merzbacher disease: an X-linked neurologic disorder of myelin metabolism with a novel mutation in the gene encoding proteolipid protein. Am J Hum Genet. 1989;45(3):435–42.

    PubMed  CAS  Google Scholar 

  55. Garbern JY, Hobson GM. PLP1-Related Disorders. In: Pagon RA, Bird TC, Dolan CR, Stephens K, eds. GeneReviews [Internet]. Seattle: University of Washington; 1999 [updated 2010 Mar 16].

    Google Scholar 

  56. Hanefeld FA, Brockmann K, Pouwels PJ, Wilken B, Frahm J, Dechent P. Quantitative proton MRS of Pelizaeus-Merzbacher disease: evidence of dys- and hypomyelination. Neurology. 2005;65(5):701–6.

    Article  PubMed  CAS  Google Scholar 

  57. Provencher SW. Automatic quantitation of localized in vivo 1 H spectra with LCModel. NMR Biomed. 2001;14(4):260–4.

    Article  PubMed  CAS  Google Scholar 

  58. Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med. 1993;30(6):672–9.

    Article  PubMed  CAS  Google Scholar 

  59. Takanashi J, Inoue K, Tomita M, et al. Brain N-acetylaspartate is elevated in Pelizaeus-Merzbacher disease with PLP1 duplication. Neurology. 2002;58(2):237–41.

    Article  PubMed  CAS  Google Scholar 

  60. Bonavita S, Schiffmann R, Moore DF, et al. Evidence for neuroaxonal injury in patients with proteolipid protein gene mutations. Neurology. 2001;56(6):785–8.

    Article  PubMed  CAS  Google Scholar 

  61. Pizzini F, Fatemi AS, Barker PB, et al. Proton MR spectroscopic imaging in Pelizaeus-Merzbacher disease. AJNR Am J Neuroradiol. 2003;24(8):1683–9.

    PubMed  Google Scholar 

  62. Garbern JY, Yool DA, Moore GJ, et al. Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain. 2002;125(Pt 3):551–61.

    Article  PubMed  Google Scholar 

  63. Mochel F, Boildieu N, Barritault J, et al. Elevated CSF N-acetylaspartylglutamate suggests specific molecular diagnostic abnormalities in patients with white matter diseases. Biochim Biophys Acta. 2010;1802(11):1112–7.

    Article  PubMed  CAS  Google Scholar 

  64. Mochel F, Engelke UF, Barritault J, et al. Elevated CSF N-acetylaspartylglutamate in patients with free sialic acid storage diseases. Neurology. 2010;74(4):302–5.

    Article  PubMed  CAS  Google Scholar 

  65. Valk J, van der Knaap MS. Selective vulnerability in toxic encephalopathies and metabolic disorder. Riv Neuroradiol. 1996;9:749–60.

    Google Scholar 

  66. De Stefano N, Dotti MT, Mortilla M, Federico A. Magnetic resonance imaging and spectroscopic changes in brains of patients with cerebrotendinous xanthomatosis. Brain. 2001;124(Pt 1):121–31.

    Article  PubMed  Google Scholar 

  67. Kumar V, Abbas AK, Fausto N. Robbins and Cotran pathologic basis of disease. 7th ed. Philadelphia: Elsevier Saunders; 2005.

    Google Scholar 

  68. Brockmann K, Dechent P, Wilken B, Rusch O, Frahm J, Hanefeld F. Proton MRS profile of cerebral metabolic abnormalities in Krabbe disease. Neurology. 2003;60(5):819–25.

    Article  PubMed  CAS  Google Scholar 

  69. Kruse B, Hanefeld F, Christen HJ, et al. Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol. 1993;241(2):68–74.

    Article  PubMed  CAS  Google Scholar 

  70. Bruhn H, Kruse B, Korenke GC, et al. Proton NMR spectroscopy of cerebral metabolic alterations in infantile peroxisomal disorders. J Comput Assist Tomogr. 1992;16(3):335–44.

    Article  PubMed  CAS  Google Scholar 

  71. Confort-Gouny S, Vion-Dury J, Chabrol B, Nicoli F, Cozzone PJ. Localised proton magnetic resonance spectroscopy in X-linked adrenoleukodystrophy. Neuroradiology. 1995;37(7):568–75.

    Article  PubMed  CAS  Google Scholar 

  72. Eichler FS, Barker PB, Cox C, et al. Proton MR spectroscopic imaging predicts lesion progression on MRI in X-linked adrenoleukodystrophy. Neurology. 2002;58(6):901–7.

    Article  PubMed  CAS  Google Scholar 

  73. Eichler FS, Itoh R, Barker PB, et al. Proton MR spectroscopic and diffusion tensor brain MR imaging in X-linked adrenoleukodystrophy: initial experience. Radiology. 2002;225(1):245–52.

    Article  PubMed  Google Scholar 

  74. Izquierdo M, Adamsbaum C, Benosman A, Aubourg P, Bittoun J. MR spectroscopic imaging of normal-appearing white matter in adrenoleukodystrophy. Pediatr Radiol. 2000;30(9):621–9.

    Article  PubMed  CAS  Google Scholar 

  75. Korenke GC, Pouwels PJ, Frahm J, et al. Arrested cerebral adrenoleukodystrophy: a clinical and proton magnetic resonance spectroscopy study in three patients. Pediatr Neurol. 1996;15(2):103–7.

    Article  PubMed  CAS  Google Scholar 

  76. Kruse B, Barker PB, van Zijl PC, Duyn JH, Moonen CT, Moser HW. Multislice proton magnetic resonance spectroscopic imaging in X-linked adrenoleukodystrophy. Ann Neurol. 1994;36(4):595–608.

    Article  PubMed  CAS  Google Scholar 

  77. Liang JS, Lee WT, Hwu WL, et al. Adrenoleukodystrophy: clinical analysis of 9 Taiwanese children. Acta Paediatr Taiwan. 2004;45(5):272–7.

    PubMed  Google Scholar 

  78. Moser HW, Barker PB. Magnetic resonance spectroscopy: a new guide for the therapy of adrenoleukodystrophy. Neurology. 2005;64(3):406–7.

    Article  PubMed  Google Scholar 

  79. Oz G, Tkac I, Charnas LR, et al. Assessment of adrenoleukodystrophy lesions by high field MRS in non-sedated pediatric patients. Neurology. 2005;64(3):434–41.

    Article  PubMed  CAS  Google Scholar 

  80. Pouwels PJ, Kruse B, Korenke GC, Mao X, Hanefeld FA, Frahm J. Quantitative proton magnetic resonance spectroscopy of childhood adrenoleukodystrophy. Neuropediatrics. 1998;29(5):254–64.

    Article  PubMed  CAS  Google Scholar 

  81. Rajanayagam V, Balthazor M, Shapiro EG, Krivit W, Lockman L, Stillman AE. Proton MR spectroscopy and neuropsychological testing in adrenoleukodystrophy. AJNR Am J Neuroradiol. 1997;18(10):1909–14.

    PubMed  CAS  Google Scholar 

  82. Rajanayagam V, Grad J, Krivit W, et al. Proton MR spectroscopy of childhood adrenoleukodystrophy. AJNR Am J Neuroradiol. 1996;17(6):1013–24.

    PubMed  CAS  Google Scholar 

  83. Salvan AM, Confort-Gouny S, Chabrol B, Cozzone PJ, Vion-Dury J. Brain metabolic impairment in non-cerebral and cerebral forms of X-linked adrenoleukodystrophy by proton MRS: identification of metabolic patterns by discriminant analysis. Magn Reson Med. 1999;41(6):1119–26.

    Article  PubMed  CAS  Google Scholar 

  84. Tourbah A, Stievenart JL, Iba-Zizen MT, et al. Localized proton magnetic resonance spectroscopy in patients with adult adrenoleukodystrophy. Increase of choline compounds in normal appearing white matter. Arch Neurol. 1997;54(5):586–92.

    Article  PubMed  CAS  Google Scholar 

  85. Tzika AA, Ball Jr WS, Vigneron DB, Dunn RS, Kirks DR. Clinical proton MR spectroscopy of neurodegenerative disease in childhood. AJNR Am J Neuroradiol. 1993;14(6):1267–81.

    PubMed  CAS  Google Scholar 

  86. Tzika AA, Ball Jr WS, Vigneron DB, Dunn RS, Nelson SJ, Kirks DR. Childhood adrenoleukodystrophy: assessment with proton MR spectroscopy. Radiology. 1993;189(2):467–80.

    PubMed  CAS  Google Scholar 

  87. Wilken B, Dechent P, Brockmann K, et al. Quantitative proton magnetic resonance spectroscopy of children with adrenoleukodystrophy before and after hematopoietic stem cell transplantation. Neuropediatrics. 2003;34(5):237–46.

    Article  PubMed  CAS  Google Scholar 

  88. Ratai E, Kok T, Wiggins C, et al. Seven-Tesla proton magnetic resonance spectroscopic imaging in adult X-linked adrenoleukodystrophy. Arch Neurol. 2008;65(11):1488–94.

    Article  PubMed  Google Scholar 

  89. Bonkowsky JL, Nelson C, Kingston JL, Filloux FM, Mundorff MB, Srivastava R. The burden of inherited leukodystrophies in children. Neurology. 2010;75(8):718–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author’s efforts were supported by grants from the National Institutes of Health, NIEHS R01 ES015559, NCI R01 CA112182, and NIMH P50 MH077138. The authors have no competing financial or non-financial interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim M. Cecil Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cecil, K.M., Lindquist, D.M. (2013). Leukodystrophies. In: Blüml, S., Panigrahy, A. (eds) MR Spectroscopy of Pediatric Brain Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5864-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-5864-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-5863-1

  • Online ISBN: 978-1-4419-5864-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics