Skip to main content

Survival Analysis

  • Chapter
  • First Online:
Fundamentals of Clinical Trials

Abstract

This chapter reviews some of the fundamental concepts and basic methods in survival analysis. Frequently, event rates such as mortality or occurrence of nonfatal myocardial infarction are selected as primary response variables. The analysis of such event rates in two groups could employ the chi-square statistic or the equivalent normal statistic for the comparison of two proportions. However, when the length of observation is different for each participant, estimating an event rate is more complicated. Furthermore, simple comparison of event rates between two groups is not necessarily the most informative type of analysis. For example, the 5-year survival for two groups may be nearly identical, but the survival rates may be quite different at various times during the 5 years. This is illustrated by the survival curves in Fig. 15.1. This figure shows survival probability on the vertical axis and time on the horizontal axis. For Group A, the survival rate (or 1 − the mortality rate) declines steadily over the 5 years of observation. For Group B, however, the decline in the survival rate is rapid during the first year and then levels off. Obviously, the survival experience of the two groups is not the same although the mortality rate at 5 years is nearly the same. If only the 5-year survival rate is considered, Group A and Group B appear equivalent. Curves like these might reasonably be expected in a trial of surgical versus medical intervention, where surgery might carry a high initial operative mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown BW, Hollander M. Statistics: A Biomedical Introduction. New York: John Wiley and Sons, 1977.

    Book  Google Scholar 

  2. Armitage P. Statistical Methods in Medical Research. New York: John Wiley and Sons, 1977.

    Google Scholar 

  3. Breslow N. Comparison of survival curves. In Buyse B, Staquet M, Sylvester R (eds). The Practice of Clinical Trials in Cancer. Oxford: Oxford University Press, 1982.

    Google Scholar 

  4. Altman DG. Practical Statistics for Medical Research. New York: Chapman and Hall, 1991, pp. 383–392.

    Google Scholar 

  5. Woolson R. Statistical Methods for the Analysis of Biomedical Data. New York: John Wiley and Sons, 1987.

    Google Scholar 

  6. Fisher L, VanBelle G. Biostatistics: A Methodology for the Health Sciences. New York: John Wiley and Sons, 1983.

    Google Scholar 

  7. Crowley J, Breslow N. Statistical analysis of survival data. Annu Rev Public Health 1984;5:385–411.

    Article  Google Scholar 

  8. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. New York: John Wiley and Sons, 1980.

    MATH  Google Scholar 

  9. Miller RG, Jr. Survival Analysis. New York: John Wiley and Sons, 1981.

    MATH  Google Scholar 

  10. Cox DR, Oakes D. The Analysis of Survival Data. New York: Chapman and Hall, 1984.

    Google Scholar 

  11. Fleming T, Harrington D. Counting Processes and Survival Analysis. New York: John Wiley and Sons, 1991.

    Google Scholar 

  12. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457–481.

    Article  MATH  MathSciNet  Google Scholar 

  13. Cutler S, Ederer F. Maximum utilization of the lifetable method in analyzing survival. J Chronic Dis 1958;8:699–712.

    Article  Google Scholar 

  14. Greenwood M. The natural duration of cancer. Rep Publ Health Med Subj 1926;33:1–26.

    Google Scholar 

  15. Thomas DG, Breslow N, Gart J. Trend and homogeneity analysis of proportions and life table data. Comput Biomed Res 1977;10:373–381.

    Article  Google Scholar 

  16. Nelson W. Hazard plotting for incomplete failure data. J Qual Technol 1969;1:27–52.

    Google Scholar 

  17. Brookmeyer R, Crowley J. A confidence interval for the median survival time. Biometrics 1982;38:29–42.

    Article  MATH  Google Scholar 

  18. Gehan E. A generalized Wilcoxon test for comparing arbitrarily single censored samples. Biometrika 1965;52:203–223.

    MATH  MathSciNet  Google Scholar 

  19. Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966;50:163–170.

    Google Scholar 

  20. Cochran W. Some methods for strengthening the common χ 2 tests. Biometrics 1954;10:417–451.

    Article  MATH  MathSciNet  Google Scholar 

  21. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22:719–748.

    Google Scholar 

  22. Peto R, Pike MC. Conservatism in the approximation Σ(0 − E)2/E in the logrank test for survival data or tumor incidence data. Biometrics 1973;29:579–584.

    Article  MathSciNet  Google Scholar 

  23. Crowley J, Breslow N. Remarks on the conservatism of Σ(0 − E)2/E in survival data. Biometrics 1975;31:957–961.

    Article  MATH  Google Scholar 

  24. Mantel N. Ranking procedures for arbitrarily restricted observations. Biometrics 1967;23:65–78.

    Article  Google Scholar 

  25. Breslow N. A generalized Kruskal–Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika 1970;57:579–594.

    Article  MATH  Google Scholar 

  26. Peto R, Peto J. Asymptotically efficient rank invariant test procedures. J R Stat Soc SerA 1972;135:185–207.

    Article  Google Scholar 

  27. Tarone R, Ware J. On distribution-free tests for equality of survival distributions. Biometrika 1977;64:156–160.

    Article  MATH  MathSciNet  Google Scholar 

  28. Oakes D. The asymptotic information in censored survival data. Biometrika 1977;64:441–448.

    Article  MATH  MathSciNet  Google Scholar 

  29. Prentice RL. Linear rank tests with right censored data. Biometrika 1978;65:167–179.

    Article  MATH  MathSciNet  Google Scholar 

  30. Schoenfeld D. The asymptotic properties of non-parametric tests for comparing survival distributions. Biometrika 1981;68:316–319.

    Article  MathSciNet  Google Scholar 

  31. Leurgans SL. Three classes of censored data rank tests: strengths and weaknesses under censoring. Biometrika 1983;70:651–658.

    Article  MATH  MathSciNet  Google Scholar 

  32. Harrington DP, Fleming TR. A class of rank test procedures for censored survival data. Biometrika 1982;69:553–566.

    Article  MATH  MathSciNet  Google Scholar 

  33. Simon R. Confidence intervals for reporting results of clinical trials. Ann Intern Med 1986;105:429–435.

    Article  Google Scholar 

  34. Cox DR. Regression models and life tables. J R Stat Soc Series B Stat Methodol 1972;34:187–202.

    MATH  Google Scholar 

  35. Zelen M. Application of exponential models to problems in cancer research. J R Stat Soc Ser A 1966;129:368–398.

    Article  Google Scholar 

  36. Feigl P, Zelen M. Estimation of exponential survival probabilities with concomitant information. Biometrics 1965;21:826–838.

    Article  Google Scholar 

  37. Prentice RL, Kalbfleisch JD. Hazard rate models with covariates. Biometrics 1979;35:25–39.

    Article  MATH  MathSciNet  Google Scholar 

  38. Kalbfleisch JD, Prentice RL. Marginal likelihoods based on Cox’s regression and life model. Biometrika 1973;60:267–278.

    Article  MATH  MathSciNet  Google Scholar 

  39. Breslow N. Covariance analysis of censored survival data. Biometrics 1974;30:89–99.

    Article  Google Scholar 

  40. Breslow N. Analysis of survival data under the proportional hazards model. Int Stat Rev 1975;43:45–58.

    Article  MATH  Google Scholar 

  41. Kay R. Proportional hazard regression models and the analysis of censored survival data. J R Stat Soc Ser C Appl Stat 1977;26:227–237.

    Google Scholar 

  42. Prentice RL, Gloeckler LA. Regression analysis of grouped survival data with application to breast cancer. Biometrics 1978;34:57–67.

    Article  MATH  Google Scholar 

  43. Efron B. The efficiency of Cox’s likelihood function for censored data. J Am Stat Assoc 1977;72:557–565.

    Article  MATH  MathSciNet  Google Scholar 

  44. Tsiatis AA. A large sample study of Cox’s regression model. Ann Stat 1981;9:93–108.

    Article  MATH  MathSciNet  Google Scholar 

  45. Schoenfeld D. Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 1980;67:145–153.

    Article  MATH  MathSciNet  Google Scholar 

  46. Storer BE, Crowley J. Diagnostics for Cox regression and general conditional likelihoods. J Am Stat Assoc 1985;80:139–147.

    Article  MathSciNet  Google Scholar 

  47. Pocock SJ, Gore SM, Kerr GR. Long term survival analysis: the curability of breast cancer. Stat Med 1982;1:93–104.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Friedman .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Friedman, L.M., Furberg, C.D., DeMets, D.L. (2010). Survival Analysis. In: Fundamentals of Clinical Trials. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1586-3_15

Download citation

Publish with us

Policies and ethics