Skip to main content

Personalized Management of Neurological Disorders

  • Chapter
  • First Online:
Textbook of Personalized Medicine

Abstract

Personalized neurology requires the integration of several neuroscientific and clinical aspects of neuropharmacology (Jain 2005c). Drug discovery for neurological disorders should take into consideration targeting a specific type in the broad clinical category of a neurological disease in the conventional clinical diagnosis. Drug delivery to the central nervous system (CNS) is an important factor in personalizing treatment of neurological disorders. Personalized management of some important neurological disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), epilepsy, migraine, and multiple sclerosis (MS) will be considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babic T, Lakusic DM, Sertic J et al (2004) ApoE genotyping and response to galanthamine in Alzheimer’s disease – a real life retrospective study. Coll Antropol 28:199–204

    CAS  PubMed  Google Scholar 

  • Barba I, Fernandez-Montesinos R, Garcia-Dorado D, Pozo D (2008) Alzheimer’s disease beyond the genomic era: nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. J Cell Mol Med 12:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Byun E, Caillier SJ, Montalban X et al (2008) Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch Neurol 65:337–344

    Article  PubMed  Google Scholar 

  • Cacabelos R (2002) Pharmacogenomics in Alzheimer’s disease. Mini Rev Med Chem 2:59–84

    Article  CAS  PubMed  Google Scholar 

  • de Leon J, Sandson NB, Cozza KL (2008) A preliminary attempt to personalize risperidone dosing using drug-drug interactions and genetics: part I. Psychosomatics 49:258–270

    Google Scholar 

  • de Leon J, Susce MT, Pan RM et al (2005) The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 66:15–27.

    Google Scholar 

  • Ferraro TN, Dlugos DJ, Buono RJ (2006) Challenges and opportunities in the application of pharmacogenetics to antiepileptic drug therapy. Pharmacogenomics 7:89–103

    Article  CAS  PubMed  Google Scholar 

  • Frost JJ (2008) Molecular imaging to biomarker development in neuroscience. Ann N Y Acad Sci 1144:251–255

    Article  PubMed  Google Scholar 

  • Greenberg DA, Cayanis E, Strug L et al (2005) Malic enzyme 2 may underlie susceptibility to adolescent-onset idiopathic generalized epilepsy. Am J Hum Genet 76:139–146

    Article  CAS  PubMed  Google Scholar 

  • Grossman I, Avidan N, Singer C et al (2007) Pharmacogenetics of glatiramer acetate therapy for multiple sclerosis reveals drug-response markers. Pharmacogenet Genomics 17:657–666.

    Google Scholar 

  • Holsboer F (2008) How can we realize the promise of personalized antidepressant medicines? Nat Rev Neurosci 9:638–646

    Article  CAS  PubMed  Google Scholar 

  • Hunter AM, Leuchter AF, Morgan ML et al (2005) Neurophysiologic correlates of side effects in normal subjects randomized to venlafaxine or placebo. Neuropsychopharmacology 30:792–799

    CAS  PubMed  Google Scholar 

  • Jain KK (2005) Personalised medicine for cancer – from drug development into clinical practice. Exp Opin Pharmacother 6:1463–1476

    Article  CAS  Google Scholar 

  • Jain KK (2009o) Alzheimer’s disease: new drugs, markets and companies. Jain PharmaBiotech, Basel, Switzerland.

    Google Scholar 

  • Kappos L, Freedman MS, Polman CH et al (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370:389–397

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Lee KJ, Lee HJ et al (2005) Association between the 5-HT6 receptor C267T polymorphism and response to antidepressant treatment in major depressive disorder. Psychiatry Clin Neurosci 59:140–145

    Article  CAS  PubMed  Google Scholar 

  • Löscher W, Klotz U, Zimprich F, Schmidt D (2009) The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50:1–23

    Article  PubMed  Google Scholar 

  • Martinez-Forero I, Pelaez A, Villoslada P (2008) Pharmacogenomics of multiple sclerosis: in search for a personalized therapy. Expert Opin Pharmacother 9:3053–3067

    Google Scholar 

  • Mattay VS, Goldberg TE, Fera F et al (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. PNAS 100:6186–6191

    Google Scholar 

  • Piane M, Lulli P, Farinelli I et al (2007) Genetics of migraine and pharmacogenomics: some considerations. J Headache Pain 8:334–339

    Article  CAS  PubMed  Google Scholar 

  • Ragozzino D, Palma E, Di Angelantonio S et al (2005) Rundown of GABA type A receptors is a dysfunction associated with human drug-resistant mesial temporal lobe epilepsy. Proc Natl Acad Sci USA 102:15219–15223

    Article  CAS  PubMed  Google Scholar 

  • Remy S, Gabriel S, Urban BW et al (2003) A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 53:469–479

    Article  CAS  PubMed  Google Scholar 

  • Roiser JP, Cook LJ, Cooper JD et al (2005) Association of a functional polymorphism in the serotonin transporter gene with abnormal emotional processing in ecstasy users. Am J Psychiatry 162:609–612

    Article  PubMed  Google Scholar 

  • Siddiqui A, Kerb R, Weale ME et al (2003) Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 348:1442–1448

    Article  CAS  PubMed  Google Scholar 

  • Stein MA, Waldman ID, Sarampote CS et al (2005) Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 30:1374–1378

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Glauser TA, Gilbert DL et al (2004) Valproic acid blood genomic expression patterns in children with epilepsy - a pilot study. Acta Neurol Scand 109:159–168

    Article  CAS  PubMed  Google Scholar 

  • Tate SK, Depondt C, Sisodiya SM et al (2005) Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci USA 102:5507–5512

    Article  CAS  PubMed  Google Scholar 

  • Tate SK, Sisodiya SM (2007) Multidrug resistance in epilepsy: a pharmacogenomic update. Exp Opin Pharmacother 8:1441–1449

    Article  CAS  Google Scholar 

  • Tfelt-Hansen P, Brøsen K (2008) Pharmacogenomics and migraine: possible implications. J Headache Pain 9:13–18

    Article  PubMed  Google Scholar 

  • van Baarsen LG, Vosslamber S, Tijssen M et al (2008) Pharmacogenomics of interferon-beta therapy in multiple sclerosis: baseline IFN signature determines pharmacological differences between patients. PLoS ONE 3(4):e1927

    Google Scholar 

  • Vosslamber S, van Baarsen LG, Verweij CL (2009) Pharmacogenomics of IFN-beta in multiple sclerosis: towards a personalized medicine approach. Pharmacogenomics 10:97–108

    Article  CAS  PubMed  Google Scholar 

  • Warren KG, Catz I, Ferenczi LZ et al (2006) Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment. Eur J Neurol 13:887–895

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewal K. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2009). Personalized Management of Neurological Disorders. In: Textbook of Personalized Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0769-1_11

Download citation

Publish with us

Policies and ethics