Skip to main content

Environmental Cleanup Approach Using Bioinformatics in Bioremediation

  • Chapter
Bioinformatics: Applications in Life and Environmental Sciences

Abstract

Environmental pollutants have become a major global concern. The modern growth of industrialization, urbanization, modern agricultural development, energy generation, have resulted in indiscriminate exploitation of natural resources for fulfilling the human desires and need, which have contributed in disturbing the ecological balance on which the quality of our environment depends. Human beings in true sense are the product of their environment. Man-environment relationship indicates that pollution and deterioration of environment has a social origin. The modern technological advancements in chemical processes have given rise to new products, new pollutants and in much abundant level which are above the self cleaning capacities of environment. One of the major issues in recent times is the threat to the human life caused due to the progressive deterioration of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, D.G., Ruiz, B., San-Jose, C., Jaspe, A. and Gilbert, P. (1998). Analysis of biofilm polymers of Pseudomonas fluorescens B52 attached to glass and stainless steel coupons. In: Abstracts of the General Meeting of the American Society for Microbiology, Atlanta, Georgia, 98: 325.

    Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic alignment search tools. Journal of Molecular Biology, 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 15(17): 3389–3402.

    Article  Google Scholar 

  • Alves, R., Chaleil, R.A.G. and Sternberg, M.J.E. (2002). Evolution of enzymes in metabolism: A network perspective. J. Mol. Biol., 320: 751–770.

    Article  PubMed  CAS  Google Scholar 

  • Atlas, R.M. (1981). Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev., 7: 285–292.

    Google Scholar 

  • Baker, D. and Sali, A. (2001). Protein structure prediction and structural genomics. Science, 294: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Bansal, A.K. (2001). Integrating co-regulated gene-groups and pair-wise genome comparisons to automate reconstruction of microbial pathways. IEEE International Symposium on Bioinformatics and Biomedical Engineering. Washington, 209–216.

    Google Scholar 

  • Bansal, A.K. (1999). An automated comparative analysis of seventeen complete microbial genomes. Bioinformatics, 15(11): 900–908.

    Article  PubMed  CAS  Google Scholar 

  • Bansal, A.K. and Meyer, T.E. (2002). Evolutionary analysis by whole genome comparisons. Journal of Bacteriology, 184(8): 2260–2272.

    Article  PubMed  CAS  Google Scholar 

  • Bansal, A.K. and Woolverton, C. (2003). Applying automatically derived gene-groups to automatically predict and refine microbial pathways. IEEE Transactions of Knowledge and Data Engineering, 15(4): 883–894.

    Article  Google Scholar 

  • Bono, H., Ogata, H., Goto, S. and Kanehisa, M. (1998). Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. Genome Research, 8(3): 203–210.

    PubMed  CAS  Google Scholar 

  • Call, D., Chandler, D. and Brockman, F. (2001). Fabrication of DNA microarrays using unmodified oligonucleotide probes. BioTechniques, 30: 368–379.

    PubMed  CAS  Google Scholar 

  • Cavalca, L., Hartmann, A., Rouard, N. and Soulas, G. (1999). Diversity of tfdC genes: distribution and polymorphism among 2,4-dichlorohenoxyacetic acid degrading soil bacteria. FEMS Microbiol. Ecol., 29: 45–58.

    Article  CAS  Google Scholar 

  • Cho, J.C. and Tiedje, J.M. (2002). Quantitative detection of microbial genes by using DNA microarrays. Appl. Environ. Microbial., 68: 1425–1430.

    Article  CAS  Google Scholar 

  • Delcher, A.L., Harmon, D., Kasif, S., White, O. and Salzberg, S.L. (1999). Improved microbial gene identification with GLIMMER. Nucleic Acids Research, 27(23): 4636–4641.

    Article  PubMed  CAS  Google Scholar 

  • Denef, V.J., Park, J., Rodrigues, J.L. et al. (2003). Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environ. Microbial., 5: 933–943.

    Article  CAS  Google Scholar 

  • Dennis, P., Edwards, E.A., Liss, S.N. et al. (2003). Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl. Environ. Microbial., 69: 769–778.

    Article  CAS  Google Scholar 

  • DeRisi, J.L., Iyer, V.R. and Brown, P.O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278: 680–686.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, L.B., Hou, B.K., Kang, W. and Wackett, L.P. (2003). The University of Minnesota Biocatalysis/Biodegradation Database: Post-genomic data mining. Nucleic Acids Res., 31: 262–265.

    Article  PubMed  CAS  Google Scholar 

  • Elsas, J.D. van, Mantynen, V. and Wolters, A.C. (1997). Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soils by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Bioi. Fertil. Soil, 24: 188–195.

    Article  Google Scholar 

  • Elsas, J.D. van, Rosado, A., Moore, A.C. and Karlson, V. (1998). Quantitative detection of Sphingomonas chlorophenoliza in soil via competitive polymerase chain reaction. J. Appl. Microbiol., 85: 463–471.

    Article  PubMed  Google Scholar 

  • Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., Scharfe, C. and Feldman, M.W. (2002). Evolutionary rate in the protein interaction network. Science, 296: 750–752.

    Article  PubMed  CAS  Google Scholar 

  • Gao, H., Wang, Y., Liu, X. et al. (2004). Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J. Bacterial, 186: 7796–7803.

    Article  CAS  Google Scholar 

  • Gibson, D.T. and Sayler, G.S. (1992). Scientific foundations of bioremediation: Current status and future needs. American Academy of Microbiology, Washington, D.C.

    Google Scholar 

  • Golyshin, P.N., Martins Dos, Santos, V.A., Kaiser, O. et al. (2003). Genome sequence completed of Alcanivorax borkumensis: A hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J. Biotechnol., 106: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Guo, C. et al. (1997). Hybridization analysis of microbial DNA from fuel oil-contaminated and noncontaminated soil. Microbial. Ecol., 34: 178–187.

    Article  CAS  Google Scholar 

  • Guschin, D.Y., Mobarry, B.K., Proudnikov, D., Stahl, D.A., Rittman, B.E. and Mitzabekov, A.D. (1997). Oligonucleotide microarrays as genosensors for determinative environmental studies in microbiology. Appl. Environ. Microbiol., 63: 2397–2402.

    PubMed  CAS  Google Scholar 

  • Hallier-soulier, S., Ducrocq, V., Mazure, N. and Truffaut, N. (1996). Detection and quantification of degradative genes in soils contaminated by toluene. FEMS Microbiol. Ecol., 20: 121–133.

    Article  CAS  Google Scholar 

  • Hamann, C., Hegemann, J. and Hildebrandt, A. (1999). Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett., 173: 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Hedlund, B.P., Geiselbrecht, A.D., Timothy, 18 and Staley, J.T. (1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas napthovorans, sp. nov. Appl. Environ. Microbiol., 65: 251–259.

    PubMed  CAS  Google Scholar 

  • Henikoff, S., Henikoff, J.G., Alford, W.J. and Pietrokovski, S. (1995). Automated construction and graphical presentation of protein blocks from unaligned sequences. Gene, 163(2): GC17–26.

    Article  PubMed  CAS  Google Scholar 

  • Herrick, J.B., Madsen, E.L., Batt, C.A. and Ghiorse, W.C. (1993). Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl. Environ. Microbiol., 59: 687–694.

    PubMed  CAS  Google Scholar 

  • Hochstrasser, D.F. (1998). Proteome in perspective. Clin Chem Lab Med. 36: 825–836 [Cross Ref: ISI, Medline].

    Article  PubMed  CAS  Google Scholar 

  • Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. and Hood, L. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292: 929–934.

    Article  PubMed  CAS  Google Scholar 

  • Jansson, J.K. and Prosser, J.I. (1997). Quantification of the presence and activity of specific microorganisms in nature. Mol. Biotechnol., 7: 103–120.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, H., Mason, S.P., Barabási, A.L. and Oltvai, Z.N. (2001). Lethality and centrality in protein networks. Nature, 411: 41–42.

    Article  PubMed  CAS  Google Scholar 

  • Kanaly, R.A. and Harayama, S. (2000). Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol., 182: 2059–2067.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R. and Ideker, T. (2003). Conserved pathways within bacteria and yeast as revealed by global protein network alignment. PNAS, 100(20): 11394–11399.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, W., Suzuki, A., Hoaki, T., Masai, E. and Fukuda, M. (2001). Multiplicity of aromatic ring hydroxylation dioxygenase genes in a strong PCB degrader, Rhodococcus sp. strain RHA 1 demonstrated by denaturing gel electrophoresis. Biosci. Biotechnol. Biochem., 65: 1907–1911.

    Article  PubMed  CAS  Google Scholar 

  • Knaebel, D.B. and Crawford, R.L. (1995). Extraction and purification of microbial DNA from petroleum-contaminated soils and detection of low numbers of toluene, octane and pesticide degraders by multiplex polymerase chain reaction and Southern analysis. Mol. Ecol., 4: 579–591.

    Article  PubMed  CAS  Google Scholar 

  • Kuhner, S., Wohlbrand, L., Fritz, I. et al. (2005). Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J. Bacterial, 187: 1493–1503.

    Article  CAS  Google Scholar 

  • Laurie, A.D. and Jones, G.L. (2000). Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol., 66: 1814–1817.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Zhou, J.-Z., Omelchenko, M., Beliaev, A., Venkateswaran, A., Stair, J., Wu, L., Thompson, D.K., Xu, D., Rogozin, I.B., Gaidamakova, E.K., Zhai, M., Makarova, K.S., Koonin, E.V. and Daly, M.J. (2003). Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc. Natl. Acad. Sci. USA, 100: 4191–4196.

    Article  PubMed  CAS  Google Scholar 

  • Leahy, J.G. and Colwell, R.R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiol. Rev., 54: 305–315.

    PubMed  CAS  Google Scholar 

  • Leser, T.D., Boye, M. and Hendriksen, N.B. (1995). Survival and activity of Pseudomonas sp. strain B 13(FR 1) in a marine microcosm determined by quantitative PCR and an rRNA-targeting probe and its effect on the indigenous bacterioplankton. Appl. Environ. Microbiol., 61: 1201–1207.

    PubMed  CAS  Google Scholar 

  • Levesque, M.J., La-Boissiere, S., Thomas, J.C., Beaudet, R. and Villemur, R. (1997). Rapid method for detecting Desulfitobacterium frappri strain PCP-1 in soil by the polymerase chain reaction. Appl. Microbiol. Biotechnol., 47: 719–725.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Jones, G., Laurie, A.D., Hunter, D.W.F. and Fraser, R. (1999). Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand Soils. FEMS Microbiol Ecol., 29: 69–79.

    Article  CAS  Google Scholar 

  • Lockhart, D.J., Dong, H., Byrne, M.C., Follettie, M.T., Gallo, M.V., Chee, M.S., Mittmann, M., Wang, C., Kobayashi, M., Horton, H. and Brown, E.L. (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol., 14: 1675–1680.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D.R. (2003). Cleaning up with genomic: Applying molecular biology to bioremediation. Nat. Rev. Microbial., 1: 35–44.

    Article  CAS  Google Scholar 

  • Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K.-H. and Wagner, M. (2002). Oligonucleotide microarray for 16S rRNA-based detections of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol., 68: 5064–5081.

    Article  PubMed  CAS  Google Scholar 

  • Meckenstock, R., Steinle, P., van der Meer, J.R. and Snozzi, M. (1998). Quantification of bacterial mRNA involved in degradation of 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 from liquid culture and from river sediment by reverse transcriptase PCR (RT/PCR). FEMS Microbiol. Lett., 167: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Meta Router: Bioinformatics in Bioremediation.

    Google Scholar 

  • Meyer, S., Moser, R., Neef, A., Stahl, U. and Kampfer, P. (1999). Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiol., 145: 1731–1741.

    Article  CAS  Google Scholar 

  • Michael B. Eisen, Paul T. Spellman, Patrick O. Brown and David Botsein. Department of Genetics and Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, School of Medicine, CA 94305, Proc. Natl. Acad. Sci. U.S. 96(19): 10943.

    Google Scholar 

  • Mount, D.W. (2000). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Muffler, A., Bettermann, S., Haushalter, M. et al. (2002). Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J. Biotechnol., 98: 255–268.

    Article  PubMed  CAS  Google Scholar 

  • National Research Council (NRC) (1993). In situ bioremediation: When does it work? National Academies Press, Washington, D.C.

    Google Scholar 

  • Ogata, H., Goto, S., Fujibuchi, W. and Kanehisa, M. (1999). Computation with the KEGG pathway database. Biosystems, 47: 119–128.

    Article  Google Scholar 

  • Okuta, A., Ohnishi, K. and Harayama, S. (1998). PCR isolation of catechol 2,3-dioxygenase gene fragments from environmental samples and their assembly into functional genes. Gene, 212: 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Papin, J.A., Price, N.D. and Palsson, B.Ø. (2002). Extreme pathway lengths and reaction participation in genome-scale metabolic networks. Genome Research, 12(12): 1889–1900.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, W.R. and Lipman, D.J. (1988). Improved tools for biological sequence comparison. Proceedings National Academy of Science, USA. 85(8): 2444–2448.

    Article  CAS  Google Scholar 

  • Rabus, R., Kube, M., Heider, J. et al. (2005). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch. Microbial., 183: 27–36.

    Article  CAS  Google Scholar 

  • Rhee, S.K., Liu, X., Wu, L. et al. (2004). Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbial., 70: 4303–4317.

    Article  CAS  Google Scholar 

  • Rison, S.G.C. and Thornton, J.M. (2002). Pathway evolution, structurally speaking. Curr. Opin. Struct. Biol., 12: 374–382.

    Article  PubMed  CAS  Google Scholar 

  • Sabate, et al. (1999). Isolation and characterization of a 2-methylphenanthrene utilizing bacterium: Identification of ring cleavage metabolites. Appl. Microbiol. Biotechnol., 52: 704–712.

    Article  CAS  Google Scholar 

  • Samanta, S.K. et al. (2001). Efficiency of naphthalene and salicylate degradation by a recombinant Pseudomonas putida mutant strain defective in glucose metabolism. Appl. Microbiol. Biotechnol., 55: 627–631.

    Article  PubMed  CAS  Google Scholar 

  • Samanta, S.K., Singh, O.V. and Jain, R.K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol, 20: 243–248.

    Article  PubMed  CAS  Google Scholar 

  • Sayler, S. et al. (1985). Application of DNA-DNA colony hybridization to the detection of catabolic genotype in environmental samples. Appl. Environ. Microbiol., 49: 1295–1303.

    PubMed  CAS  Google Scholar 

  • Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O. and Davis, R.W. (1996). Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA, 93: 10614–10619.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, C.H., Covert, M.W., Famili, I., Church, G.M., Edwards, J.S. and Palsson, B.O. (2002). Genome-scale metabolic model of Helicobacter pylori 26695. Journal of Bacteriology, 184(6): 4582–4593.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, S., Dandekar, T. and Fell, D.A. (1999). Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends Biotechnology, 17(2): 53–60.

    Article  CAS  Google Scholar 

  • Schut, G.J., Brehm, S.D., Datta, S. et al. (2003). Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J. Bacterial, 185: 3935–3947.

    Article  CAS  Google Scholar 

  • Schut, G.J., Zhou, J. and Adams, M.W. (2001). DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: Evidence for a new type of sulfur-reducing enzyme complex. J. Bacterial, 183: 7027–7036.

    Article  CAS  Google Scholar 

  • Selvaratnam, S., Schoedel, B.A., McFarland, B.L. and Kulpa, C.F. (1997). Application of the polymerase chain reaction (PCR) and reverse transcriptase/PCR for determining the fate of phenol-degrading Pseudomonas putida A TCC 11172 in a bioaugmented sequencing batch reactor. Appl. Microbiol. Biotechnol., 47: 236–240.

    Article  CAS  Google Scholar 

  • Seshadri, R., Adrian, L., Fouts, D.E. et al. (2005). Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes. Science, 307: 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Small, J., Call, D.R., Brockman, F.J., Straub, T. M. and Chandler, D.P. (2001). Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl. Environ. Microbiol., 67: 4708–4716.

    Article  PubMed  CAS  Google Scholar 

  • Sung-Keun Rhee, Xueduan Liu, Liyonu Wu, Song C. Chong, Xiufeng Wan, and Jizhong Zhou (2004). Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee TB 37831-6038. Appl. Environ. Microbial, 70(7): 4303–4317.

    Article  CAS  Google Scholar 

  • Suzek, B.E., Ermolaeva, M.D., Schreiber, M., Salzberg, S.L. (2001). A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics, 17(12): 1123–1130.

    Article  PubMed  CAS  Google Scholar 

  • Tatusov, R.L., Mushegian, M., Bork, P., Brown, N., Hayes, W.S., Borodovsky, M., Rudd, K.E. and Koonin, E.V. (1996). Metabolism and evolution of Haemophilius Influenzae deduced from a whole-genome comparison with Escherichia Coli. Current Biology, 6: 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Tchelet, R., Meckenstock, R., Steinle, P. and van der Meer, J.R. (1999). Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge. Biodegradation, 10: 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, D.K., Beliaev, A.S., Giometti, C.S., Tollaksen, S.L., Khare, T., Lies, D.P., Nealson, K.H., Lim, H., Yates, J. III, Brandt, C.C., Tiedje, J.M. and Zhou, J.-Z. (2002). Transcriptional and proteomic analysis of a ferric uptake regulator (Fur) mutant of Shewanella oneidensis: Possible involvement of Fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl. Environ. Microbiol., 68: 881–892.

    Article  PubMed  CAS  Google Scholar 

  • Tiedje, J.M. (2002). Shewanella — The environmentally versatile genome. Nat. Biotechnol., 20: 1093–1094.

    Article  PubMed  CAS  Google Scholar 

  • Tiquia, S.M., Chong, S.C., Fields, M.W. and Zhou, J. (2004). Oligonucleotide-based functional gene arrays for analysis of microbial communities in the environment. In: Kowalchuk, G.A., F.J. de Bruijn, I.M. Head, A.D. Lakkennans and J.D. van Elsas (eds), Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Tiquia, S.M., Wu, L., Chong, S.C., Passovets, S., Xu, D., Xu, Y. and Zhou, J.-Z. (2004). Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. BioTechniques, 36: 664–670, 672, 674–675.

    PubMed  CAS  Google Scholar 

  • Valinsky, L., Vedova, G.D., Scupham, A.J., Figueroa, A., Yin, B., Hartin, R.J., Chroback, M., Crowley, D.E., Jiang, T. and Borneman, J. (2002). Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl. Environ. Microbiol., 68: 3243–3250.

    Article  PubMed  CAS  Google Scholar 

  • Waddell, Pl. and Kishino, H. (2000). Cluster inference methods and graphical models evaluated on NC160 microarray gene expression data. Genome Informatics, 11: 129–140.

    PubMed  CAS  Google Scholar 

  • Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A. et al. (1995) Progress with gene-product mapping of the Molecules: Mycoplasma genitallium Electrophoresis. 16: 1090–1094 [Cross Ref: ISI, Medline].

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K. (2001). Microorganisms relevant to bioremediation. Curr. Opin. Biotechnol., 12: 237–241.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K. and Baker, P.W. (2000). Environmentally relevant microorganisms. J. Biosci. Bioeng., 89: I–II.

    Google Scholar 

  • Watanabe, K., Teramoto, M., Futamata, H. and Harayama, S. (1998). Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl. Environ. Microbiol., 64: 4396–4402.

    PubMed  CAS  Google Scholar 

  • Waterman, M.S. (1995). Introduction to Computational Biology: Maps, Sequence, and Genomes. Chapman & Hall, London.

    Google Scholar 

  • Whisstock, J.C. and Lesk, A.M. (2003). Prediction of protein function from protein sequence and structure. Q. Rev. Biophysics, 36(3): 307–340.

    Article  CAS  Google Scholar 

  • Widada, J., Nijiri, H., Kasuga, K., Yoshida, T., Habe, H. and Omori, T. (2002a). Molecular and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl. Microbiol. Biotechnol., 58: 202–209.

    Article  PubMed  CAS  Google Scholar 

  • Widada, J., Nojiri, H., Yoshida, T., Habe, H. and Omori, T. (2002b). Enhanced degradation of carbazole and 2,3-dichlorodibenzo-p dioxinin soils by Pseudomonas resinovorans strain CA1O. Chemosphere.

    Google Scholar 

  • Wilson, M.S., Bakerman, C. and Madsen, E.L. (1999). In situ, real-time catabolic gene expression: extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol., 65: 80–87.

    PubMed  CAS  Google Scholar 

  • Wodicka, L., Dong, H., Mittmann, M., Ho, M.H. and Lockhart, D.J. (1997). Genomewide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol., 15: 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  • Wu, L.Y., Thompson, D.K., Li, G., Hurt, R.A., Tiedje, J.M. and Zhou, J. (2001). Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol., 67: 5780–5790.

    Article  PubMed  CAS  Google Scholar 

  • Ye, R.W., Tao, W., Bedzyk, L. et al. (2000). Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacterial., 182: 4458–4465.

    Article  CAS  Google Scholar 

  • Yeates, C., Holmes, A.J. and Gillings, M.R. (2000). Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environ. Microbiol., 2: 644–653.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C. and Bennett, G.N. (2005). Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol, 67: 600–618.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J. (2003). Microarrays for bacterial detection and microbial community analysis. Curr. Opin. Microbiol., 6: 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, J.-Z. and Thompson, D.K. (2002). Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol., 13: 202–204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Capital Publishing Company

About this chapter

Cite this chapter

Fulekar, M.H. (2009). Environmental Cleanup Approach Using Bioinformatics in Bioremediation. In: Fulekar, M.H. (eds) Bioinformatics: Applications in Life and Environmental Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8880-3_10

Download citation

Publish with us

Policies and ethics