Skip to main content

Encoding of Shape in the Responses of Cutaneous Mechanoreceptors

  • Chapter
Information Processing in the Somatosensory System

Abstract

Tactile detection of surface features of objects is essential for successful exploration and manipulation of our environment. Primates predominantly use fingerpads for exploring small features, owing to the high density of cutaneous mechanoreceptors (Johansson and Vallbo, 1979; Darian-Smith and Renins, 1980) which results in high spatial resolution, as well as due to the dexterity and fine motion control achieved with multiple degrees of freedom to move the fingertip. For humans, the normal contact forces used and the compliance of the fingertip result in contact regions whose overall diameter measures about a centimeter. At any time during contact, the information conveyed by cutaneous mechanoreceptors pertain only to the features within the contact region, thereby limiting the largest lengthscale of the surface features represented in cutaneous information to be of the order of centimeters. The smallest lengthscale is governed by the response thresholds of mechanoreceptors, which can be as low as fractions of a micron (LaMotte and Srinivasan, 1990). In this article we are concerned with millimeter to centimeter sized surface features of rigid objects, the shape of which can be detected from purely cutaneous information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Boussinesq, J. (1885). Application des Potentials a l’Etude de TEguilibre et du Mouvement des Solides Elastiques, Gauthier-Villars, Paris.

    Google Scholar 

  • Darian-Smith, I. and Kenins, P. (1980). Innervation density of mechanoreceptive fibers supplying glabrous skin of the monkey’s index finger. J. Physiol. (Lond). 309. 147–155.

    Article  CAS  Google Scholar 

  • Gauss, C.F. (1827). Disquisitiones generates circa superficies curvas. Commentationes Societatis Regiae Scientiarum Gottingenesis Recentiores. 6, 99–146.

    Google Scholar 

  • Gladwell, G.M.L. (1980). Contact problems in the classical theory of elasticity. Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands.

    Book  Google Scholar 

  • Hertz, H.R. (1881). Ueber die Berührung fester elastischer Körper. J. reine u. angewandte Math. 92, 156–171. Also, Paper 5 of Volume 1 of collected works.

    Google Scholar 

  • Horn, B.K.P. (1986). Robot Vision. M.I.T. Press, Cambridge, U.S.A.

    Google Scholar 

  • Johansson, R.S. and Vallbo, A.B. (1979). Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. (Lond). 286, 283–300.

    Article  CAS  Google Scholar 

  • Knibestöl, M. (1973). Stimulus-response functions of rapidly adapting mechanoreceptors in the human glabrous skin area. J. Physiol. (Lond). 232, 427–452.

    Article  Google Scholar 

  • Knibestöl, M. (1975). Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J. Physiol. (Lond). 245, 63–80.

    Article  Google Scholar 

  • LaMotte, R.H. and Srinivasan, M.A. (1987a). Tactile discrimination of shape: Responses of slowly adapting mechanoreceptive afferents to a step stroked across the monkey fingerpad. J. Neuroscience. 7, 1655–1671.

    CAS  PubMed  Google Scholar 

  • LaMotte, R.H. and Srinivasan, M.A. (1987b). Tactile discrimination of shape: Responses of rapidly adapting mechanoreceptive afferents to a step stroked across the monkey fingerpad. J. Neuroscience. 7, 1672–1681.

    CAS  PubMed  Google Scholar 

  • LaMotte, R.H. and Srinivasan, M.A. (1990). Surface microgeometry: tactile perception and neural encoding. This volume.

    Google Scholar 

  • Phillips, J.R. and Johnson, K.O. (1981a). Tactile spatial resolution II. Neural representation of bars, edges, and gratings in monkey primary afferents. J. Neurophysiol. 46, 1192–1203.

    CAS  PubMed  Google Scholar 

  • Phillips, J.R. and Johnson, K.O. (1981b). Tactile spatial resolution III. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings. J. Neurophysiol. 46, 1204–1225.

    CAS  PubMed  Google Scholar 

  • Pubols, B.H. Jr. and Pubols, L.M. (1976). Coding of mechanical stimulus velocity and indentation depth by squirrel monkey and raccoon glabrous skin mechanoreceptors. J. Neurophysiol. 39, 773–787.

    CAS  PubMed  Google Scholar 

  • Srinivasan, M.A. (1989). Tactile sensing in humans and robots: Computational theory and algorithms. Newman Lab. Tech. Report, Dept. of Mech. Eng., M.I.T., Cambridge, U.S.A.

    Google Scholar 

  • Srinivasan, M.A. and LaMotte, R.H. (1987). Tactile discrimination of shape: Responses of slowly and rapidly adapting mechanoreceptive afferents to a step indented into the monkey fingerpad. J. Neuroscience. 7, 1682–1697.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 Macmillan Publishers Limited

About this chapter

Cite this chapter

Srinivasan, M.A., LaMotte, R.H. (1991). Encoding of Shape in the Responses of Cutaneous Mechanoreceptors. In: Franzén, O., Westman, J. (eds) Information Processing in the Somatosensory System. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11597-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11597-6_5

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11599-0

  • Online ISBN: 978-1-349-11597-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics