Skip to main content

The Parcellation of Somatosensory Cortex: Modules, Columns and Somatotopic Segregations

  • Chapter
Information Processing in the Somatosensory System

Abstract

Among his many contributions, Mountcastle is well-known for introducing and popularizing the fundamental concept of the cortical column (e.g., Mountcastle, 1957; 1978). Much earlier, the important view that cortex is subdivided into a patchwork of rather large, functional subdivisions, the cortical areas or fields, had become established (e.g., Brodmann 1909; von Economo, 1929), and other subsequent investigators had demonstrated that some cortical areas contain systematic representations of sensory surfaces (e.g., Adrian, 1941; Woolsey and Fairman, 1946). Mountcastle (1957) proposed the now widely accepted concept that cortical areas contain smaller functional units, often referred to as columns or modules, that extend perpendicularly across the cortical layers, are a millimeter or less in width, and contain neurons having some response properties in common that differ from those in other sets of columns (for review, see Towe, 1975; Szentagothai, 1975; Eccles, 1981; Jones, 1981). One result of this theoretical contribution is that studies of the connectivity of the brain have gone beyond attempts to understand sensory systems in terms of interconnected nuclei and areas, and have considered the connectivity of modular groups of neurons within areas (e.g., Livingstone and Hubel, 1988; DeYoe and Van Essen, 1988). Another outcome has been the growth of the original concept of place and modality specific columns into a family of ideas on how neurons are grouped to form modular units such as mini-columns (see Mountcastle, 1978), cell assemblies (see Shaw et al., 1982), barrels (Woolsey and Van der Loos, 1970), hypercolumns (Hubel and Wiesel, 1977) and segregates (Favorov et al., 1987). Rather than extensively discuss these developments, my more limited goal here is to review evidence for certain types of selectivity of inputs for terminating in specific locations or on specific neurons, and the relative strengths of these and other factors (see Constantine-paton, 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, E. P. (1941). Afferent discharges to the cerebral cortex from peripheral sense organs, J. Physiol., 106, 159–191.

    Article  Google Scholar 

  • Bear, M. F., Oooper, L. N. and Ebner, F. F. (1987). A physiological basis for a theory of synapse modification. Science, 237, 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalizationlehre der Grosshirnrinde, Barth, Leipzig.

    Google Scholar 

  • Changeux, J. P. and Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264, 705–712.

    Article  CAS  PubMed  Google Scholar 

  • Constantine-paton, M. (1982). The retinotectal hookup: The process of neural mapping. In Developmental Order: Its Origin and Regulation. (ed. S. Subtelriy). Alan R. Liss; New York, pp. 317–349.

    Google Scholar 

  • Dawson, D. R. and Killackey, H. P. (1987). The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat. J. Comp. Neurol., 256, 246–256.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, P. R., Wall, J. T., Killackey, H. P. and Kaas, J. H. (1987). Internal organization of anatomical and physiological representations of the forepaw in rat somatosensory cortex. Soc. Neurosci. Abstr., 13, 248.

    Google Scholar 

  • DeYoe, E. A. and Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neurosci., 11, 219–226.

    Article  Google Scholar 

  • Eccles, J. C. (1981). The modular operation of the cerebral neocortex considered as the material basis of mental events. Neurosci., 6, 1839–1855.

    Article  CAS  Google Scholar 

  • Economo, von C. (1929). The cytoarchitectonics of the human cortex. Oxford, Oxford University Press.

    Google Scholar 

  • Favorov, O. V. Diamond, M. E. and Whitsel, B. L. (1987). Evidence for a mosaic representation of the body surface in area 3b of the somatosensory cortex of cat. Proc. Nat’1. Acad. Sci. USA, 84, 6606–6610.

    Article  CAS  Google Scholar 

  • Florence, S. L., Wall, J. T. and Kaas, J. H. (1989). Somatotopic organization of inputs from the hand to the spinal gray and cuneate nucleus of monkeys with observations on the cuneate nucleus of humans. J. Comp. Neurol., 286, 48–70.

    Article  CAS  PubMed  Google Scholar 

  • Guillery, R. W. and Kaas, J. H. (1971). A study of normal and congenitally abnormal retinogeniculate terminations in cats. J. Oomp. Neurol., 143, 71–100.

    Google Scholar 

  • Hubel, P. H. and Wiesel, T. N. (1977). Functional architecture of macaque monkey visual cortex. Proc. R. Soc. London Ser. B. 198, 1–59.

    Article  CAS  Google Scholar 

  • Jones, E. G. (1981). Anatomy of cerebral cortex: Columnar input — output relations. In The Cerebral Cortex. (eds. F. O. Schmitt, F. G. Worden, G. Adlelman and S. G. Dennis). Cambridge, MA: MIT Press, pp. 199–235.

    Google Scholar 

  • Kaas, J. H. (1988). Development of cortical sensory maps. In Neurobiology of Neocortex. (eds. P. Rakic and W. Singer). Dahlem Konferenzen, John Wiley and Sons, New York, pp. 115–136.

    Google Scholar 

  • Kaas, J. H. (1990). Processing areas and modules in sensory-perceptual cortex. in Signal and Sense: Local and Global Order in Perceptual Maps. (eds. G. M. Edelman, W. E. Gall and W. M. Cowan). John Wiley and Sons, New York, in press.

    Google Scholar 

  • Kaas, J. H. and Pons, T. P. (1988). The somatosensory system of primates. In Comparative Primate Biology, Vol. 4, Neurosciences. (ed. H. P. Steklis). Liss; New York, pp. 421–468.

    Google Scholar 

  • Kaas, J. H., Guillery, R. W. and Allman, J. M. (1973). The representation of the optic disc in the dorsal lateral geniculate nucleus: A comparative study. J. Comp. Neural., 147, 163–180.

    Article  CAS  Google Scholar 

  • Kaas, J. H., Nelson, R. J., Sur, M. Dykes, R. W. and Merzenich, M. M. (1984). The somatosensory organization of the ventroposterior thalamus of the squirrel monkey, Saimiri sciureus. J. Comp. Neurol., 226, 111–140.

    Article  CAS  PubMed  Google Scholar 

  • Kaas, J. H., Merzenich, M. M. and Killackey, H. P. (1983). The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu. Rev. Neurosci., 6, 325–356.

    Article  CAS  PubMed  Google Scholar 

  • Killackey, H. P. (1980). Pattern formation in the trigeminal system of the rat. Trends in Neurosci., 3, 301–305.

    Article  Google Scholar 

  • Krubitzer, L. A. and Kaas, J. H. (1990). The organization and connections of somatosensory cortex in marmosets. J. Neurosci., 10, 952–974.

    CAS  PubMed  Google Scholar 

  • Knudsen, E. I., du Lac, S. and Esterly, S. D. (1987). Computational maps in the brain. Ann. Rev. Neurosci., 10, 41–65.

    Article  CAS  PubMed  Google Scholar 

  • Livingstone, M. and Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology and perception. Science, 240, 740–749.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich, M. M. and Kaas, J. H. (1980). Principles of organization of sensory-perceptual systems in mammals. In Progress in psychobiology and physiological and Psychology. (eds. J. M. Sprague and A. N. Epstein). Academic, New York, pp. 1–42.

    Google Scholar 

  • Mountcastle, V. B. (1957). Modality and topographic properties of single neurons and cat somatic sensory cortex. J. Neurophysiol., 20, 408–434.

    CAS  PubMed  Google Scholar 

  • Mountcastle, V. B. (1978). An organizing principle of cerebral function: The unit module and the distributed system. In The Mindful Brain. (eds. G. M. Edelman and V. B. Mountcastle). Cambridge, Massachusetts, MIT Press, pp. 7–50.

    Google Scholar 

  • Szentagothai, J. (1975). The “module-concept” in cerebral cortex architecture. Brain Res., 95, 475–496.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, G. L., Harth, E. and Scheibel, A. B. (1982). Cooperativity in brain function: Assemblies of approximately 30 neurons. Exp. Neurol., 77, 324–358.

    Article  CAS  PubMed  Google Scholar 

  • Towe, A. L. (1975). Notes on the hypotheses of columnar organization in somatosensory cerebral cortex. Brain Bev. Evol., 11, 16–47.

    Article  CAS  Google Scholar 

  • Van der Loos, H., Welker, E., Dorfl, J. and Rumo, G. (1986). Selective breeding for variations in patterns of mystacial vibrissae of mice. J. Heredity, 77, 66–82.

    Google Scholar 

  • Woolsey, C. N. and Fairman, D. (1946). Contralateral, ipsilateral, and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep, and other mammals. Surgery, 19, 684–702.

    CAS  PubMed  Google Scholar 

  • Woolsey, T. A. and Van der Loos, M. (1970). The structural organization of layer IV in the somatosensory region (SI) of the mouse cerebral cortex: The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res., 17, 205–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 Macmillan Publishers Limited

About this chapter

Cite this chapter

Kaas, J.H. (1991). The Parcellation of Somatosensory Cortex: Modules, Columns and Somatotopic Segregations. In: Franzén, O., Westman, J. (eds) Information Processing in the Somatosensory System. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11597-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11597-6_15

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11599-0

  • Online ISBN: 978-1-349-11597-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics