Skip to main content

Neuromuscular and Motor System Alterations After Knee Trauma and Knee Surgery

A New Paradigm

  • Chapter
Overload, Performance Incompetence, and Regeneration in Sport

Abstract

Knee trauma and operations have a high incidence and economic relevance. They are among the most frequent injuries especially in sports. Recently, both diagnostic possibilities (such as MRT) and the surgical spectrum (meniscus suture, cartilage cell breeding) have increased. Internationally, an increase in minimal-invasive procedures can be observed, supported by improved surgical equipment. Rehabilitation has changed, too, in parallel to the technical and surgical developments—it has been characterized by early-functional rehabilitation concepts since the early 90s. In spite of advances in diagnostics, surgical procedures and physiotherapeutic rehabilitation, there are short and/or long-term changes in motoric function following trauma and surgery. The subject matter of Motor System has nothing in common with the subject matter of movement. “In this way, there is a clear distinction between the totality of all regulating processes and functions on the one hand, and the adverse outcomes of these processes, human movement, on the other hand.” (Marhold 1995 from Beyer 1992, 425). > Deficient activation of the musculature is seen, especially the knee extensors, consecutive atrophy—especially of the M. vastus medialis—and coordinative changes may occur. For posttraumatic and postoperative changes—for both the deficits and the therapy- or training-related adaptations—the explanations are meager. It is therefore urgently necessary to provide explanations in order to establish adequate treatment. The following questions must be answered:

  1. 1.

    How are the receptors in the knee joint supplied and what structures may be mechanically damaged in interior knee trauma or following surgical procedures?

  2. 2.

    What metabolic changes occur in conjunction with knee trauma or surgical procedures?

  3. 3.

    Are there any nervous functions disrupted in interior knee trauma or surgical procedures?

  4. 4.

    What changes can be measured in complex motor functions after knee injury and after surgical treatment?

  5. 5.

    Is there a pattern in the measurable changes?

  6. 6.

    What therapeutic consequences arise for rehabilitation?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andriacchi TP, Birac D (1993) Functional testing in the anterior cruciate ligament deficient knee. Clin Orthop Rel Res 288: 40–47

    Google Scholar 

  2. Appell HJ, Glöser S, Duarte JAR, Zellner A, Soares JMC (1993) Skeletal muscle damage during tourniquet-induced ischemia. The initial step towards artrophy after orthopaedic surgery? Eur J Appl Physio 67: 342–347

    CAS  Google Scholar 

  3. Appell HJ, Verdonck A, Duesberg, F, Windeck P (1991) Fehlende Ermüdung der Muskulatur bei Patienten nach Immobilisation — ein Paradoxon? Sportverletzung — Sportschaden (5): 205–207

    PubMed  CAS  Google Scholar 

  4. Assimakopulos AP, Katonis PG, Agapitos MV, Exarchou EI (1992) The innervation of the human meniscus. Clinical Orthopaedics and Related Research 275,2: 232–236

    Google Scholar 

  5. Balgo R (1998) Bewegung und Wahrnehmung als System. Hofmann Schorndorf

    Google Scholar 

  6. Bernstein NA (1987) 2 Bewegungsphysiologie. Barth Leipzig

    Google Scholar 

  7. Beyer E (ed) (1992) 2 Dictionary of Sport Science. Hofmann Schorndorf

    Google Scholar 

  8. Biedert RM, Stauffer E, Friederich NF (1992) Occurrence of free nerve endings in the soft tissue of the knee joint. The American Journal of Sports Medicine 20,4: 430–433

    PubMed  CAS  Google Scholar 

  9. Birbaumer N, Schmidt RF (1989) Biologische Psychologie, Berlin

    Google Scholar 

  10. Bonebakker AE, Bonke B, Klein MD, Wolters G, Stijnen T, Passchier J, Merikle PM (1996) Information processing during general anaesthesia: Evidence for unconscious memory. Memory & Cognition 24: 766–776

    CAS  Google Scholar 

  11. Boyd IA, Roberts TDM (1953) Proprioreceptive discharges from stretchreceptors in the knee joint of the cat. J. Physiology

    Google Scholar 

  12. Brand RA (1989) A neurosensory hypothesis of ligament function. Med Hypotheses (29) 4: 245–250

    Google Scholar 

  13. Brügger A (1980) Die Erkrankungen des Bewegungsapparates und seines Nervensystems. Stuttgart-New York

    Google Scholar 

  14. Burgness PR, Clark FJ (1969) Characteristics of knee joint receptors in the cat. J Physiol 203-B: 317–335

    Google Scholar 

  15. Burke D, Gandevia SC, Macefield G (1988) Responses to passive movement of receptors in joint, skin and muscle of the human hand. J Physiol [Br] (402): 347–361

    CAS  Google Scholar 

  16. Claus D (1993) Transkranielle Stimulation. In: Görg J and Hielscher H (eds) Evozierte Potentiale in Klinik und Praxis. Springer: 347–361

    Google Scholar 

  17. Corrigan JP, Cashman WF, Brady MP (1992) Proproception in the cruciate deficient knee. J Bone Joint Surg 74-B: 247–250

    Google Scholar 

  18. DeAndrade JR, Grant C, Dixon ASJ (1965) Joint distension and reflex muscle inhibition in the knee. J Bone Joint Surg 47A: 313–322

    Google Scholar 

  19. Dietz V, Horstmann GA, Trippel M, Gollhofer A (1989) Human postural reflexes and gravity — an underwater simulation. Neurscience Letters 106:350–355

    CAS  Google Scholar 

  20. Dietz V (1997) Neuronal Kontrolle automatischer funktioneller Bewegungsabläufe: Wechselbeziehung zwischen zentraler Programmierung und afferenter Information. In: Zichner L. Engelhardt M, Freiwald J (eds): Muskuläre Dysbalancen. Novartis Wehr: 59–69

    Google Scholar 

  21. Eccles JC (1969) The Inhibitory Pathways of the Central Nervous System. The Sherrington Lectures IX Springfield/III

    Google Scholar 

  22. Eckhardt R, Schaft HP, Puhl W (1994) Die Bedeutung der neuromuskulären Koordination für die sportliche Belastbarkeit des Kniegelenkes nach vorderen Kreuzbandverletzungen. Sportverletzung-Sport-schaden 8: 16–24

    CAS  Google Scholar 

  23. Edelson R, Burkes BT and Bloebaum RD (1995) Short term effects of knee washout for osteoarthritis. Am J Sports Med 23,3: 345–349

    PubMed  CAS  Google Scholar 

  24. Edin BB, Abbs JH (1991) Finger Movement Responses of Cuteaneous Mechanoreceptors in the Dorsal Skin of the Human Hand. Journal of Neurophysiology 65,3: 657–660

    PubMed  CAS  Google Scholar 

  25. Elmqvist LG, Lorentzon R, Johansson C, Fugl-Meyer AR (1988) Does a torn anterior cruciate ligament lead to change in the central nervous drive of the knee extensors? Eur J Appl Physiol 58: 203–207

    CAS  Google Scholar 

  26. Engelhardt M (1997) Neuromuskuläre Veränderungen nach Kniegelenkstraumen und Operationen am Kniegelenk. Habitilationsschrift, Frankfurt

    Google Scholar 

  27. Engelhardt M, Reuter I, Freiwald J (submitted 1998) Is muscle atrophy after knee injury caused by reduced neural activation? Medicine, Sports and Science

    Google Scholar 

  28. Engelhardt M, Freiwald J (1997) EMG-kontrollierte Muskelrehabilitierung — Knieverletzungen. Sportverletzung-Sportschaden 11,3: 87–99

    PubMed  CAS  Google Scholar 

  29. Ferrell WR, Rosenberg JR, Baxendale RH, Halliday D, Wood L (1990) Fourier analysis of the relation between the discharge of quadriceps motor units and periodic mechanical stimulation of cat knee joint receptors. Experimental Physiology 75: 739–750

    PubMed  Google Scholar 

  30. Ferrell, WR, Danvevia SC, McCloskey DI (1987) The role of joint receptors in human kinaesthesia when intramuscular receptors cannot contribute. J Physiol (386) 5: 63–71

    Google Scholar 

  31. Ferrell WR, Baxendale RH, Carnachan C, Hart IK (1985) The influence of joint afferent discharge on locomotion, proprioreception and activity in conscious cats. Brain Res (347): 41–48

    PubMed  CAS  Google Scholar 

  32. Freeman MAR (1965) Treatment of ruptures of the lateral ligament of the ankle. J Bone Joint Surg 47-B: 661–668

    Google Scholar 

  33. Freeman MA, Wyke B (1967) The Innervation of the Knee Joint: An Anatomical and Histological Study in the Cat. J Anat 101,3: 505–512

    PubMed  CAS  Google Scholar 

  34. Freiwald J (1996) Neuromuskuläre Veränderungen des M. quadrizeps femoris nach akuten und chronischen Kniegelenksschädigungen. Habilitationsschrift Dortmund

    Google Scholar 

  35. Freiwald J (1992) Veränderungen von Umfangsmaßen, isometrischen und isokinetischen Kraftwerten nach Schädigungen des Kniegelenkes unter besonderer Berücksichtigung neurophysiologischer Ursachen. Dissertationsschrift, Dortmund.

    Google Scholar 

  36. Freiwald J, Engelhardt M, Gnewuch A (1998) Trainingstherapie auf der Basis der Motorikforschung und der philosophischen Erkenntnistheorie am Beispiel von Kniepatienten. In: Binkowski H, Hoster M, Nepper HU (eds) Medizinische Trainingstherapie in der ambulanten orthopädischen und traumatologische Rehabilitation. Sport Consult Waldenburg: 9–19

    Google Scholar 

  37. Freiwald J, Engelhardt M, Huth D (1998) Veränderungen der neuronalen Ansteuerungsmuster der Beinmuskulatur nach Kniebinnentraumen. Poster presented at the 13th German-Austrian-Swiss Congress for Sportsorthopedics and Sport Traumatology, Munich

    Google Scholar 

  38. Freiwald J, Engelhardt M, Reuter I, Konrad P, Gnewuch A (1997) Die nervöse Versorgung der Kniegelenke. Wiener Medizinische Wochenzeitschrift. Themenheft “Kniegelenk” 23/24: 531–541

    Google Scholar 

  39. Freiwald J, Engelhardt M, Reuter I (1995) Der Einfluß von intraartikulär applizierten lokalen g und Training. Sankt Augustin: 245–250

    Google Scholar 

  40. Freiwald J, Engelhardt M (1994) EMG gestützte Funktionsanalysen nach vordren Kreuzbandplastiken. In: Schmidtbleicher D, Müller AF (eds) Leistungsdiagnostische und präventive Aspekte der Biomechanik. Sankt Augustin: 123–136

    Google Scholar 

  41. Freiwald J, Engelhardt M (1994) EMG-Einsatz in der Knierehabilitation. Praktische Konsequenzen. Rehabilitace a Fyzikalni Lekarstivi 374: 136–139

    Google Scholar 

  42. Freiwald J, Starischka S, Engelhardt M (1993) Rehabilitatives Krafttraining. Überlegungen zum Krafttraining — Neue Ansätze zur Anwendung und Diagnostik im klinischen Bereich. Deutsche Zeitschrift für Sportmedizin 44,9: 368–378

    Google Scholar 

  43. Frisch H (1995) Programmierte Therapie am Bewegungsapparat. Springer, Berlin

    Google Scholar 

  44. Frisch H (1989) Programmierte Untersuchung des Bewegungsapparates. Springer-Verlag Berlin-Heidelberg-New York

    Google Scholar 

  45. Gardner E (1944) The distribution and termination of nerves in the knee joint of the cat. J Compu Neurol 80: 11–32

    Google Scholar 

  46. Goertzen M, Gruber J, Dellmann A (1992) Neurohistological findings after experimental anterior cruciate ligament allograft transplantation. Arch Orthop Trauma Surg (111) 2: 126–129

    Google Scholar 

  47. Gollhofer A, Scheuffelen C, Lohrer H (1993) Neuromuskuläre Stabilisation im oberen Sprunggelenk nach Immobilisation. Sportverletzung-Sportschaden (Sonderheft 1), 7: 23–28

    Google Scholar 

  48. Grigg P, Schaible HG, Schmidt RF (1986) Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. Journal of Neurophysiol 55,4:635–643

    CAS  Google Scholar 

  49. Grigg P, Hoffman AH (1984) Ruffini mechanoreceptors in isolated joint capsule: response correlated with strain energy density. Somatosens Res 2: 149–162

    PubMed  CAS  Google Scholar 

  50. Grigg P, Hoffmann AH (1982) Properties of ruffini afferents revealed by stress analysis of isolated sections of cat knee capsule. J of Neurophysiology 47,1: 41–45

    CAS  Google Scholar 

  51. Grillner S, Hongo T, Lund S (1969) Descending monosynaptic and reflex control of Gamma-mononeurons. Acta Physiol Scand 75:592

    PubMed  CAS  Google Scholar 

  52. Grüber J, Wolter D, Lierse W (1986) Der vordere Kreuzbandreflex (LCA-Reflex). Unfallchirurg 89: 551–554

    PubMed  Google Scholar 

  53. Halata Z, Haus J (1989) The ultrastructure of sensory nerve endings in human anterior cruciate ligament. Anat Embryol 179:415–421

    PubMed  CAS  Google Scholar 

  54. Halata Z (1988) Ruffini corpuscle — a stretch receptor in the connective tissue of the skin and locomotion apparatus. In: Hamann W, Iggo A (eds) Progress in Brain Research Vol 74: 221–229

    Google Scholar 

  55. Halata Z, Groth HP (1976) Innervation of the synovial membrane of the cats joint capsule. Cell Tissue Res 1969: 415–418

    Google Scholar 

  56. Haus J, Halata Z, Refior HJ (1992) Propriozeption im vorderen Kreuzband des menschlichen Kniegelenkes — morphologische Grundlagen. Z Orthop 130: 484–494

    PubMed  CAS  Google Scholar 

  57. Haus J, Halata Z (1990) Innervation of the anterior cruciate ligament. International Orthopaedics (SICOT) 14: 293–296

    CAS  Google Scholar 

  58. He X, Proski U, Schaible HG (1988) Acute inflammation of the knee joint in the cat alter responses of flexor motoneurons to leg movement. J Neurophysiol (59) 2: 326–340

    Google Scholar 

  59. Hoffmann J (1993) Vorhersage und Erkenntnis. Hogrefe, Göttingen

    Google Scholar 

  60. Hörster G, Kediziora O (1993) Kraftverlust und-regeneration der Kniestreckmuskulatur nach Operationen am Kniebandapparat. Akt Sporttraumatol 23: 244–254

    Google Scholar 

  61. Hultborn H (1972) Convergence on interneurons in the reciprocal la inhibitory pathway to motoneurones. Acta Physiol Scand (Supplement) 375,85: 1–42

    CAS  Google Scholar 

  62. Jacobson MD, Pedowitz RA, Oyama BK, Tryon G, Gershuni DH (1993) Muscle Functional Deficits after Tourniquet Ischemia. The American Journal of Sports Medicine 22,3: 372–377

    Google Scholar 

  63. Jerosch J, Castro WHM, Hofstetter I, Bischof M (1994) Propriozeptive Fähigkeiten bei Probanden mit stabilen und instabilen Sprunggelenken. Deutsche Zeitschrift für Sportmedizin 45,10: 380–389

    Google Scholar 

  64. Jerosch J, Hofstetter I, Reer R, Assheuer J (1994) Strain-related long-term changes in the minisci in asymptomatic athletes. Knee Surg Sports Traumatol Arthroscopy 2: 8–13

    CAS  Google Scholar 

  65. Johansson H, Sjölander P, Sojka P (1991) Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Critical Reviews in Biomedical Engineering 18,5: 341–368

    PubMed  CAS  Google Scholar 

  66. Johansson H, Sojka P (1991) Pathophysiological mechanisms involved in genesis and spread of muscular tension in occupational muscle pain and in chronic musculoskeletal pain syndromes: A hypothesis. Medical Hypotheses 35: 196–203

    PubMed  CAS  Google Scholar 

  67. Johansson H (1991) Role of knee ligaments in proprioception and regulation of muscle stiffness. Journal of Electromyography and Kinesiology 1,3: 158–179

    Google Scholar 

  68. Johansson H, Sjölander P, Sojka P (1991) A sensory role for the cruciate ligaments. Clinical Orthopaedics and Releated Research 268: 161–178

    Google Scholar 

  69. Johansson H, Sjölander P, Sojka P (1990) Activity in receptor afferents from the anterior cruciate ligament evokes reflex effects on fusimotor neurones. Neurscience Research 8: 54–59

    CAS  Google Scholar 

  70. Johansson H, Lorentzon R, Sjölander P, Sojka P (1990) The anterior cruciate igament. A sensor acting on the (-muscle spindle systems of muscles around the knee joint. Neuro Orthop (9): 1–23

    Google Scholar 

  71. Johansson H, Sjölander P, Sojka P, Wadell I (1989) Reflex actions on the Gamma-muscle spindle systems of muscles acting at the knee. Neuroorthopedics 8: 9

    Google Scholar 

  72. Johansson H, Sjölander P, Sojka P (1989) Effects of electrical and natural stimulation of skin afferents on the gamma-spindle system of the triceps surae muscle. Neurosci Res (6) 6: 537–555

    PubMed  CAS  Google Scholar 

  73. Johansson H, Lorentzon R, Sjöström M, Fagerlund M, Fugl-Meyer AR (1987) Sprinter and marathon runners. Does isokinetic knee extensor performance reflect muscle size and structure. Acta Physio Scand 130: 663–669

    CAS  Google Scholar 

  74. Johansson H, Sjölander P, Sojka P (1987) Fusimotor reflexes to antagonistic muscles simultaneously assessed by multi-afferent recordings from muscle spindle afferents. Brain Res (435) 1–2: 337–342

    Google Scholar 

  75. Johansson H, Sjölander P, Sojka P (1986) Actions on gamma-motoneurones elicited by electrical stimulation of joint aferent fibres in the hind limb of the cat. J Physio 375: 137–152

    CAS  Google Scholar 

  76. Katonis PG, Assimakopoulos AP, Agapitos MV, Exarchou EI (1991) Mechanoreceptors in the posterior cruciate ligament. Acta Orthop Scand 72,3: 276–278

    Google Scholar 

  77. Kennedy JC, Alexander IJ, Hayes KC (1982) Nerve Supply of the Human Knee and its Functional Importance. Am J Sports Med 10,6: 329–335

    PubMed  CAS  Google Scholar 

  78. Kniffki KD, Schomburg ED, Steffens H (1979) Synaptic responses of lumbar Alpha-motoneurones to chemical algesic stimulation of skeletal muscle in spinal cats. Brain Res 160: 549–552

    PubMed  CAS  Google Scholar 

  79. Konrad P (1996) Analyse von Belastungs-und Beanspruchungsindikatoren im Kunstturntraining — unter besonderer Berücksichtigung neuromuskulärer Messverfahren. Sport & Buch Strauß, Cologne

    Google Scholar 

  80. Langford LA, Schaible HG, Schmidt RF (1984) Structure and function of fine joint afferents; Observations and speculations. In: Hamann W, Iggo A (eds) Sensory receptor mechanisms. World scientific Singapore

    Google Scholar 

  81. LaRue J, Bard C, Fleury M (1995) Is proprioception important for the timing of motor activities? Can J Physiol Pharmacol (73) 2: 255–261

    Google Scholar 

  82. Lass P, Kalund S, LeFevre S, Arendt-Nielsen L, Sinkjaer R, Simonsen O (1991) Muscle coordination following rupture of the anterior cruciate ligament. Acta Orthop Scand 62: 9–14

    PubMed  CAS  Google Scholar 

  83. Lentell G, Baas B, Lopez D (1995) The contributions of proprioceptive deficits, muscle function, and anatomilaxity to functional instability of the ankle. J Orthop Sports Phy Ther (21) 4: 206–215

    Google Scholar 

  84. Lorentzon R, Johansson C, Sjöström M, Fagerlund M, Fugl-Meyer AR (1988) Fatigue during dynamic muscle contractions in male sprinters and marathon runners: Relationship between performance, electromyographic activity, muscle cross-sectional area and morphology. Acta Physiology Scand 132: 531–536

    CAS  Google Scholar 

  85. Lundberg A, Lamgren K, Schomburg ED (1978) Role of joint afferents in motor control exemplified by effects on reflex pathways from Ib afferents. J Physio (Lond) 184: 327–343

    Google Scholar 

  86. Lundberg A, Malmgren K, Schomburg ED (1977) Cutaneous facilitation of transmission in reflex pathways from Ib afferents to motoneurones. J Physio (Lond) 265: 763–780

    CAS  Google Scholar 

  87. Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold London

    Google Scholar 

  88. McNair PJ, Marshall RN, Marguire K (1995) Knee joint effusion and proprioception. Arch Phys Med Rehabil (76) 6: 566–568

    Google Scholar 

  89. Mense S (1995) Lokaler und übertragener Muskelschmerz. Phys Rehab Kur Med 5: 147–152

    Google Scholar 

  90. Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54: 241–289

    PubMed  CAS  Google Scholar 

  91. Mense S (1991) Physiology of nociception in muscles. J Manual Medicine 6: 24–33

    Google Scholar 

  92. Mense S (1988) Verhalten von Nozizeptoren im normalen und im entzündeten Muskel. In: Sprintge R, Droh R (eds) Schmerz und Sport Heidelberg: 199–206

    Google Scholar 

  93. Newell KM, Corcos DM (eds) (1993) Variability and Motor Control. Human Kinetic Publishers, Champaign

    Google Scholar 

  94. Nürnberger F (1997) Lokalisation und Funktion von Rezeptoren im Gelenk-Muskel-Complex. In: Zichner L, Engelhardt M, Freiwald J (eds) Muskuläre Dysbalancen. Novartis, Wehr: 24–38

    Google Scholar 

  95. O’Connor BL, Visco DM, Brandt KD (1993) Sensory nerves only temporarily protect the unstable canine knee joint from osteoarthritis. Evidence that sensory nerves reprogram the central nervous system after cruciate ligament transection. Arthritis Rheum (36) 8: 1154–1163

    Google Scholar 

  96. O’Connor BL, Palmoski MJ, Brandt KD (1985) Neurogenic acceleration of degenerative joint lesions. J Bone Joint Surg [Am] (67) 4: 562–572

    Google Scholar 

  97. Paintal AS (1967) A comparison of the nerve impulses of mammalian non medullated nerve fibres with those of smallest diameter medullated fibres. J Phys (Lond) 193: 523–533

    Google Scholar 

  98. Pitman MI, Nainzadeh N, Menche D (1992) The intraoperative evaluation of the neurosensory function of the anterior cruciate ligament in humans using somatosensory evoked potentials. Arthroscopy (8) 4: 442–447

    Google Scholar 

  99. Pope CF, Cole KJ, Brand RA (1990) Physiologic loading of the anterior cruciate ligament does not activate quadriceps or hamstrings in the anesthesized cat. The American Journal of Sports Medicine 18,6: 595–599

    PubMed  CAS  Google Scholar 

  100. Pope MH, Johnson RJ, Brown DW, Tighe C (1979) The role of the musculature in injuries to medial collateral ligament. J Bone Joint Surg 61: 398–402

    PubMed  CAS  Google Scholar 

  101. Popper K (1994) Logik der Forschung. Mohr Tübingen

    Google Scholar 

  102. Portr R, Lemon R (1995) Corticospinal Function an Voluntary Movement. Clarendon Press Oxford

    Google Scholar 

  103. Renström PAFH (ed) (1993) Sports Injuries. Blackwell Oxford.

    Google Scholar 

  104. Reuter I, Engelhardt M, Freiwald J (1994) Sensorische Rückmeldungen aus arthronalen Systemen als Steuerungsvoraussetzungen der Muskulatur. In: Zichner, L, Engelhardt M, Freiwald J (eds) (1994) Die Muskulatur. Sensibles, integratives und meßbares Organ. Ciba Geigy Wehr: 41–52

    Google Scholar 

  105. Reuter I, Engelhardt M, Freiwald J (1994) Steuerung der Muskulatur durch sensorische Rückmeldung. TW Sport und Medizin 6,3: 181–184

    Google Scholar 

  106. Rosenbaum DA, Gordon AM, Stillings NA, Feinstein MH (1987) Stimulus-response compatability in the programming of speech. Memory & Cognition 15: 372–393

    Google Scholar 

  107. Rovere GD, Adair DM (1983) Anterior cruciate-deficient knees: a review of the literature. Am J Sports Med (11): 412

    PubMed  CAS  Google Scholar 

  108. Schaible HG, Grubb BD (1993) Afferent and spinal mechanisms of joint pain. Pain 55: 5–54

    PubMed  CAS  Google Scholar 

  109. Schmalz T, Blumentritt S, Wagner R, Gokeler A (1998) Ganganalytische Verlaufsuntersuchung patellasehnenversorgter Rupturen des vorhandenen Kreuzbandes. Phys Rehab Kur Med 9: 1–8

    Google Scholar 

  110. Schmidt RA (1988) Motor control and learning: A behavioral emphasis. Human Kinetics Champaign

    Google Scholar 

  111. Schmidt RF (ed) (1987) Grundriß der Neurophysiologie. Springer Verlag Berlin

    Google Scholar 

  112. Schomburg ED (1997) Spinale Mechanismen zur Steuerung neuromuskuärer Balance. In: Zichner L, Engelhardt M, Freiwald J (eds) Neuromuskuläre Dysbalancen Novartis Wehr: 39–57

    Google Scholar 

  113. Schomburg ED (1991) The role of nociceptive afferents and enkephalins in spinal motor control. In: Wernig A (ed) Plastisticity of Motoneural Connection. Elsevier Amsterdam: 345–353

    Google Scholar 

  114. Schmburg ED (1988) Zur Funktion nozirezeptiver Afferenzen in der spinalen Motorik. In: Spintge R, Droh R (eds) Schmerz und Sport. Berlin-Heidelberg: 207–219

    Google Scholar 

  115. Schultz RA, Miller CD, Kerr C, Micheli L (1984) Mechanorezeptoren in human cruciate ligaments. J Bone Joint Surg 66-A: 1072–1076

    Google Scholar 

  116. Schutte MJ, Dabezies EK, Zimny ML (1987) Neural Anatomy of the Human Anterior Cruciate Ligament. J Bone Joint Surg [Am] (69): 243–247

    CAS  Google Scholar 

  117. Scott DT, Ferrell WR, Baxendale RH (1994) Excitation of soleus-gastrocnemius gamma-motoneurones by group II knee joint afferents in suppressed by group IV joint afferents in the decerebrate, spinalized cat. Exp Physiol 79: 357–364

    PubMed  CAS  Google Scholar 

  118. Shakespeare DT, Stokes M, Sherman KP (1985) Reflex inhibition of the quadriceps after meniscectomy: lack of association with pain. Clin Physiol 5: 137–144

    PubMed  CAS  Google Scholar 

  119. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18: 292–299

    PubMed  CAS  Google Scholar 

  120. Simons DG (1988) Myofascial pain syndrome due to trigger points. Reh Medicine St. Louis: 686–723

    Google Scholar 

  121. Sinkjaer R, Arendt-Nielsen L (1991) Knee stability and muscle coordination in patients with anterior cruciate ligament injuries. An electromyographic approach. J Electromyography Kinesiol 3,1: 209–217

    Google Scholar 

  122. Sjölander P, Djupsjöbacka M, Johansson H, Sojka P, Lorentzon R (1994) Can receptors in the collateral ligaments contribute to knee stability and proprioception via effects on the fusimotor-muscle-spindle system? Neuro-Orthopedics 15:65–80

    Google Scholar 

  123. Skinner HB, Barrack RL (1991) Joint Position Sense in the Normal and Pathologic Knee Joint. Journal of Electromyography and Kinesiology (1) 3: 180–190

    Google Scholar 

  124. Snyder Macker L, DeLuca PF, Williams PR (1994) Reflex inhibition of the quadriceps femoris muscle after injury or reconstruction of the anterior cruciate ligament. J Bone Joint Surg [Am] (76) 4: 555–560

    Google Scholar 

  125. Sojka P, Sjölander P, Johansson H, Dupsjöbacka M (1991) Influence from stretch-sensitive receptors in the collageral ligaments of the knee joint on the (-muscle spindle systems of flexor and extensor muscles. Neurosci Res 11: 55–62

    PubMed  CAS  Google Scholar 

  126. Sojka P, Sjölander P, Johansson H, Djupsjöbacka M (1989) Fusimotor neurons can be reflexly influenced by activity in receptor afferents from the posterior cruciate ligament. Brain Res 483: 177

    PubMed  CAS  Google Scholar 

  127. Spencer JD, Hayes KC, Alexander IJ (1984) Knee joint effusion and quadriceps reflex inhibition in man. Arch Phys. Med Rehabil (65) 4: 171–177

    Google Scholar 

  128. Stöhr M and Bluthardt M (1993) Atlas der klinischen Elektromyographie und der Neurographie. Kohlhammer, 3. Auflage

    Google Scholar 

  129. Stokes M, Young A (1984) The contribution of reflex inhibition to arthrogenous muscle weakness. Clinical Science 67: 7–14

    PubMed  CAS  Google Scholar 

  130. Wißmeier T, Kutter T, Hülser PJ (1997) Der H-Reflex — eine neue Möglichkeit der Kontrolle von Funktion-sparametern in der Behandlung von Bandverletzungen. Beispiel: Vorderes Kreuzband. In: Zichner L, Engelhardt M, Freiwald J (eds). Muskuläre Dysbalancen. Novartis Wehr: 133–164

    Google Scholar 

  131. Wojtys EM, Juston LJ (1994) Neuromuscular performance in normal and anteiror cruciate ligament-deficient lower extremities. Am J Sports Med 22,1: 89–104

    PubMed  CAS  Google Scholar 

  132. Wolff HD (1996) Neurophysiologische Aspekte des Bewegungssystems. Springer Berlin

    Google Scholar 

  133. Wollny R (1993) Stabilität und Variabilität im motorischen Verhalten. Meyer & Meyer Aachen

    Google Scholar 

  134. Wulf G (1994) Zur Optimierung motorischer Lernprozesse. Hofmann Schorndorf

    Google Scholar 

  135. Wyke B (1967) The Neurology of Joints. Ann R Coll Surg Engl 41:25–50

    PubMed  CAS  Google Scholar 

  136. Young A, Stokes M, Iles JF (1987) Effects of joint pathology on muscle. Clinical Orthopaedics and Related Research 219,6: 21–27

    PubMed  Google Scholar 

  137. Young A, Stokes M (1986) Reflex inhibition of muscle activity and the morphological consequences of inactivity. In: Saltin B (ed) International Series of Sport Sciences. Vol. 16, Biochemistry of Exercise VI. Human Kinetics, Champaign: 531–544

    Google Scholar 

  138. Zimny ML (1988) Mechanoreceptors in articular tissues. The American Journal of Anatomy 182: 16–32

    PubMed  CAS  Google Scholar 

  139. Zimny ML, Schutte M, Dabezies E (1986) Mechanoreceptors in the human anterior cruciate ligament. Anar Rec (214) 2: 204–209

    Google Scholar 

  140. Zimny ML, Wink CS (1991) Neuroreceptors in the tissues of the knee joint. Journal of Electromyography and Kinesiology I,3: 148–157

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Freiwald, J., Reuter, I., Engelhardt, M. (1999). Neuromuscular and Motor System Alterations After Knee Trauma and Knee Surgery. In: Lehmann, M., Foster, C., Gastmann, U., Keizer, H., Steinacker, J.M. (eds) Overload, Performance Incompetence, and Regeneration in Sport. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-34048-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-34048-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46106-4

  • Online ISBN: 978-0-585-34048-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics