Skip to main content

Towards Testable Neuromechanical Control Architectures for Running

  • Chapter
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The LLS and SLIP models would fall into the NCA0 category – except for the technicality that they are not fully asymptotically stable and thus do not satisfy our \(H_1\) Hypothesis.

  2. 2.

    We use the phrase “infinitesimally generated” to represent the fact the trajectories are defined in terms of an ordinary differential equation, which is an equation relating infinitesimal quantities.

  3. 3.

    The term “filter” refers to the feedback laws being specified by a function of the tracking error and its derivatives rather than merely a function of instantaneous tracking error.

References

  • Bailey, S A, Cham, J G, Cutkosky, M R, and Full, R J. Experimental Robotics VII, volume 271 of Lecture Notes in Control and Information Sciences, chapter Comparing the Locomotion Dynamics of the Cockroach and a Shape Deposition Manufactured Biomimetic Hexapod, pages 239–248. Springer Berlin/Heidelberg, Jan 2001. ISSN: 0170-8643.

    Google Scholar 

  • Balasubramaniam, R and Turvey, M T. Coordination modes in the multisegmental dynamics of hula hooping. Biological Cybernetics, 90:176–190, 2004.

    Article  PubMed  Google Scholar 

  • Bernstein, N. The Co-ordination and Regulation of Movements. Pergamon Press, Oxford, 1967.

    Google Scholar 

  • Biess, A, Nagurka, M, and Flash, T. Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance indices. Biological Cybernetics, 95(1):31–53, 2006.

    Article  PubMed  Google Scholar 

  • Bizzi, E, Tresch, M C, Saltiel, P, and d’Avella, A. New perspectives on spinal motor systems. Nature Reviews Neuroscience, 1:101–108, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Blickhan, R. The spring mass model for running and hopping. Journal of Biomechanics, 22(11–12):1217–1227, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Blickhan, R, and Full, R J. Similarity in multilegged locomotion: Bounding like a monopode. Journal of Comparative Physiology A Sensory Neural and Behavioral Physiology, 173(5):509–517, 1993.

    Google Scholar 

  • Burke, R E. Revisiting the notion of ‘motor unit types’. Progress in Brain Research, 123:167–175, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Burke, R E. Some unresolved issues in motor unit research. Advances in Experimental Medicine and Biology, 508:171–178, 2002. PMID: 12171107.

    PubMed  Google Scholar 

  • Büschges, A, and El-Manira, A. Sensory pathways and their modulation in the control of locomotion. Current Opinion in Neurobiology, 8:733–739, 1998.

    Article  PubMed  Google Scholar 

  • Calvitti, A, and Beer, R D. Analysis of a distributed model of leg coordination, i. individual coordination mechanisms. Biological Cybernetics, 82(3):197–206, February 2000.

    Article  PubMed  CAS  Google Scholar 

  • Carrier, D R, Walter, R M, and Lee, D V. Influence of rotational inertia on turning performance of theropod dinosaurs: clues from humans with increased rotational inertia. Journal Of Experimental Biology, 204(22):3917–3926, November 2001.

    PubMed  CAS  Google Scholar 

  • Chiel, H J, Beer, R D, Quinn, R D, and Espenschied, K S. Robustness of a distributed neural network controller for locomotion in a hexapod robot. IEEE Transactions on Robotics and Automation, 8(3):293–303, 1992.

    Article  Google Scholar 

  • Cohen, A, Holmes, P J, and Rand, R H. The nature of coupling between segmental oscillators of the lamprey spinal generator for locomotion: a model. Journal of Mathematical Biology, 13:345–369, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Cruse, H. Coactivating influences between neighbouring legs in walking insects. Journal of Experimental Biology, 114:513519–519, 1985a.

    Google Scholar 

  • Cruse, H. Which parameters control the leg movement of a walking insect? ii. the start of the swing phase. Journal of Experimental Biology, 116:357–362, 1985b.

    Google Scholar 

  • Cruse, H. What mechanisms coordinate leg movement in walking arthropods? Trends in Neuroscience, 13:15–21, 1990.

    Article  CAS  Google Scholar 

  • Cruse, H, and Epstein, S. Peripheral influences on the movement of the legs in a walking insect carausius morosus. Journal of Experimental Biology, 101:161–170, 1982.

    Google Scholar 

  • Daley, M A, and Biewener, A A. Running over rough terrain reveals limb control for intrinsic stability. PNAS, 103(42):15681–15686, October 2006.

    Article  PubMed  CAS  Google Scholar 

  • Domen, K, Latash, M L, and Zatsiorsky, V M. Reconstruction of equilibrium trajectories during whole-body movements. Biological Cybernetics, 80(3):195–204, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ekeberg, O, Blümel, M, and Büschges, A. Dynamic simluation of insect walking. Arthropod Structure and Development, 33:287–300, 2004.

    Article  PubMed  Google Scholar 

  • Ferris, D P, and Louieand, M, Farley, C T. Running in the real world: adjusting leg stiffness for different surfaces. Proceedings of the Royal Society of London Series B-Biological Sciences, 265(1400):989–994, June 1998.

    Article  CAS  Google Scholar 

  • Fitzhugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1:445–466, 1961.

    Article  PubMed  CAS  Google Scholar 

  • Full, R J, and Farley, C T. Musculoskeletal dynamics in rhythmic systems – a comparative approach to legged locomotion. In J M Winters and P E Crago, editors, Biomechanics and Neural Control of Movement, pages 192–202. Springer-Verlag, New York, 2000. ISBN-10: 0-387-94974-7, ISBN-13: 978-0-387-94974-1.

    Google Scholar 

  • Full, R J, and Koditschek, D E. Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. Journal of Experimental Biology, 202 (23):3325–3332, 1999.

    PubMed  CAS  Google Scholar 

  • Full, R J, Kubow, T, Schmitt, J, Holmes, P, and Koditschek, D E. Quantifying dynamic stability and maneuverability in legged locomotion. Journal of Integrative and Comparative Biology, 20:149–157, 2002.

    Article  Google Scholar 

  • Geyer, H, Seyfarth, A, and Blickhan, R. Positive force feedback in bouncing gaits? Proceedings of the Royal Society of London Series B-Biological Sciences, 270(1529):2173–2183, October 2003.

    Article  Google Scholar 

  • Ghigliazza, R M, Altendorfer, R, Holmes, P, and Koditschek, D E. A simply stabilized running model. SIAM Review, 47(3):519–549, September 2005.

    Article  Google Scholar 

  • Ghigliazza, R M, and Holmes, P. A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM Journal of Applied Dynamical Systems, 3(4):671–700, 2004.

    Article  Google Scholar 

  • Ghigliazza, R M, and Holmes, P. Minimal models of bursting neurons: How multiple currents, conductances, and timescales affect bifurcation diagrams. SIAM Journal of Applied Dynamical Systems, 3(4):636–670, 2004b.

    Article  Google Scholar 

  • Goldman, D I, Chen, T S, Dudek, D M, and Full, R J. Dynamics of rapid vertical climbing in cockroaches reveals a template. Journal of Experimental Biology, 209:2990–3000, 2006.

    Article  PubMed  Google Scholar 

  • Golubitsky, M, Stewart, I, Buono, P L, and Collins, J J. Symmetry in locomotor central pattern generators and animal gaits. Nature, 401(6754):693–695, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Grasso, R, Zago, M, and Lacquaniti, F. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture. Journal of Neurophysiology, 83(1):288–300, 2000. PMID: 10634872.

    PubMed  CAS  Google Scholar 

  • Grillner, S. Neurobiological bases of rhythmic motor acts in vertebrates. Science, 228:143–149, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Guan, L, Kiemel, T, and Cohen, A H. Impact of movement and movement-related feedback on the lamprey central pattern generator for locomotion. Journal of Experimental Biology, 204(Pt 13):2361–2370, 2001.

    PubMed  CAS  Google Scholar 

  • Guckenheimer, J. Isochrons and phaseless sets. Journal of Mathematical Biology, 1:259–273, 1975.

    Article  Google Scholar 

  • Guckenheimer, J, and Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, 1983.

    Google Scholar 

  • Haken, H, Kelso, J A, and Bunz, H. A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5):347–356, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Hinder, M R, and Milner, T E. The case for an internal dynamics model versus equilibrium point control in human movement. Journal of Physiology (London), 549(3):953–963, 2003.

    Article  CAS  Google Scholar 

  • Hodgkin, A L, and Huxley, A F. A quantitative description of membrane current and its application to conduction and excitation in nerves. Journal of Physiology, 117:500–544, 1952.

    PubMed  CAS  Google Scholar 

  • Holmes, P, Full, R J, Koditschek, D E, and Guckenheimer, J. The dynamics of legged locomotion: Models, analyses, and challenges. SIAM Reviews, 48(2):207–304, 2006.

    Article  Google Scholar 

  • Ivanenko, Y P, Grasso, R, Macellari, V, and Lacquaniti, F. Control of foot trajectory in human locomotion: Role of ground contact forces in simulated reduced gravity. Journal of Neurophysiology, 87(6):3070–3089, 2002.

    PubMed  CAS  Google Scholar 

  • Jaric, S, and Latash, M L. The equilibrium-point hypothesis is still doing fine. Human Movement Science, 19(6):933–938, 2000.

    Article  Google Scholar 

  • Jindrich, D L, and Full, R J. Dynamic stabilization of rapid hexapedal locomotion. Journal of Experimental Biology, 205(18):2803–2823, 2002.

    PubMed  Google Scholar 

  • Kawato, M. Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9:718–727, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kelso, J A, Fink, P W, DeLaplain, C R, and Carson, R G. Haptic information stabilizes and destabilizes coordination dynamics. Proceedings of the Royal Society B - Biological Science, 268(1472):1207–1213, 2001.

    Article  CAS  Google Scholar 

  • Klavins, E, and Koditschek, D E. Phase regulation of decentralized cyclic robotic systems. The International Journal of Robotics Research, 21(3):257–275, 2002.

    Article  Google Scholar 

  • Klavins, E, Komsuoglu, H, Full, R J, and Koditschek, D E. The role of reflexes versus central pattern generators in dynamical legged locomotion. In J Ayers, J Davis, and A Rudolph, editors, Neurotechnology for Biomimetic Robots, pages 351–382. MIT Press, Boston, MA, 2002.

    Google Scholar 

  • Koditschek, D E, and Bühler, M. Analysis of a simplified hopping robot. International Journal of Robotics Research, 10(6):587–605, 1991.

    Article  Google Scholar 

  • Koditschek, D E, Full, R J, and Bühler, M. Mechanical aspects of legged locomotion control. Arthropod Structure and Development, 33(3):251–272, July 2004.

    Article  PubMed  Google Scholar 

  • Kohlsdorf, T, and Biewener, A A. Negotiating obstacles: running kinematics of the lizard sceloporus malachiticus. Journal of Zoology, 270(2):359–371, October 2006.

    Article  Google Scholar 

  • Kording, K P, and Wolpert, D M. Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10(7):319–326, 2006.

    Article  PubMed  Google Scholar 

  • Kuo, A D. The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control, 6(2):129–145, 2002.

    PubMed  Google Scholar 

  • Lacquaniti, F, Terzuolo, C, and Viviani, P. The law relating the kinematic and figural aspects of drawing movements. Acta psychologica (Amst), 54(1–3):115–130, 1983. PMID: 6666647.

    Article  CAS  Google Scholar 

  • Lee, D V, Walter, R M, Deban, S M, and Carrier, D R. Influence of increased rotational inertia on the turning performance of humans. Journal of Experimental Biology, 204(22):3927–3934, November 2001.

    PubMed  CAS  Google Scholar 

  • Morris, C, and L’ecar, H. Voltage oscillations in the barnacle giant muscle. Biophysics Journal, 35:193–213, 1981.

    Article  CAS  Google Scholar 

  • Mussa-Ivaldi, F A. Modular features of motor control and learning. Current Opinion in Neurobiology, 9:713–717, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, E, Imamizu, H, Osu, R, Uno, Y, Gomi, H, Yoshioka, T, and Kawato, M. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. Journal of Neurophysiology, 81:2140–2155, 1999.

    PubMed  CAS  Google Scholar 

  • Pearson, K G. The control of walking,. Scientific American, 464:72–86, 1976.

    Article  Google Scholar 

  • Pearson, K G. Common principles of motor control in vertebrates and invertebrates. Annual Reviews - Neuroscience, 16:265–297, 1993.

    Article  CAS  Google Scholar 

  • Pearson, K G. Proprioceptive regulation of locomotion. Current Opinion in Neurobiology, 5:786–791, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Peper, C, Liekeand, E, Ridderikhoff, A, Dafferthör, A, and Beek, P J. Explanatory limitations of the HKB model: Incentives for a two-tiered model of rhythmic interlimb coordination. Human Movement Science, 23:673–697, 2004.

    Article  PubMed  Google Scholar 

  • Raibert, M H. Legged robots. Communications of the ACM, 29(6):499–514, 1986.

    Article  Google Scholar 

  • Richardson, M J E, and Flash, T. Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis. Journal of Neuroscience, 22(18):8201–8211, 2002.

    Google Scholar 

  • Riley, M A, and Turvey, M T. Variability and determinism in motor behavior. Journal of Motor Behavior, 34:99–125, 2002.

    Article  PubMed  Google Scholar 

  • Sadegh, N, and Witz, R. Stability analysis of an adaptive controller for robotic manipulators. In Proceedings IEEE International Conference on Robotics and Automation, Raleigh, NC, April 1987.

    Google Scholar 

  • Saltiel, P, Wyler-Duda, K, d’Avella, A, Tresch, M C, and Bizzi, E. Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. Journal of Neurophysiology, 85(2):605–619, 2001.

    PubMed  CAS  Google Scholar 

  • Saranli, U, Buehler, M, and Koditschek, D E. RHex: a simple and highly mobile hexapedal robot. International Journal of Robotics Research, 20(7):616–631, 2001.

    Article  Google Scholar 

  • Schaal, S, and Schweighofer, N. computational motor control in humans and robots. Current Opinions Neurobiology, 6:675–682, 2005.

    Article  Google Scholar 

  • Schaal, S, and Sternad, D. Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements. Experimental Brain Research, 136(1):60–72, 2001.

    Article  CAS  Google Scholar 

  • Schaal, S, Sternad, D, Osu, R, and Kawato, M. Rhythmic arm movement is not discrete. Nature Neuroscience, 7(10):1136–1143, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, J, and Holmes, P. Mechanical models for insect locomotion: dynamics and stability in the horizontal plane – i. theory. Biological Cybernetics, 83(6):501–515, December 2000.

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr, R, and Wise, S P. Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. MIT Press, 2005.

    Google Scholar 

  • Slotine, J J E, and Weiping, L. On the adaptive control of robot manipulators. In Proceedings of the ASME Winter Annual Meeting, Anaheim, CA, December 1986.

    Google Scholar 

  • Sternad, D, and Schaal, S. Segmentation of endpoint trajectories does not imply segmented control. Experimental Brain Research, 124(1):118–136, 1999.

    Article  CAS  Google Scholar 

  • Sternad, D, Turvey, M T, and Schmidt, R C. Average phase difference theory and 1:1 phase entrainment in interlimb coordination. Biological cybernetics, 67(3):223–231, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Todorov, E, and Jordan, M I. Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. Journal of Neurophysiology, 80(2):696–714, 1998.

    PubMed  CAS  Google Scholar 

  • Weingarten J D, Groff R E, and Koditschek D E. A framework for the Coordination of legged robot gaits. 2004 IEEE Conference on Robotics, Automation and Mechatronics, 2: 679–686, 2004a.

    Google Scholar 

  • Weingarten, J D, Lopes, G A D, Buehler M, Groff R E, and Koditschek D E. Automated gait adaptation for legged robots. Proceedings. ICRA ′04. 2004 IEEE International Conference on Robotics and Automation, 3:2153–2158 2004b.

    Google Scholar 

  • Whitcomb, L L, Rizzi, A A, and Koditschek, D E. Comparative experiments with a new adaptive contoller for robot arms. IEEE Transactions on Robotics and Automation, 9(1):59–70, February 1993.

    Article  Google Scholar 

  • Winfree, A T. The Geometry of Biological Time. Springer-Verlag, New York, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai Revzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Revzen, S., Koditschek, D.E., Full, R.J. (2009). Towards Testable Neuromechanical Control Architectures for Running. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_3

Download citation

Publish with us

Policies and ethics