Skip to main content

Object Avoidance During Locomotion

  • Chapter
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

Many animals rely on vision for navigating through complex environments and for avoiding specific obstacles during locomotion. Navigation and obstacle avoidance are tasks that depend on gathering information about the environment by vision and using this information at later times to guide limb and body movements. Here we review studies demonstrating the use of short-term visual memory during walking in humans and cats. Our own investigations have demonstrated that cats have the ability to retain a memory of an obstacle they have stepped over with the forelegs for many minutes and to use this memory to guide stepping of the hindlegs to avoid the remembered obstacle. A brain region that may be critically involved in the retention of memories of the location of obstacles is the posterior parietal cortex. Recordings from neurons in area 5 in the posterior parietal cortex in freely walking cats have revealed the existence of neurons whose activity is strongly correlated with the location of an obstacle relative to the body. How these neurons might be used to regulate motor commands remains to be established. We believe that studies on obstacle avoidance in walking cats have the potential to significantly advance our understanding of visuo-motor transformations. Current knowledge about the brain regions and pathways underlying visuo-motor transformations during walking are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins RJ, Cegnar MR and Rafuse DD. Differential effects of lesions of the anterior and posterior sigmoid gyri in cats. Brain Res. 30(2): 411–414, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA and Buneo CA. Sensorimotor integration in posterior parietal cortex. Adv. Neurol. 93: 159–177, 2003.

    PubMed  Google Scholar 

  • Andersen RA and Buneo CA. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25: 189–220, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Andujar JE and Drew T. Organization of posterior parietal projections to the forelimb and hindlimb representations in the motor cortex of the cat: A retrograde tracer study. Soc. Neurosci. Abstr. 288.13, 2005.

    Google Scholar 

  • Armstrong DM and Drew T. Forelimb electromyographic responses to motor cortex stimulation during locomotion in the cat. J. Physiol. 367: 327–351, 1985.

    PubMed  CAS  Google Scholar 

  • Armstrong DM and Drew T. Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat. J. Physiol. 346: 471–495, 1984.

    PubMed  CAS  Google Scholar 

  • Armstrong DM and Marple-Horvat DE. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion. Can. J. Physiol. Pharmacol. 74(4): 443–455, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Assaiante C, Marchand AR and Amblard B. Discrete visual samples may control locomotor equilibrium and foot positioning in man. J. Mot. Behav. 21(1): 72–91, 1989.

    PubMed  CAS  Google Scholar 

  • Avendano C, Rausell E, Perez-Aguilar D and Isorna S. Organization of the association cortical afferent connections of area 5: A retrograde tracer study in the cat. J. Comp. Neurol. 278(1): 1–33, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Avendano C, Rausell E and Reinoso-Suarez F. Thalamic projections to areas 5a and 5b of the parietal cortex in the cat: A retrograde horseradish peroxidase study. J. Neurosci. 5(6): 1446–1470, 1985.

    PubMed  CAS  Google Scholar 

  • Babb RS, Waters RS and Asanuma H. Corticocortical connections to the motor cortex from the posterior parietal lobe (areas 5a, 5b, 7) in the cat demonstrated by the retrograde axonal transport of horseradish peroxidase. Exp. Brain Res. 54(3): 476–484, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Beloozerova IN and Sirota MG. Role of motor cortex in control of locomotion. In: Stance and Motion: Facts and Concepts, edited by Gurfinkel VS, Ioffe ME, Massion J and Roll JP. New York: Prenum Press, 1986, pp. 163–176.

    Google Scholar 

  • Beloozerova IN and Sirota MG. Integration of motor and visual information in the parietal area 5 during locomotion. J. Neurophysiol. 90(2): 961–971, 2003.

    Article  PubMed  Google Scholar 

  • Beloozerova IN and Sirota MG. The role of the motor cortex in the control of accuracy of locomotor movements in the cat. J. Physiol. 461: 1–25, 1993.

    PubMed  CAS  Google Scholar 

  • Bretzner F and Drew T. Motor cortical modulation of cutaneous reflex responses in the hindlimb of the intact cat. J. Neurophysiol. 94(1): 673–687, 2005.

    Article  PubMed  Google Scholar 

  • Brustein E and Rossignol S. Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J. Neurophysiol. 80(3): 1245–1267, 1998.

    PubMed  CAS  Google Scholar 

  • Buneo CA and Andersen RA. The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44(13): 2594–2606, 2005.

    Google Scholar 

  • Capaday C. Neurophysiological methods for studies of the motor system in freely moving human subjects. J. Neurosci. Methods 74(2): 201–218, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Colby CL and Goldberg ME. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22: 319–349, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Dietz V and Duysens J. Significance of load receptor input during locomotion: A review. Gait Posture 11(2): 102–110, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Donelan JM and Pearson KG. Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking. Can. J. Physiol. Pharmacol. 82(8–9): 589–598, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Drew T. Motor cortical cell discharge during voluntary gait modification. Brain Res. 457:181–187, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Drew T. Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs. J. Neurophysiol. 70(1): 179–199, 1993.

    PubMed  CAS  Google Scholar 

  • ∗Drew T. Visuomotor coordination in locomotion. Curr. Opin. Neurobiol. 1(4): 652–657, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Drew T, Dubuc R and Rossignol S. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J. Neurophysiol. 55(2): 375–401, 1986.

    PubMed  CAS  Google Scholar 

  • Drew T, Jiang W, Kably B and Lavoie S. Role of the motor cortex in the control of visually triggered gait modifications. Can. J. Physiol. Pharmacol. 74(4): 426–442, 1996.

    Article  PubMed  CAS  Google Scholar 

  • ∗Drew T, Jiang W and Widajewicz W. Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res. Brain Res. Rev. 40(1–3): 178–191, 2002.

    Article  PubMed  Google Scholar 

  • Drew T, Prentice S and Schepens B. Cortical and brainstem control of locomotion. Prog. Brain Res. 143: 251–261, 2004.

    Article  PubMed  Google Scholar 

  • Drew T and Rossignol S. Phase-dependent responses evoked in limb muscles by stimulation of medullary reticular formation during locomotion in thalamic cats. J. Neurophysiol. 52(4): 653–675, 1984.

    PubMed  CAS  Google Scholar 

  • Earhart GM, Horak FB, Jones GM, Block EW, Weber KD, Suchowersky O and Fletcher WA. Is the cerebellum important for podokinetic adaptation? Ann. NY. Acad. Sci. 978: 511–512, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Elliott D. Continuous visual information may be important after all: A failure to replicate Thomson (1983). J. Exp. Psychol. Hum. Percept. Perform. 12(3): 388–391, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Fabre M and Buser P. Effects of lesioning the anterior suprasylvian cortex on visuo-motor guidance performance in the cat. Exp. Brain Res. 41(2): 81–88, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Fiset S and Dore FY. Duration of cats' (Felis catus) working memory for disappearing objects. Anim. Cogn. 31: 1–9, 2005.

    Google Scholar 

  • Fowler GA and Sherk H. Gaze during visually-guided locomotion in cats. Behav. Brain Res. 139(1–2): 83–96, 2003.

    Article  PubMed  Google Scholar 

  • Georgopoulos AP and Ashe J. One motor cortex, two different views. Nat. Neurosci. 3(10): 963; author reply 964–965, 2000.

    Article  Google Scholar 

  • Ghosh S. Comparison of the cortical connections of areas 4 gamma and 4 delta in the cat cerebral cortex. J. Comp. Neurol. 388(3): 371–396, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ. Visually controlled locomotion and visual orientation in animals. Br. J. Psychol. 49(3): 182–194, 1958.

    PubMed  CAS  Google Scholar 

  • Graziano MSA and Botvinick MM. How the brain represents the body: Insights from neurophysiology and psychology. Attention Perform 19: 136–157, 2002.

    Google Scholar 

  • Graziano MS, Cooke DF and Taylor CS. Coding the location of the arm by sight. Science 290(5497): 1782–1786, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Grillner S. Possible analogies in the control of innate motor acts and the production of sound in speech. In: Speech Motor Control, edited by Grillner S. Oxford: Pergamon Press, 1982, pp. 217–229.

    Google Scholar 

  • Hollands MA, Marple-Horvat DE, Henkes S and Rowan AK. Human Eye Movements During Visually Guided Stepping. J. Mot. Behav. 27(2): 155–163, 1995.

    Article  PubMed  Google Scholar 

  • Jiang W and Drew T. Effects of bilateral lesions of the dorsolateral funiculi and dorsal columns at the level of the low thoracic spinal cord on the control of locomotion in the adult cat. I. Treadmill walking. J. Neurophysiol. 76(2): 849–866, 1996.

    PubMed  CAS  Google Scholar 

  • Kably B and Drew T. Corticoreticular pathways in the cat. II. Discharge activity of neurons in area 4 during voluntary gait modifications. J. Neurophysiol. 80(1): 406–424, 1998.

    PubMed  CAS  Google Scholar 

  • Kakei S, Futami T and Shinoda Y. Projection pattern of single corticocortical fibers from the parietal cortex to the motor cortex. Neuroreport 7(14): 2369–2372, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kakei S and Shinoda Y. Parietal projection of thalamocortical fibers from the ventroanterior-ventrolateral complex of the cat thalamus. Neurosci. Lett. 117(3): 280–284, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Yagi J, Wannier T, Na J and Shinoda Y. Cerebellar and cerebral inputs to corticocortical and corticofugal neurons in areas 5 and 7 in the cat. J. Neurophysiol. 74(1): 400–412, 1995.

    PubMed  CAS  Google Scholar 

  • ∗Kalaska JF. Parietal cortex area 5 and visuomotor behavior. Can. J. Physiol. Pharmacol. 74(4): 483–498, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF and Crammond DJ. Deciding not to GO: Neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. Cereb. Cortex 5(5): 410–428, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF and Drew T. Motor cortex and visuomotor behavior. Exerc. Sport Sci. Rev. 21: 397–436, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kalaska JF, Scott SH, Cisek P and Sergio LE. Cortical control of reaching movements. Curr. Opin. Neurobiol. 7(6): 849–859, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K. Corticortical fiber connections of the cat cerebrum. II. The parietal region. Brain Res. 51: 23–40, 1973.

    Article  PubMed  CAS  Google Scholar 

  • Lacquaniti F, Guigon E, Bianchi L, Ferraina S and Caminiti R. Representing spatial information for limb movement: Role of area 5 in the monkey. Cereb. Cortex 5(5): 391–409, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Lajoie K and Drew T. The contribution of the posterior parietal cortex to the control of visually guided locomotion in the cat: A lesion study. Soc. Neurosci. Abstr. 287.23, 2005.

    Google Scholar 

  • Lajoie K and Drew T. Lesions in area 5 of the posterior parietal cortex in the cat produce errors in the accuracy of paw placement during visually-guided locomotion. J. Neurophysiol. 97: 2339–2354, 2007.

    Article  PubMed  Google Scholar 

  • Lajoie K, Andujar J, Pearson KG and Drew T. Persistent neuronal activity in posterior parietal cortex area 5 related to long-lasting memories of obstacles in walking cats. Soc. Neurosci. Abst. 37: 397.8, 2007.

    Google Scholar 

  • Lavoie S, McFadyen B and Drew T. A kinematic and kinetic analysis of locomotion during voluntary gait modification in the cat. Exp. Brain Res. 106(1): 39–56, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Liddell EGT and Phillips CG. Pyramidal section in the cat. Brain 67: 1–9, 1944.

    Article  Google Scholar 

  • Marple-Horvat DE and Criado JM. Rhythmic neuronal activity in the lateral cerebellum of the cat during visually guided stepping. J. Physiol. 518(Pt 2): 595–603, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Marple-Horvat DE, Criado JM and Armstrong DM. Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic eye movements. J. Physiol. 506 ( Pt 2): Pt 2: 489–514, 1998.

    Google Scholar 

  • ∗McVea DA and Pearson KG. Long-lasting memories of obstacles guide leg movements in the walking cat. J. Neurosci. 26(4): 1175–1178, 2006.

    Article  PubMed  CAS  Google Scholar 

  • McVea DA and Pearson KG. Stepping of the forelegs over obstacles establishes long-lasting memories in cats. Curr. Biol. 17: R621–623, 2007.

    Google Scholar 

  • Mori S, Matsuyama K, Kohyama J, Kobayashi Y and Takakusaki K. Neuronal constituents of postural and locomotor control systems and their interactions in cats. Brain Dev. 14 Suppl: S109–20, 1992.

    PubMed  CAS  Google Scholar 

  • Morton SM, Dordevic GS and Bastian AJ. Cerebellar damage produces context-dependent deficits in control of leg dynamics during obstacle avoidance. Exp. Brain Res. 156(2): 149–163, 2004.

    Article  PubMed  Google Scholar 

  • Patla AE. How is human gait controlled by vision? Ecol Psychol 10(3–4): 287–302, 1998.

    Article  Google Scholar 

  • ∗Patla AE. Understanding the roles of vision in the control of human locomotion. Gait Posture 5: 54–69, 1997.

    Article  Google Scholar 

  • Patla AE, Adkin A, Martin C, Holden R and Prentice S. Characteristics of voluntary visual sampling of the environment for safe locomotion over different terrains. Exp. Brain Res. 112(3): 513–522, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Patla AE and Greig M. Any way you look at it, successful obstacle negotiation needs visually guided on-line foot placement regulation during the approach phase. Neurosci. Lett. 397(1–2): 110–114, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Patla AE, Prentice SD, Robinson C and Neufeld J. Visual control of locomotion: Strategies for changing direction and for going over obstacles. J. Exp. Psychol. Hum. Percept. Perform. 17(3): 603–634, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Patla AE and Vickers JN. How far ahead do we look when required to step on specific locations in the travel path during locomotion? Exp. Brain Res. 148(1): 133–138, 2003.

    Article  PubMed  Google Scholar 

  • Patla AE and Vickers JN. Where and when do we look as we approach and step over an obstacle in the travel path? Neuroreport 8(17): 3661–3665, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Prentice SD and Drew T. Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J. Neurophysiol. 85(2): 679–698, 2001.

    PubMed  CAS  Google Scholar 

  • Rauschecker JP, von Grunau MW and Poulin C. Centrifugal organization of direction preferences in the cat's lateral suprasylvian visual cortex and its relation to flow field processing. J. Neurosci. 7(4): 943–958, 1987.

    PubMed  CAS  Google Scholar 

  • Robinson FR, Cohen JL, May J, Sestokas AK and Glickstein M. Cerebellar targets of visual pontine cells in the cat. J. Comp. Neurol. 223(4): 471–482, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Rossignol S. Locomotion and its recovery after spinal injury in animal models. Neurorehabil. Neural Repair 16(2): 201–206, 2002.

    Article  PubMed  Google Scholar 

  • Rossignol S and Dubuc R. Spinal pattern generation. Curr. Opin. Neurobiol. 4(6): 894–902, 1994.

    Article  PubMed  CAS  Google Scholar 

  • ∗Rossignol S, Dubuc R and Gossard JP. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86(1): 89–154, 2006.

    Article  PubMed  Google Scholar 

  • Sasaki K, Matsuda Y, Kawaguchi S and Mizuno N. On the cerebello-thalamo-cerebral pathway for the parietal cortex. Exp. Brain Res. 16(1): 89–103, 1972.

    PubMed  CAS  Google Scholar 

  • Scott SH. The role of primary motor cortex in goal-directed movements: Insights from neurophysiological studies on non-human primates. Curr. Opin. Neurobiol. 13(6): 671–677, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Scott SH. Role of motor cortex in coordinating multi-joint movements: Is it time for a new paradigm? Can. J. Physiol. Pharmacol. 78(11): 923–933, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Sergio LE and Kalaska JF. Reaching movements with similar hand paths but different arm orientations. II. Activity of individual cells in dorsal premotor cortex and parietal area 5. J. Neurophysiol. 78(5): 2413–2426, 1997.

    PubMed  CAS  Google Scholar 

  • Sherk H and Fowler GA. Lesions of extrastriate cortex and consequences for visual guidance during locomotion. Exp. Brain Res. 144(2): 159–171, 2002.

    Article  PubMed  Google Scholar 

  • Sherk H and Fowler GA. Neural analysis of visual information during locomotion. Prog. Brain Res. 134: 247–264, 2001a.

    Article  CAS  Google Scholar 

  • Sherk H and Fowler GA. Visual analysis and image motion in locomoting cats. Eur. J. Neurosci. 13(6): 1239–1248, 2001b.

    Article  CAS  Google Scholar 

  • Steenhuis RE and Goodale MA. The effects of time and distance on accuracy of target-directed locomotion: Does an accurate short-term memory for spatial location exist? J. Mot. Behav. 20(4): 399–415, 1988.

    PubMed  CAS  Google Scholar 

  • Symonds LL, Rosenquist AC, Edwards SB and Palmer LA. Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat. Neuroscience 6(10): 1995–2020, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Thomson JA. Is continuous visual monitoring necessary in visually guided locomotion? J. Exp. Psychol. Hum. Percept. Perform. 9(3): 427–443, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Ung RV, Imbeault MA, Ethier C, Brizzi L and Capaday C. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking. J. Neurophysiol. 94(2): 1133–1142, 2005.

    Article  PubMed  Google Scholar 

  • Whelan PJ. Control of locomotion in the decerebrate cat. Prog. Neurobiol. 49(5): 481–515, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Widajewicz W, Kably B and Drew T. Motor cortical activity during voluntary gait modifications in the cat. II. Cells related to the hindlimbs. J. Neurophysiol. 72(5): 2070–2089, 1994.

    PubMed  CAS  Google Scholar 

  • Wilkinson EJ and Sherk HA. The use of visual information for planning accurate steps in a cluttered environment. Behav. Brain Res. 164(2): 270–274, 2005.

    Article  PubMed  Google Scholar 

  • The references marked with an asterisk (∗) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keir G. Pearson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McVea, D.A., Pearson, K.G. (2009). Object Avoidance During Locomotion. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_15

Download citation

Publish with us

Policies and ethics