Skip to main content

Learning from Learning: What Can Visuomotor Adaptations Tell us About the Neuronal Representation of Movement?

  • Chapter
Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 629))

Abstract

The use of sensorimotor adaptation and learning paradigms in psychophyical and electrophysiological experiments can help to shed light on two fundamental questions. First, what are the computations that control sensorimotor behavior and, second, what are the neuronal mechanisms and representations underlying newly learned sensorimotor skills? We describe experiments that combined behavioral and electrophysioloigcal techniques and discuss implication of the results to three main questions: How do neuronal primitives of representation affect performance and learning? Do pre-motor and primary motor cortices form a hierarchy of computation, with different roles during learning and motor performance? How do these different cortical areas and the representations of movement change during the different stages of learning and memory formation?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeele S, Bock O (2001) Mechanisms for sensorimotor adaptation to rotated visual input. Exp Brain Res 139: 248–253.

    Article  PubMed  CAS  Google Scholar 

  • Ahissar M (2001) Perceptual training: a tool for both modifying the brain and exploring it. Proc Natl Acad Sci U S A 98: 11842–11843.

    Google Scholar 

  • Ahissar M, Hochstein S (1997) Task difficulty and the specificity of perceptual learning. Nature 387: 401–406.

    Article  PubMed  CAS  Google Scholar 

  • Aizawa H, Inase M, Mushiake H, Shima K, Tanji J (1991) Reorganization of activity in the supplementary motor area associated with motor learning and functional recovery. Exp Brain Res 84: 668–671.

    Article  PubMed  CAS  Google Scholar 

  • Ajemian R, Bullock D, Grossberg S (2001) A model of movement coordinates in the motor cortex: posture-dependent changes in the gain and direction of single cell tuning curves. Cereb Cortex 11: 1124–1135.

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 64: 133–150.

    PubMed  CAS  Google Scholar 

  • Amirikian BR, Georgopoulos AP (2000) Directional tuning profiles of motor cortical cells. Neuroscience Research 36: 73–79.

    Article  PubMed  CAS  Google Scholar 

  • Baraduc P, Lang N, Rothwell JC, Wolpert DM (2004) Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Curr Biol 14: 252–256.

    PubMed  CAS  Google Scholar 

  • Baraduc P, Wolpert DM (2002) Adaptation to a visuomotor shift depends on the starting posture. J Neurophysiol 88: 973–981.

    PubMed  Google Scholar 

  • Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382: 252–255.

    Article  PubMed  CAS  Google Scholar 

  • Buch ER, Young S, Contreras-Vidal JL (2003) Visuomotor adaptation in normal aging. Learn Mem 10: 55–63.

    Article  PubMed  Google Scholar 

  • Caminiti R, Johnson PB, Galli C, Ferraina S, Burnod Y (1991) Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J Neurosci 11: 1182–1197.

    PubMed  CAS  Google Scholar 

  • Chou IH, Lisberger SG (2002) Spatial generalization of learning in smooth pursuit eye movements: implications for the coordinate frame and sites of learning. J Neurosci 22: 4728–4739.

    PubMed  CAS  Google Scholar 

  • Crutcher MD, Alexander GE (1990) Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. J Neurophysiol 64: 151–163.

    PubMed  CAS  Google Scholar 

  • Cunningham HA (1989) Aiming error under transformed spatial mappings suggests a structure for visual-motor maps. J Exp Psychol Hum Percept Perform 15: 493–506.

    Article  PubMed  CAS  Google Scholar 

  • Donchin O, Francis JT, Shadmehr R (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J Neurosci 23: 9032–9045.

    PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16: 6513–6525.

    PubMed  CAS  Google Scholar 

  • Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77: 677–682.

    Article  PubMed  CAS  Google Scholar 

  • Fu QG, Suarez JI, Ebner TJ (1993) Neuronal specification of direction and distance during reaching movements in the superior precentral premotor area and primary motor cortex of monkeys. J Neurophysiol 70: 2097–2116.

    PubMed  CAS  Google Scholar 

  • ∗Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2: 1527–1537.

    PubMed  CAS  Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate Motor Cortex and Free Arm Movements to Visual Targets in Three-Dimensional Space. II. Coding of the Direction of Movement by a Neuronal Population. J Neurosci 8: 2928–2937.

    PubMed  CAS  Google Scholar 

  • Ghahramani Z, Wolpert DM, Jordan MI (1996) Generalization to local remappings of the visuomotor coordinate transformation. J Neurosci 16: 7085–7096.

    PubMed  CAS  Google Scholar 

  • Gilbert CD, Sigman M, Crist RE (2001) The neural basis of perceptual learning. Neuron 31: 681–697.

    Article  PubMed  CAS  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394: 780–784.

    Article  PubMed  CAS  Google Scholar 

  • Hazeltine E, Grafton ST, Ivry R (1997) Attention and stimulus characteristics determine the locus of motor-sequence encoding. A PET study. Brain 120 ( Pt 1): 123–140.

    Article  PubMed  Google Scholar 

  • He SQ, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15: 3284–3306.

    PubMed  CAS  Google Scholar 

  • Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36: 791–804.

    Article  PubMed  CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195: 215–243.

    PubMed  CAS  Google Scholar 

  • Imamizu H, Shimojo S (1995) The locus of visual-motor learning at the task or manipulator level: implications from intermanual transfer. J Exp Psychol Hum Percept Perform 21: 719–733.

    Article  PubMed  CAS  Google Scholar 

  • Imamizu H, Uno Y, Kawato M (1995) Internal representations of the motor apparatus: implications from generalization in visuomotor learning. J Exp Psychol Hum Percept Perform 21: 1174–1198.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14: 3775–3790.

    PubMed  CAS  Google Scholar 

  • Johnson MT, Coltz JD, Ebner TJ (1999) Encoding of target direction and speed during visual instruction and arm tracking in dorsal premotor and primary motor cortical neurons. Eur J Neurosci 11: 4433–4445.

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285: 2136–2139.

    Article  PubMed  CAS  Google Scholar 

  • Kakei S, Hoffman DS, Strick PL (2003) Sensorimotor transformations in cortical motor areas. Neurosci Res 46: 1–10.

    Article  PubMed  Google Scholar 

  • Karni A, Meyer G, Rey HC, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci U S A 95: 861–868.

    Google Scholar 

  • Karni A, Sagi D (1993) The time course of learning a visual skill. Nature 365: 250–252.

    Article  PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9: 718–727.

    Article  PubMed  CAS  Google Scholar 

  • Kleim JA, Barbay S, Nudo RJ (1998) Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol 80: 3321–3325.

    PubMed  CAS  Google Scholar 

  • Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M (2004) Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J Neurosci 24: 628–633.

    Article  PubMed  CAS  Google Scholar 

  • Korman M, Raz N, Flash T, Karni A (2003) Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. Proc Natl Acad Sci U S A 100: 12492–12497.

    Google Scholar 

  • ∗Krakauer JW, Ghez C, Ghilardi MF (2005) Adaptation to Visuomotor Transformations: Consolidation, Interference, and Forgetting. J Neurosci 25: 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2: 1026–1031.

    Article  PubMed  CAS  Google Scholar 

  • Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D, Ghez C (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91: 924–933.

    Article  PubMed  Google Scholar 

  • Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning of visuomotor transformations for vectorial planning of reaching trajectories. J Neurosci 20: 8916–8924.

    PubMed  CAS  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72: 299–313.

    PubMed  CAS  Google Scholar 

  • Lee D, Quessy S (2003) Activity in the supplementary motor area related to learning and performance during a sequential visuomotor task. J Neurophysiol 89: 1039–1056.

    Article  PubMed  Google Scholar 

  • ∗Li CS, Padoa-Schioppa C, Bizzi E (2001) Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30: 593–607.

    Article  PubMed  CAS  Google Scholar 

  • Logothetis NK, Pauls J, Poggio T (1995) Shape representation in the inferior temporal cortex of monkeys. Curr Biol 5: 552–563.

    Article  PubMed  CAS  Google Scholar 

  • Luppino G, Matelli M, Camarda R, Rizzolatti G (1993) Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol 338: 114–140.

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL (2000) Memory—-a century of consolidation. Science 287: 248–251.

    Article  PubMed  CAS  Google Scholar 

  • ∗Mitz AR, Godschalk M, Wise SP (1991) Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J Neurosci 11: 1855–1872.

    PubMed  CAS  Google Scholar 

  • Moran DW, Schwartz AB (2000) One motor cortex, two different views. Nat Neurosci 3: 963–965.

    Article  PubMed  CAS  Google Scholar 

  • Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, Boroojerdi B, Poewe W, Hallett M (2002) Early consolidation in human primary motor cortex. Nature 415: 640–644.

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi FA (1988) Do neurons in the motor cortex encode movement direction? An alternative hypothesis. Neurosci Lett 91: 106–111.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Sakai K, Hikosaka O (1998) Neuronal activity in medial frontal cortex during learning of sequential procedures. J Neurophysiol 80: 2671–2687.

    PubMed  CAS  Google Scholar 

  • Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996) Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16: 785–807.

    PubMed  CAS  Google Scholar 

  • Osu R, Franklin DW, Kato H, Gomi H, Domen K, Yoshioka T, Kawato M (2002) Short- and Long-Term Changes in Joint Co-Contraction Associated With Motor Learning as Revealed From Surface EMG. Journal of Neurophysiology 88(2): 991–1004.

    PubMed  Google Scholar 

  • Padoa-Schioppa C, Li CS, Bizzi E (2004) Neuronal activity in the supplementary motor area of monkeys adapting to a new dynamic environment. J Neurophysiol 91: 449–473.

    Article  PubMed  Google Scholar 

  • Padoa-Schioppa C, Li CS-R, Bizzi E (2002) Neuronal Correlates of Kinematics-to-Dynamics Transformation in the Supplementary Motor Area. Neuron 36: 751–765.

    Article  PubMed  CAS  Google Scholar 

  • Paz R, Boraud T, Natan C, Bergman H, Vaadia E (2003) Preparatory activity in motor cortex reflects learning of local visuomotor skills. Nat Neurosci 6: 882–890.

    Article  PubMed  CAS  Google Scholar 

  • Paz R, Natan C, Boraud T, Bergman H, Vaadia E (2005a) Emerging patterns of neuronal responses in supplementary and primary motor areas during sensorimotor adaptation. J Neurosci 25: 10941–10951.

    Article  CAS  Google Scholar 

  • Paz R, Nathan C, Boraud T, Bergman H, Vaadia E (2005b) Acquisition and generalization of visuomotor transformations by nonhuman primates. Exp Brain Res 161: 209–219.

    Article  Google Scholar 

  • ∗Paz R, Wise SP, Vaadia E (2004) Viewing and doing: similar cortical mechanisms for perceptual and motor learning. Trends Neurosci 27: 496–503.

    Article  PubMed  CAS  Google Scholar 

  • ∗Poggio T, Bizzi E (2004) Generalization in vision and motor control. Nature 431: 768–774.

    Article  PubMed  CAS  Google Scholar 

  • Porter R, Lemon RN (1993) Corticospinal Function & Voluntary Movement. New York: Oxford Univ. Press.

    Google Scholar 

  • Pouget A, Dayan P, Zemel RS (2003) Inference and computation with population codes. Annu Rev Neurosci 26: 381–410.

    Article  PubMed  CAS  Google Scholar 

  • Pouget A, Deneve S, Ducom J, Latham PE (1999) Narrow vs. wide tuning curves: what's best for a population code. Neural Comput 11: 85–90.

    Article  PubMed  CAS  Google Scholar 

  • Pouget A, Snyder LH (2000) Computational approaches to sensorimotor transformations. Nat Neurosci 3 Suppl: 1192–1198.

    Article  PubMed  CAS  Google Scholar 

  • Rand MK, Hikosaka O, Miyachi S, Lu X, Nakamura K, Kitaguchi K, Shimo Y (2000) Characteristics of sequential movements during early learning period in monkeys. Exp Brain Res 131: 293–304.

    Article  PubMed  CAS  Google Scholar 

  • Rieke F, Warland D, De Ruyter van Steveninck RR, Bialek W (1997) Spikes: exploring the neural code. Cambridge: MIT Press.

    Google Scholar 

  • Robertson EM, Pascual-Leone A, Miall RC (2004) Current concepts in procedural consolidation. Nat Rev Neurosci 5: 576–582.

    Article  PubMed  CAS  Google Scholar 

  • Salinas E, Abbott LF (1995) Transfer of coded information from sensory to motor networks. J Neurosci 15: 6461–6474.

    PubMed  CAS  Google Scholar 

  • Schwartz AB (1992) Motor cortical activity during drawing movements: single-unit activity during sinusoid tracing. J Neurophysiol 68: 528–541.

    PubMed  CAS  Google Scholar 

  • Scott SH, Gribble PL, Graham KM, Cabel DW (2001) Dissociation between hand motion and population vectors from neural activity in motor cortex. Nature 413: 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophysiol 77: 826–852.

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Holcomb HH (1997) Neural correlates of motor memory consolidation. Science 277: 821–825.

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr R, Moussavi ZM (2000) Spatial generalization from learning dynamics of reaching movements. J Neurosci 20: 7807–7815.

    PubMed  CAS  Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14: 3208–3224.

    PubMed  CAS  Google Scholar 

  • ∗Shadmehr R, Wise SP (2004) The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. Cambridge: MIT Press.

    Google Scholar 

  • Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251–268.

    Article  PubMed  CAS  Google Scholar 

  • Tanji J (1996) New concepts of the supplementary motor area. Curr Opin Neurobiol 6: 782–787.

    Article  PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (1999) Electromyographic correlates of learning an internal model of reaching movements. J Neurosci 19: 8573–8588.

    PubMed  CAS  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nature 407: 742–747.

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2000) Reply to 'One motor cortex, two different views'. Nat Neurosci 3: 963–964.

    Article  PubMed  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7: 907–915.

    Article  PubMed  CAS  Google Scholar 

  • Toni I, Ramnani N, Josephs O, Ashburner J, Passingham RE (2001) Learning arbitrary visuomotor associations: temporal dynamic of brain activity. Neuroimage 14: 1048–1057.

    Article  PubMed  CAS  Google Scholar 

  • Vapnik VN (1998) Statistical Learning Theory. New York: Wiley.

    Google Scholar 

  • Vetter P, Goodbody SJ, Wolpert DM (1999) Evidence for an eye-centered spherical representation of the visuomotor map. J Neurophysiol 81: 935–939.

    PubMed  CAS  Google Scholar 

  • Wise SP, Moody SL, Blomstrom KJ, Mitz AR (1998) Changes in motor cortical activity during visuomotor adaptation. Exp Brain Res 121: 285–299.

    Article  PubMed  CAS  Google Scholar 

  • ∗Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3 Suppl: 1212–1217.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269: 1880–1882.

    Article  PubMed  CAS  Google Scholar 

  • Zhang K, Sejnowski TJ (1999) Neuronal tuning: To sharpen or broaden? Neural Comput 11: 75–84.

    Article  PubMed  CAS  Google Scholar 

  • The references marked with an asterisk (*) are specifically recommended for further introduction or background to the topic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eilon Vaadia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Paz, R., Vaadia, E. (2009). Learning from Learning: What Can Visuomotor Adaptations Tell us About the Neuronal Representation of Movement?. In: Sternad, D. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 629. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77064-2_11

Download citation

Publish with us

Policies and ethics