Skip to main content

Gut Immunity and Inflammatory Bowel Disease

  • Chapter
Pediatric Inflammatory Bowel Disease

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 2003;3:331–41.

    Article  PubMed  CAS  Google Scholar 

  2. Johansen FE, Brandtzaeg P. Transcriptional regulation of the mucosal IgA system. Trends Immunol 2004;25:150–7.

    Article  PubMed  CAS  Google Scholar 

  3. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004;4:478–85.

    Article  PubMed  CAS  Google Scholar 

  4. Fasano A, Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2005;2:416–22.

    Article  PubMed  CAS  Google Scholar 

  5. Fagarasan S, Honjo T. Intestinal IgA synthesis: regulation of front-line body defences. Nat Rev Immunol 2003;3:63–72.

    Article  PubMed  CAS  Google Scholar 

  6. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003;3:710–20.

    Article  PubMed  CAS  Google Scholar 

  7. Harwig SS, Tan L, Qu XD, Cho Y, Eisenhauer PB, Lehrer RI. Bactericidal properties of murine intestinal phospholipase A2. J Clin Invest 1995;95:603–10.

    PubMed  CAS  Google Scholar 

  8. Newberry RD, Lorenz RG. Organizing a mucosal defense. Immunol Rev 2005;206:6–21.

    Article  PubMed  CAS  Google Scholar 

  9. Cobrin GM, Abreu MT. Defects in mucosal immunity leading to Crohn disease. Immunol Rev 2005;206:277–95.

    Article  PubMed  CAS  Google Scholar 

  10. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, Newman B, Van Oene M, Cescon D, Greenberg G, Griffiths AM, St George-Hyslop PH, Siminovitch KA. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004;36:471–5.

    Article  PubMed  CAS  Google Scholar 

  11. Stoll M, Corneliussen B, Costello CM, Waetzig GH, Mellgard B, Koch WA, Rosenstiel P, Albrecht M, Croucher PJ, Seegert D, Nikolaus S, Hampe J, Lengauer T, Pierrou S, Foelsch UR, Mathew CG, Lagerstrom-Fermer M, Schreiber S. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 2004;36:476–80.

    Article  PubMed  CAS  Google Scholar 

  12. Lee SH, Starkey PM, Gordon S. Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80. J Exp Med 1985;161:475–89.

    Article  PubMed  CAS  Google Scholar 

  13. Smith PD, Ochsenbauer-Jambor C, Smythies LE. Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev 2005;206:149–59.

    Article  PubMed  CAS  Google Scholar 

  14. Smith PD, Ohura K, Masur H, Lane HC, Fauci AS, Wahl SM. Monocyte function in the acquired immune deficiency syndrome. Defective chemotaxis. J Clin Invest 1984;74:2121–8.

    Article  PubMed  CAS  Google Scholar 

  15. Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci U S A 1987;84:5788–92.

    Article  PubMed  CAS  Google Scholar 

  16. Niess JH, Brand S, Gu X, Landsman L, Jung S, McCormick BA, Vyas JM, Boes M, Ploegh HL, Fox JG, Littman DR, Reinecker HC. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005;307:254–8.

    Article  PubMed  CAS  Google Scholar 

  17. Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685–711.

    Article  PubMed  CAS  Google Scholar 

  18. Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, Von Andrian UH. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature 2003;424:88–93.

    Article  PubMed  CAS  Google Scholar 

  19. Fuss IJ, Heller F, Boirivant M, Leon F, Yoshida M, Fichtner-Feigl S, Yang Z, Exley M, Kitani A, Blumberg RS, Mannon P, Strober W. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J Clin Invest 2004;113:1490–7.

    Article  PubMed  CAS  Google Scholar 

  20. Hayday A, Theodoridis E, Ramsburg E, Shires J. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2001;2:997–1003.

    Article  PubMed  CAS  Google Scholar 

  21. Kanamori Y, Ishimaru K, Nanno M, Maki K, Ikuta K, Nariuchi H, Ishikawa H. Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop. J Exp Med 1996;184:1449–59.

    Article  PubMed  CAS  Google Scholar 

  22. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial gamma delta T cells. Science 1998;279:1737–40.

    Article  PubMed  CAS  Google Scholar 

  23. Boismenu R, Havran WL. An innate view of gamma delta T cells. Curr Opin Immunol 1997;9:57–63.

    Article  PubMed  CAS  Google Scholar 

  24. Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2002;2:336–45.

    Article  PubMed  CAS  Google Scholar 

  25. Polak-Charcon S, Shoham J, Ben-Shaul Y. Tight junctions in epithelial cells of human fetal hindgut, normal colon, and colon adenocarcinoma. J Natl Cancer Inst 1980;65:53–62.

    PubMed  CAS  Google Scholar 

  26. Udall JN, Pang K, Fritze L, Kleinman R, Walker WA. Development of gastrointestinal mucosal barrier. I. The effect of age on intestinal permeability to macromolecules. Pediatr Res 1981;15:241–4.

    PubMed  CAS  Google Scholar 

  27. Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 1997;277:949–52.

    Article  PubMed  CAS  Google Scholar 

  28. Trier JS. The Paneth cells: an enigma. Gastroenterology 1966;51:560–2.

    PubMed  CAS  Google Scholar 

  29. Teitelbaum JE, Allan Walker W. The development of mucosal immunity. Eur J Gastroenterol Hepatol 2005;17:1273–8.

    Article  PubMed  Google Scholar 

  30. Marodi L. Innate cellular immune responses in newborns. Clin Immunol 2006;118:137–44.

    Article  PubMed  CAS  Google Scholar 

  31. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307:731–4.

    Article  PubMed  CAS  Google Scholar 

  32. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M. Nod2 mutation in Crohn disease potentiates NF-kappaB activity and IL-1beta processing. Science 2005;307:734–8.

    Article  PubMed  CAS  Google Scholar 

  33. Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF, Rutgeerts PJ. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn disease. Crohn Disease cA2 Study Group. N Engl J Med 1997;337:1029–35.

    Article  PubMed  CAS  Google Scholar 

  34. Orenstein R. Anti-interleukin-12 antibody for active Crohn disease. N Engl J Med 2005;352:627–8.

    Article  PubMed  CAS  Google Scholar 

  35. Marks DJ, Harbord MW, MacAllister R, Rahman FZ, Young J, Al-Lazikani B, Lees W, Novelli M, Bloom S, Segal AW. Defective acute inflammation in Crohn disease: a clinical investigation. Lancet 2006;367:668–78.

    Article  PubMed  CAS  Google Scholar 

  36. Korzenik JR, Dieckgraefe BK, Valentine JF, Hausman DF, Gilbert MJ. Sargramostim for active Crohn disease. N Engl J Med 2005;352:2193–201.

    Article  PubMed  CAS  Google Scholar 

  37. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci U S A 1998;95:258–63.

    Article  PubMed  CAS  Google Scholar 

  38. Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest 2006;116:1218–22.

    Article  PubMed  CAS  Google Scholar 

  39. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006;24:677–88.

    Article  PubMed  CAS  Google Scholar 

  40. Johansson-Lindbom B, Svensson M, Pabst O, Palmqvist C, Marquez G, Forster R, Agace WW. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J Exp Med 2005;202:1063–73.

    Article  PubMed  CAS  Google Scholar 

  41. Berlin C, Berg EL, Briskin MJ, Andrew DP, Kilshaw PJ, Holzmann B, Weissman IL, Hamann A, Butcher EC. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 1993;74:185–95.

    Article  PubMed  CAS  Google Scholar 

  42. Briskin M, Winsor-Hines D, Shyjan A, Cochran N, Bloom S, Wilson J, McEvoy LM, Butcher EC, Kassam N, Mackay CR, Newman W, Ringler DJ. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 1997;151:97–110.

    PubMed  CAS  Google Scholar 

  43. Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006;25:195–201.

    Article  PubMed  CAS  Google Scholar 

  44. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155:1151–64.

    PubMed  CAS  Google Scholar 

  45. Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 2003;170:3939–43.

    PubMed  CAS  Google Scholar 

  46. Maul J, Loddenkemper C, Mundt P, Berg E, Giese T, Stallmach A, Zeitz M, Duchmann R. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 2005;128:1868–78.

    Article  PubMed  CAS  Google Scholar 

  47. Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med 1987;106:892–9.

    Google Scholar 

  48. Brandtzaeg P, Farstad IN, Johansen FE, Morton HC, Norderhaug IN, Yamanaka T. The B-cell system of human mucosae and exocrine glands. Immunol Rev 1999;171:45–87.

    Article  PubMed  CAS  Google Scholar 

  49. Brandtzaeg P, Prydz H. Direct evidence for an integrated function of J chain and secretory component in epithelial transport of immunoglobulins. Nature 1984;311:71–3.

    Article  PubMed  CAS  Google Scholar 

  50. Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 2004;303:1662–5.

    Article  PubMed  CAS  Google Scholar 

  51. Spencer J, Dillon SB, Isaacson PG, MacDonald TT. T cell subclasses in fetal human ileum. Clin Exp Immunol 1986;65:553–8.

    PubMed  CAS  Google Scholar 

  52. Spencer J, MacDonald TT, Isaacson PG. Heterogeneity of non-lymphoid cells expressing HLA-D region antigens in human fetal gut. Clin Exp Immunol 1987;67:415–24.

    PubMed  CAS  Google Scholar 

  53. Cornes JS. Peyer’s patches in the human gut. Proc R Soc Med 1965;58:716.

    PubMed  CAS  Google Scholar 

  54. Perkkio M, Savilahti E. Time of appearance of immunoglobulin-containing cells in the mucosa of the neonatal intestine. Pediatr Res 1980;14:953–5.

    PubMed  CAS  Google Scholar 

  55. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RB^hiCD4+ T cells. Immunity 1994;1:553–62.

    Article  PubMed  CAS  Google Scholar 

  56. Totsuka T, Kanai T, Uraushihara K, Iiyama R, Yamazaki M, Akiba H, Yagita H, Okumura K, Watanabe M. Therapeutic effect of anti-OX40L and anti-TNF-alpha MAbs in a murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol 2003;284:10.

    Google Scholar 

  57. Sugawara K, Olson TS, Moskaluk CA, Stevens BK, Hoang S, Kozaiwa K, Cominelli F, Ley KF, McDuffie M. Linkage to peroxisome proliferator-activated receptor-gamma in SAMP1/YitFc mice and in human Crohn disease. Gastroenterology 2005;128:351–60.

    Article  PubMed  CAS  Google Scholar 

  58. Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F. Interleukin 12 is expressed and actively released by Crohn disease intestinal lamina propria mononuclear cells. Gastroenterology 1997;112:1169–78.

    Article  PubMed  CAS  Google Scholar 

  59. Van Assche G, Vermeire S, Rutgeerts P. Emerging biological treatments in inflammatory bowel diseases. Dig Dis 2006;24:131–6.

    Article  PubMed  Google Scholar 

  60. Probert CS, Chott A, Turner JR, Saubermann LJ, Stevens AC, Bodinaku K, Elson CO, Balk SP, Blumberg RS. Persistent clonal expansions of peripheral blood CD4+ lymphocytes in chronic inflammatory bowel disease. J Immunol 1996;157:3183–91.

    PubMed  CAS  Google Scholar 

  61. Cong Y, Brandwein SL, McCabe RP, Lazenby A, Birkenmeier EH, Sundberg JP, Elson CO. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998;187:855–64.

    Article  PubMed  CAS  Google Scholar 

  62. Lodes MJ, Cong Y, Elson CO, Mohamath R, Landers CJ, Targan SR, Fort M, Hershberg RM. Bacterial flagellin is a dominant antigen in Crohn disease. J Clin Invest 2004;113:1296–306.

    Article  PubMed  CAS  Google Scholar 

  63. Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol 2004;4:953–64.

    Article  PubMed  CAS  Google Scholar 

  64. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004;118:229–41.

    Article  PubMed  CAS  Google Scholar 

  65. Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 2004;127:224–38.

    Article  PubMed  CAS  Google Scholar 

  66. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK. CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 2003;124: 993–1000.

    Article  PubMed  CAS  Google Scholar 

  67. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, Herrlinger KR, Stallmach A, Noack F, Fritz P, Schroder JM, Bevins CL, Fellermann K, Stange EF. NOD2 (CARD15) mutations in Crohn disease are associated with diminished mucosal alpha-defensin expression. Gut 2004;53:1658–64.

    Article  PubMed  CAS  Google Scholar 

  68. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, Ogunbiyi O, Nunez G, Keshav S. Crohn disease and the NOD2 gene: a role for paneth cells. Gastroenterology 2003;125:47–57.

    Article  PubMed  CAS  Google Scholar 

  69. Bevan MJ. Cross-priming. Nat Immunol 2006;7:363–5.

    Article  PubMed  CAS  Google Scholar 

  70. Sutmuller RP, Morgan ME, Netea MG, Grauer O, Adema GJ. Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 2006;27:387–93.

    Article  PubMed  CAS  Google Scholar 

  71. Heuschkel RB, MacDonald TT, Monteleone G, Bajaj-Elliott M, Smith JA, Pender SL. Imbalance of stromelysin-1 and TIMP-1 in the mucosal lesions of children with inflammatory bowel disease. Gut 2000;47:57–62.

    Article  PubMed  CAS  Google Scholar 

  72. Pavlick KP, Laroux FS, Fuseler J, Wolf RE, Gray L, Hoffman J, Grisham MB. Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med 2002;33:311–22.

    Article  PubMed  CAS  Google Scholar 

  73. Nanthakumar NN, Fusunyan RD, Sanderson I, Walker WA. Inflammation in the developing human intestine: A possible pathophysiologic contribution to necrotizing enterocolitis. Proc Natl Acad Sci U S A 2000;97:6043–8.

    Article  PubMed  CAS  Google Scholar 

  74. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999;69:1035S–1045S.

    PubMed  CAS  Google Scholar 

  75. Mellander L, Carlsson B, Jalil F, Soderstrom T, Hanson LA. Secretory IgA antibody response against Escherichia coli antigens in infants in relation to exposure. J Pediatr 1985;107:430–3.

    Article  PubMed  CAS  Google Scholar 

  76. Fadel S, Sarzotti M. Cellular immune responses in neonates. Int Rev Immunol 2000;19:173–93.

    PubMed  CAS  Google Scholar 

  77. Rijkers GT, Dollekamp EG, Zegers BJ. The in vitro B-cell response to pneumococcal polysaccharides in adults and neonates. Scand J Immunol 1987;25:447–52.

    Article  PubMed  CAS  Google Scholar 

  78. Karlsson MR, Rugtveit J, Brandtzaeg P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow’s milk allergy. J Exp Med 2004;199:1679–88.

    Article  PubMed  CAS  Google Scholar 

  79. Hanson DG. Ontogeny of orally induced tolerance to soluble proteins in mice. I. Priming and tolerance in newborns. J Immunol 1981;127:1518–24.

    PubMed  CAS  Google Scholar 

  80. Rowe J, Macaubas C, Monger TM, Holt BJ, Harvey J, Poolman JT, Sly PD, Holt PG. Antigen-specific responses to diphtheria-tetanus-acellular pertussis vaccine in human infants are initially Th2 polarized. Infect Immun 2000;68:3873–7.

    Article  PubMed  CAS  Google Scholar 

  81. Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004;4:553–64.

    Article  PubMed  CAS  Google Scholar 

  82. Macdonald TT, Monteleone G. Immunity, inflammation, and allergy in the gut. Science 2005;307:1920–5.

    Article  PubMed  CAS  Google Scholar 

  83. Oliva-Hemker M, Fiocchi C. Etiopathogenesis of inflammatory bowel disease: the importance of the pediatric perspective. Inflamm Bowel Dis 2002;8:112–28.

    Article  PubMed  Google Scholar 

  84. Tannock GW. New perceptions of the gut microbiota: implications for future research. Gastroenterol Clin North Am;2005 Sep;34:361–82.

    Google Scholar 

  85. Spencer DM, Veldman GM, Banerjee S, Willis J, Levine AD. Distinct inflammatory mechanisms mediate early versus late colitis in mice. Gastroenterology 2002;122:94–105.

    Article  PubMed  Google Scholar 

  86. Bamias G, Martin C, Mishina M, Ross WG, Rivera-Nieves J, Marini M, Cominelli F. Proinflammatory effects of TH2 cytokines in a murine model of chronic small intestinal inflammationGastroenterology 2005;128:654–66.

    Article  PubMed  CAS  Google Scholar 

  87. Kugathasan S, Werlin SL, Martinez A, Rivera MT, Heikenen JB, Binion DG. Prolonged duration of response to infliximab in early but not late pediatric Crohn disease. Am J Gastroenterol 2000;95:3189–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Faubion, W.A., Fiocchi, C. (2008). Gut Immunity and Inflammatory Bowel Disease. In: Mamula, P., Markowitz, J.E., Baldassano, R.N. (eds) Pediatric Inflammatory Bowel Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73481-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73481-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73480-4

  • Online ISBN: 978-0-387-73481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics