Skip to main content

Skeletal Health in Pediatric Inflammatory Bowel Disease

  • Chapter
Pediatric Inflammatory Bowel Disease
  • 815 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seeman E, Delmas PD. Bone quality–the material and structural basis of bone strength and fragility. N Engl J Med 2006;354(21):2250–61.

    Article  PubMed  CAS  Google Scholar 

  2. Kirschner BS, Sutton MM. Somatomedin-C levels in growth-impaired children and adolescents with chronic inflammatory bowel disease. Gastroenterology 1986;91(4):830–6.

    PubMed  CAS  Google Scholar 

  3. Sylvester FA, Davis PM, Wyzga N, Hyams JS, Lerer T. Are activated T cells regulators of bone metabolism in children with Crohn disease? J Pediatr 2006;148(4):461–6.

    Article  PubMed  CAS  Google Scholar 

  4. Dresner-Pollak R, Karmeli F, Eliakim R, Ackerman Z, Rachmilewitz D. Increased urinary N-telopeptide cross-linked type 1 collagen predicts bone loss in patients with inflammatory bowel disease. Am J Gastroenterol 2000;95(3):699–704.

    Article  PubMed  CAS  Google Scholar 

  5. Sylvester FA. IBD and skeletal health: children are not small adults! Inflamm Bowel Dis 2005;11(11):1020–3.

    Article  PubMed  Google Scholar 

  6. Bachrach LK. Osteoporosis and measurement of bone mass in children and adolescents. Endocrinol Metab Clin North Am 2005;34(3):521–35.

    Article  PubMed  Google Scholar 

  7. Osteoporosis prevention, diagnosis, and therapy. NIH Consens Statement 2000;17(1):1–45.

    Google Scholar 

  8. Lu PW, Briody JN, Ogle GD, Morley K, Humphries IR, Allen J, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res 1994;9(9):1451–8.

    Article  PubMed  CAS  Google Scholar 

  9. Seeman E. Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 2001;86(10):4576–84.

    Article  PubMed  CAS  Google Scholar 

  10. Herzog D, Bishop N, Glorieux F, Seidman EG. Interpretation of bone mineral density values in pediatric Crohn disease. Inflamm Bowel Dis 1998;4(4):261–7.

    Article  PubMed  CAS  Google Scholar 

  11. Stains JP, Civitelli R. Cell-to-cell interactions in bone. Biochem Biophys Res Commun 2005;328(3):721–7.

    Article  PubMed  CAS  Google Scholar 

  12. Parfitt AM, Travers R, Rauch F, Glorieux FH. Structural and cellular changes during bone growth in healthy children. Bone 2000;27(4):487–94.

    Article  PubMed  CAS  Google Scholar 

  13. Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R. The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 2004;34(5):771–5.

    Article  PubMed  Google Scholar 

  14. Tanaka Y, Nakayamada S, Okada Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr Drug Targets Inflamm Allergy 2005;4(3):325–8.

    Article  PubMed  CAS  Google Scholar 

  15. Feng X. Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene 2005;350(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  16. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999;402(6759):304–9.

    Article  PubMed  CAS  Google Scholar 

  17. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397(6717):315–23.

    Article  PubMed  CAS  Google Scholar 

  18. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003;111(8):1221–1230.

    Article  PubMed  CAS  Google Scholar 

  19. Takayanagi H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J Mol Med 2005;83(3):170–9.

    Article  PubMed  CAS  Google Scholar 

  20. Hofbauer LC, Lacey DL, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S. Interleukin-1beta and tumor necrosis factor-alpha, but not interleukin-6, stimulate osteoprotegerin ligand gene expression in human osteoblastic cells. Bone 1999;25(3):255–9.

    Article  PubMed  CAS  Google Scholar 

  21. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, et al. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 2000;106(10):1229–37.

    Article  PubMed  CAS  Google Scholar 

  22. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-a induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000;106(12):1481–1488.

    PubMed  CAS  Google Scholar 

  23. Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y. Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 2001;276(1):563–8.

    Article  PubMed  CAS  Google Scholar 

  24. Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ. TNFa Potently Activates Osteoclasts, through a Direct Action Independent of and Strongly Synergistic with RANKL. Endocrinology 2002;143(3):1108–1118.

    Article  PubMed  CAS  Google Scholar 

  25. Roggia C, Gao Y, Cenci S, Weitzmann MN, Toraldo G, Isaia G, et al. Up-regulation of TNF-producing T cells in the bone marrow: a key mechanism by which estrogen deficiency induces bone loss in vivo. Proc Natl Acad Sci U S A 2001;98(24):13960–5.

    Article  PubMed  CAS  Google Scholar 

  26. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997;89(2):309–19.

    Article  PubMed  CAS  Google Scholar 

  27. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12(9):1260–1268.

    PubMed  CAS  Google Scholar 

  28. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 1998;247(3):610–5.

    Article  PubMed  CAS  Google Scholar 

  29. Takayanagi H, Kim S, Matsuo K, Suzuki H, Suzuki T, Sato K, et al. RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 2002;416(6882):744–9.

    Article  PubMed  CAS  Google Scholar 

  30. Takai H, Kanematsu M, Yano K, Tsuda E, Higashio K, Ikeda K, et al. Transforming Growth Factor-b Stimulates the Production of Osteoprotegerin/Osteoclastogenesis Inhibitory Factor by Bone Marrow Stromal Cells. J Biol Chem 1998;273(42):27091–27096.

    Article  PubMed  CAS  Google Scholar 

  31. Glass DA, 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 2005;8(5):751–64.

    Article  PubMed  CAS  Google Scholar 

  32. Spencer GJ, Utting JC, Etheridge SL, Arnett TR, Genever PG. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 2006;119(Pt 7):1283–96.

    Article  PubMed  CAS  Google Scholar 

  33. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000;408(6812):600–5.

    Article  PubMed  CAS  Google Scholar 

  34. Sasaki H, Hou L, Belani A, Wang CY, Uchiyama T, Muller R, et al. IL-10, but not IL-4, suppresses infection-stimulated bone resorption in vivo. J Immunol 2000;165(7):3626–30.

    PubMed  CAS  Google Scholar 

  35. Owens JM, Gallagher AC, Chambers TJ. IL-10 modulates formation of osteoclasts in murine hemopoietic cultures. J Immunol 1996;157(2):936–40.

    PubMed  CAS  Google Scholar 

  36. Horwood NJ, Elliott J, Martin TJ, Gillespie MT. IL-12 alone and in synergy with IL-18 inhibits osteoclast formation in vitro. J Immunol 2001;166(8):4915–21.

    PubMed  CAS  Google Scholar 

  37. Nagata N, Kitaura H, Yoshida N, Nakayama K. Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: involvement of IFN-[gamma] possibly induced from non-T cell population. Bone 2003;33(4):721–732.

    Article  PubMed  CAS  Google Scholar 

  38. Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell 2000;103(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  39. Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 2004;95(11):1046–57.

    Article  PubMed  CAS  Google Scholar 

  40. Sandberg WJ, Yndestad A, Oie E, Smith C, Ueland T, Ovchinnikova O, et al. Enhanced T-cell expression of RANK ligand in acute coronary syndrome: possible role in plaque destabilization. Arterioscler Thromb Vasc Biol 2006;26(4):857–63.

    Article  PubMed  CAS  Google Scholar 

  41. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997;390(6656):175–9.

    Article  PubMed  CAS  Google Scholar 

  42. Williamson E, Bilsborough JM, Viney JL. Regulation of mucosal dendritic cell function by receptor activator of NF-kappa B (RANK)/RANK ligand interactions: impact on tolerance induction. J Immunol 2002;169(7):3606–12.

    PubMed  CAS  Google Scholar 

  43. Yun TJ, Chaudhary PM, Shu GL, Frazer JK, Ewings MK, Schwartz SM, et al. OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 1998;161(11):6113–21.

    PubMed  CAS  Google Scholar 

  44. Theill LE, Boyle WJ, Penninger JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 2002;20:795–823.

    Google Scholar 

  45. Bernstein CN, Sargent M, Leslie WD. Serum osteoprotegerin is increased in Crohn disease: a population-based case control study. Inflamm Bowel Dis 2005;11(4):325–30.

    Article  PubMed  Google Scholar 

  46. Moschen AR, Kaser A, Enrich B, Ludwiczek O, Gabriel M, Obrist P, et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 2005;54(4):479–87.

    Article  PubMed  CAS  Google Scholar 

  47. Franchimont N, Reenaers C, Lambert C, Belaiche J, Bours V, Malaise M, et al. Increased expression of receptor activator of NF-kappa B ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn disease patients. Clin Exp Immunol 2004;138(3):491–498.

    Article  PubMed  CAS  Google Scholar 

  48. Canalis E. The fate of circulating osteoblasts. N Engl J Med 2005;352(19):2014–6.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000;141(7):2674–82.

    Article  PubMed  CAS  Google Scholar 

  50. Difedele LM, He J, Bonkowski EL, Han X, Held MA, Bohan A, et al. Tumor Necrosis Factor alpha Blockade Restores Growth Hormone Signaling in Murine Colitis. Gastroenterology 2005;128(5):1278–1291.

    Article  PubMed  CAS  Google Scholar 

  51. Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE, et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem 2006;281(7):4326–33.

    Article  PubMed  CAS  Google Scholar 

  52. Shen F, Ruddy MJ, Plamondon P, Gaffen SL. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-{alpha}-induced genes in bone cells. J Leukoc Biol 2005;77(3):388–399.

    Article  PubMed  CAS  Google Scholar 

  53. Franchimont N, Putzeys V, Collette J, Vermeire S, Rutgeerts P, De Vos M, et al. Rapid improvement of bone metabolism after infliximab treatment in Crohn disease. Alimentary Pharmacology and Therapeutics 2004;20(6):607–614.

    Article  PubMed  CAS  Google Scholar 

  54. Ryan BM, Russel MG, Schurgers L, Wichers M, Sijbrandij J, Stockbrugger RW, et al. Effect of antitumour necrosis factor-alpha therapy on bone turnover in patients with active Crohn disease: a prospective study. Aliment Pharmacol Ther 2004;20(8):851–7.

    Article  PubMed  CAS  Google Scholar 

  55. Bernstein M, Irwin S, Greenberg GR. Maintenance infliximab treatment is associated with improved bone mineral density in Crohn disease. Am J Gastroenterol 2005;100(9):2031–5.

    Article  PubMed  CAS  Google Scholar 

  56. Weitzmann MN, Cenci S, Rifas L, Haug J, Dipersio J, Pacifici R. T cell activation induces human osteoclast formation via receptor activator of nuclear factor kappaB ligand-dependent and -independent mechanisms. J Bone Miner Res 2001;16(2):328–37.

    Article  PubMed  CAS  Google Scholar 

  57. Takayanagi H. Inflammatory bone destruction and osteoimmunology. J Periodontal Res 2005;40(4):287–93.

    Article  PubMed  CAS  Google Scholar 

  58. Roggia C, Tamone C, Cenci S, Pacifici R, Isaia GC. Role of TNF-alpha producing T-cells in bone loss induced by estrogen deficiency. Minerva Med 2004;95(2):125–32.

    PubMed  CAS  Google Scholar 

  59. Weitzmann MN, Pacifici R. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 2006;116(5):1186–1194.

    Article  PubMed  CAS  Google Scholar 

  60. Lin CL, Moniz C, Chambers TJ, Chow JW. Colitis causes bone loss in rats through suppression of bone formation. Gastroenterology 1996;111(5):1263–71.

    Article  PubMed  CAS  Google Scholar 

  61. Dresner-Pollak R, Gelb N, Rachmilewitz D, Karmeli F, Weinreb M. Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones. Gastroenterology 2004;127(3):792–801.

    Article  PubMed  CAS  Google Scholar 

  62. Ashcroft AJ, Cruickshank SM, Croucher PI, Perry MJ, Rollinson S, Lippitt JM, et al. Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin. Immunity 2003;19(6):849–61.

    Article  PubMed  CAS  Google Scholar 

  63. Byrne FR, Morony S, Warmington K, Geng Z, Brown HL, Flores SA, et al. CD4+CD45RBHi T cell transfer induced colitis in mice is accompanied by osteopenia which is treatable with recombinant human osteoprotegerin. Gut 2005;54(1):78–86.

    Article  PubMed  CAS  Google Scholar 

  64. Issenman RM, Atkinson SA, Radoja C, Webber CE. Spinal Bone Mass During The First Two Years of Treatment in Pediatric Crohn Disease. J Pediatr Gastroenterol Nutr 1996.

    Google Scholar 

  65. Harpavat M, Greenspan SL, O’Brien C, Chang CC, Bowen A, Keljo DJ. Altered bone mass in children at diagnosis of Crohn disease: a pilot study. J Pediatr Gastroenterol Nutr 2005;40(3):295–300.

    Article  PubMed  Google Scholar 

  66. Ahmed SF, Horrocks IA, Patterson T, Zaidi S, Ling SC, McGrogan P, et al. Bone mineral assessment by dual energy X-ray absorptiometry in children with inflammatory bowel disease: evaluation by age or bone area. J Pediatr Gastroenterol Nutr 2004;38(3):276–80.

    Article  PubMed  CAS  Google Scholar 

  67. Croucher PI, Vedi S, Motley RJ, Garrahan NJ, Stanton MR, Compston JE. Reduced bone formation in patients with osteoporosis associated with inflammatory bowel disease. Osteoporos Int 1993;3(5):236–41.

    Article  PubMed  CAS  Google Scholar 

  68. Hyams JS, Wyzga N, Kreutzer DL, Justinich CJ, Gronowicz GA. Alterations in bone metabolism in children with inflammatory bowel disease: an in vitro study. J Pediatr Gastroenterol Nutr 1997;24(3):289–95.

    Article  PubMed  CAS  Google Scholar 

  69. Varghese S, Wyzga N, Griffiths AM, Sylvester FA. Effects of serum from children with newly diagnosed Crohn disease on primary cultures of rat osteoblasts. J Pediatr Gastroenterol Nutr 2002;35(5):641–8.

    Article  PubMed  CAS  Google Scholar 

  70. Sylvester FA, Wyzga N, Hyams JS, Gronowicz GA. Effect of Crohn disease on bone metabolism in vitro: a role for interleukin-6. J Bone Miner Res 2002;17(4):695–702.

    Article  PubMed  CAS  Google Scholar 

  71. Burnham JM, Shults J, Semeao E, Foster B, Zemel BS, Stallings VA, et al. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res 2004;19(12):1961–8.

    Article  PubMed  Google Scholar 

  72. Burnham JM, Shults J, Semeao E, Foster BJ, Zemel BS, Stallings VA, et al. Body-composition alterations consistent with cachexia in children and young adults with Crohn disease. Am J Clin Nutr 2005;82(2):413–420.

    PubMed  CAS  Google Scholar 

  73. Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc 2006;81(3):353–73.

    PubMed  CAS  Google Scholar 

  74. Sentongo TA, Semaeo EJ, Stettler N, Piccoli DA, Stallings VA, Zemel BS. Vitamin D status in children, adolescents, and young adults with Crohn disease. Am J Clin Nutr 2002;76(5):1077–81.

    PubMed  CAS  Google Scholar 

  75. Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med 2000;133(10):795–9.

    PubMed  CAS  Google Scholar 

  76. Loftus EV, Jr., Crowson CS, Sandborn WJ, Tremaine WJ, O’Fallon WM, Melton LJ, 3rd. Long-term fracture risk in patients with Crohn disease: a population-based study in Olmsted County, Minnesota. Gastroenterology 2002;123(2):468–75.

    Article  PubMed  Google Scholar 

  77. Klaus J, Armbrecht G, Steinkamp M, Bruckel J, Rieber A, Adler G, et al. High prevalence of osteoporotic vertebral fractures in patients with Crohn disease. Gut 2002;51(5):654–8.

    Article  PubMed  CAS  Google Scholar 

  78. Semeao EJ, Stallings VA, Peck SN, Piccoli DA. Vertebral compression fractures in pediatric patients with Crohn disease. Gastroenterology 1997;112(5):1710–3.

    Article  PubMed  CAS  Google Scholar 

  79. Gupta A, Paski S, Issenman R, Webber C. Lumbar spine bone mineral density at diagnosis and during follow-up in children with IBD. J Clin Densitom 2004;7(3):290–5.

    Article  PubMed  Google Scholar 

  80. van der Sluis IM, de Ridder MA, Boot AM, Krenning EP, de Muinck Keizer-Schrama SM. Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child 2002;87(4):341–7; discussion 341–7.

    Article  PubMed  Google Scholar 

  81. Bourges O, Dorgeret S, Alberti C, Hugot JP, Sebag G, Cezard JP. [Low bone mineral density in children with Crohn disease]. Arch Pediatr 2004;11(7):800–6.

    Article  PubMed  CAS  Google Scholar 

  82. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8–17 years of Age. Calcif Tissue Int 1996;59(5):344–51.

    Article  PubMed  CAS  Google Scholar 

  83. Scheer K, Kratzsch J, Deutscher J, Gelbrich G, Borte G, Kiess W. Bone metabolism in 53 children and adolescents with chronic inflammatory bowel disease. Klin Padiatr 2004;216(2):62–6.

    Article  PubMed  CAS  Google Scholar 

  84. Semeao EJ, Jawad AF, Zemel BS, Neiswender KM, Piccoli DA, Stallings VA. Bone mineral density in children and young adults with Crohn disease. Inflamm Bowel Dis 1999;5(3):161–6.

    Article  PubMed  CAS  Google Scholar 

  85. Boot AM, Bouquet J, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density and nutritional status in children with chronic inflammatory bowel disease. Gut 1998;42(2):188–94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sylvester, F. (2008). Skeletal Health in Pediatric Inflammatory Bowel Disease. In: Mamula, P., Markowitz, J.E., Baldassano, R.N. (eds) Pediatric Inflammatory Bowel Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73481-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-73481-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-73480-4

  • Online ISBN: 978-0-387-73481-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics