Skip to main content

Display of Key Pictures from Animation: Effects on Learning

  • Chapter
Understanding Multimedia Documents

Abstract

Research carried out so far has failed to establish systematic learning benefits of animated graphics over static ones, even in the case of dynamic systems. We hypothesize that animation promotes the understanding of dynamic systems if delivery features decrease the perceptual and cognitive load of processing the animation. We therefore report an experimental study investigating the effects of two delivery features: the continuity of the information flow (animation vs. series of static graphics) and the permanence of critical snapshots from the animation. The animation group outperformed the static group for retention and transfer performance. However, the presence of snapshots of critical steps had no significant effect. The results are discussed in terms of cognitive load and metacognitive processing engaged by learners while processing the multimedia instruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baddeley, A. (1997). Human memory: Theory and practice. London: Lawrence Erlbaum.

    Google Scholar 

  • Baddeley, A. (2000). The Episodic Buffer: A New Component of Working Memory?” Trends in Cognitive Sciences, 4, 417–423.

    Article  Google Scholar 

  • Bétrancourt, M., & Tversky, B. (2000). Effects of computer animation on users’ performance: A review. Le Travail Humain, 63, 311–329.

    Google Scholar 

  • Brünken, R., Steinbacher, S., Plass, J. L. & Leutner, D. (2002) Assessment of cognitive load in multimedia learning using dual-task methodology. Experimental Psychology, 49, 1–12

    Google Scholar 

  • Catrambone, R., & Fleming Seay, A. (2002). Using animation to help students learn computer algorithms. Human Factors, 44, 495–511.

    Article  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.

    Google Scholar 

  • De Corte, E. (2003). Designing learning environment that foster the productive use of acquired knowledge and skills. In E. De Corte, L. Verschaffel, N. Entwistle & J. van Merrienböer (Eds.) Unravelling basic components and dimensions of powerful learning environments. (pp. 21–33). Pergamon: Elsevier Science Ltd.

    Google Scholar 

  • Dillenbourg, P., & Betrancourt, M. (2006). Collaboration load. In J. Elen & R. E. Clark (Eds.), Dealing with complexity in learning environments (pp. 141–165) Advances in Learning and Instruction Series, Pergamon.

    Google Scholar 

  • Dwyer, F. M. (1982/1983). The program of systematic evaluation: A brief review. International Journal of Instructional Media, 10, 23–38.

    Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.

    Article  Google Scholar 

  • Gerjets, P., Scheiter, K., & Catrambone, R. (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 33–58

    Article  Google Scholar 

  • Gyselink, V., Ehrlich, M. -F., Cornoldi, C., de Beni R., & Dubois, V. (2000). Visuospatial working memory in learning from multimedia systems. Journal of Computer Assisted Learning, 16, 166–176.

    Article  Google Scholar 

  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of experimental and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 39–183). Amsterdam: North Holland.

    Google Scholar 

  • Hegarty, M. (1992). Mental animation: Inferring motion from static displays of mechanical systems. Journal of experimental psychology: Learning, Memory and Cognition, 18, 1084–1102.

    Article  Google Scholar 

  • Hegarty, M., & Sims, V. K. (1994). Individual differences in mental animation during mechanical reasoning. Memory & Cognition, 22, 411–430.

    Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference and consciousness. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kaiser, M. K., Proffitt, D. R., Whelan, S. M., & Hecht, H. (1992). Influence of animation on dynamical judgements. Journal of experimental Psychology: Human Perception and performance, 18, 669–690.

    Article  Google Scholar 

  • Levie, W. H., & Lentz, R. (1982). Effects of text illustration: A review of research. Educational Communication and Technology Journal, 30, 195–232.

    Google Scholar 

  • Levin, J. R., Anglin G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose, in D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: I. basic research (pp. 116–135). New York: Springer.

    Google Scholar 

  • Lowe, R. (1999). Extracting information from an animation during complex visual processing. European Journal of the Psychology of Education, 14, 225–244.

    Article  Google Scholar 

  • Lowe, R. (2003). Animation and learning: selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–176.

    Article  Google Scholar 

  • Lowe, R. K. (2004). Interrogation of a dynamic visualization during learning. Learning and Instruction, 14, 257–274.

    Article  Google Scholar 

  • Mayer, R. E. (1989). Models for understanding. Review of Educational Research, 59 (1), 43–64.

    Google Scholar 

  • Mayer, R. E. (2001). Multimedia learning. Cambridge: University Press.

    Google Scholar 

  • Mayer, R. E. (2003). The promise of multimedia learning: using the same instructional design methods across different media. Learning and Instruction, 13, 125–139.

    Article  Google Scholar 

  • Mayer, R. E., & Chandler, P. (2001). When learning is just a click away: Does simple interaction foster deeper understanding of multimedia messages? Journal of Educational Psychology, 93(2), 390–397.

    Article  Google Scholar 

  • Mayer, R. E., Heiser, J., & Lonn, S. (2001). Cognitive constraints on Multimedia learning: When presenting more material results in less understanding. Journal of Educational Psychology, 93(1), 187–198.

    Article  Google Scholar 

  • Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12, 107–119.

    Article  Google Scholar 

  • Morrison, J., & Tversky, B. (2001). The (in)effectiveness of animation in instruction. In J. Jacko & A. Sears (Eds.), Extended abstracts of the ACM conference on human factors in computing systems (pp. 377–378). Seattle: ACM.

    Google Scholar 

  • Narayanan, N. H., & Hegarty, M. (2002). Multimedia design for communication of dynamic information. International Journal of Human-Computer Studies, 57, 279–315.

    Article  Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (Eds.). (2004). Advances in cognitive load theory: Methodology and instructional design [Special issue]. Instructional Science, 32, 1–189.

    Article  Google Scholar 

  • Palmiter, S., & Elkerton, J. (1993). Animated demonstrations for learning procedural computer-based tasks. Human-Computer Interaction, 8, 193–216.

    Article  Google Scholar 

  • Pane, J. F., Corbett, A. T., & John, B. E. (1996). Assessing dynamics in computer-based instruction. In M. J. Tauber (Ed.), Proceedings of the ACM conference on human factors in computing systems (pp. 797–804). Vancouver: ACM.

    Google Scholar 

  • Rebetez, C., Sangin, M., Bétrancourt, M., & Dillenbourg, P. (2004). Effects of collaboration in the context of learning from animations, In Proceedings of the EARLI SIG meeting on comprehension of texts and graphics: basic and applied issues (pp. 187–192). September 2004, Valencia (Spain).

    Google Scholar 

  • Rieber, L. P. (1989). The effects of computer animated elaboration strategies and practice on factual and application learning in an elementary science lesson. Journal of Educational Computing Research, 5, 431–444.

    Article  Google Scholar 

  • Schnotz, W. (2001). Sign sytems, technologies, and the acquisition of knowledge. In J. F. Rouet, J. Levonen, & A. Biardeau (Eds.), Multimedia learning: Cognitive and instructional issues (pp. 9–29). Amsterdam: Elsevier.

    Google Scholar 

  • Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representation. Learning and Instruction, 13, 141–156.

    Article  Google Scholar 

  • Schnotz, W., Böckheler, J., & Grzondziel, H. (1999). Individual and co-operative learning with interactive animated pictures. European Journal of Psychology of Education, 14, 245–265.

    Article  Google Scholar 

  • Schnotz, W., & Lowe, R. K. (2003). External and internal representations in multimedia learning. Learning and Instruction, 13, 117–123.

    Article  Google Scholar 

  • Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185–233.

    Article  Google Scholar 

  • Sweller, J. (2003). Evolution of human cognitive architecture. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 43, pp. 215–266). New-York: Academic Press.

    Google Scholar 

  • Tabbers, H. K., Martens, R. L., & van Merriënboer, J. J. G. (2004). Multimedia instructions and cognitive load theory: effect of modality and cueing. British Journal of Educational Psychology, 74, 71–81.

    Article  Google Scholar 

  • Thompson, S. V., & Riding, R. J. (1990). The effect of animated diagrams on the understanding of a mathematical demonstration in l- to 14-year-old pupils. British Journal of Educational Psychology, 60, 93–98.

    Google Scholar 

  • Tsang, P. S., & Velazquez, V. L. (1996). Diagnosticity and multidimensional subjective workload ratings. Ergonomics, 39, 358–381.

    Article  Google Scholar 

  • Tversky, B., Bauer-Morrison, J., & Bétrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57, 247–262.

    Article  Google Scholar 

Download references

Acknowledgments

The research reported here was part of the third author’s master thesis. We are grateful to Cyril Rebetez and the two anonymous reviewers for their helpful comments on earlier draft of this chapter. We thank Monica Axelrad for proofreading the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireille Bétrancourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bétrancourt, M., Dillenbourg, P., Clavien, L. (2008). Display of Key Pictures from Animation: Effects on Learning. In: Rouet, JF., Lowe, R., Schnotz, W. (eds) Understanding Multimedia Documents. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73337-1_4

Download citation

Publish with us

Policies and ethics