Skip to main content

Psychiatric Disturbances of Attention

  • Chapter
  • First Online:
The Neuropsychology of Attention

Abstract

Attentional disturbances occurring among people with four psychiatric conditions will be considered: (1) affective disorders, (2) schizophrenia, (3) attention deficit hyperactivity disorder (ADHD), and (4) anxiety/stress disorders. For each of these disorders, the nature and the underlying pathophysiological mechanisms that account for disturbances of attention will be considered. We will also discuss evidence from the field of behavioral medicine that implicates attention as contributing to particular health risk factors, including pain, obesity, physical activity, and substance dependence, particularly smoking and heavy alcohol and drug use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Psychiatric Association. (2000). Task Force on DSM-IV. Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th ed.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  2. Heilman, K. M., Bowers, D., Coslett, H. B., & Watson, R. T. (1983). Directional hypokinesia in neglect. Neurology, 2(33), 104.

    Google Scholar 

  3. Heilman, K., & Van Den Abell, T. (1979). Right hemispheric dominance for mediating cerebral activation. Neuropsychologia, 17, 315–321.

    Google Scholar 

  4. Heilman, K. M., Schwartz, H. D., & Watson, R. T. (1978). Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology, 28(3), 229–232.

    Google Scholar 

  5. Mindham, H. S. (1970). Psychiatric syndromes in Parkinsonism. Journal of Neurology, Neurosurgery, and Psychiatry, 30, 188–191.

    Google Scholar 

  6. Mayeux, R., Stern, Y., Rosen, J., & Leventhal, J. (1981). Depression, intellectual impairment, and Parkinson disease. Neurology, 31, 645–650.

    Google Scholar 

  7. Butter, C. M. (1969). Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in macaca mulatta. Physiology and Behavior, 4, 163–171.

    Google Scholar 

  8. Butter, C. M., McDonald, J. A., & Snyder, D. R. (1969). Orality, preference behavior, and reinforcement value of nonfood object in monkeys with orbital frontal lesions. Science (New York, N.Y.), 164(885), 1306–1307.

    Google Scholar 

  9. Butter, C. M., Mishkin, M., & Rosvold, H. E. (1963). Conditioning and extinction of a food-rewarded response after selective ablations of frontal cortex in rhesus monkeys. Experimental Neurology, 7, 65–75.

    PubMed  Google Scholar 

  10. Butter, C. M., & Snyder, D. R. (1972). Alterations in aversive and aggressive behaviors following orbital frontal lesions in rhesus monkeys. Acta Neurobiologiae Experimentalis, 32(2), 525–565.

    PubMed  Google Scholar 

  11. Butter, C. M., Snyder, D. R., & McDonald, J. A. (1970). Effects of orbital frontal lesions on aversive and aggressive behaviors in rhesus monkeys. Journal of Comparative and Physiological Psychology, 72(1), 132–144.

    PubMed  Google Scholar 

  12. Damasio, A., & Van Hoesen, G. W. (1983). Emotional disturbances associated with focal lesions of the limbic frontal lobe. In K. Heilman & P. Satz (Eds.), Neuropsychology of human emotion (Advances in neuropsychology and behavioral neurology, Vol. 1). New York, NY: Oxford University Press.

    Google Scholar 

  13. Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.

    Google Scholar 

  14. Mayeux, R. (1983). Emotional changes associated with basal ganglia disorders. In K. M. Heilman & P. Satz (Eds.), Neuropsychology of human emotion. New York: Guilford.

    Google Scholar 

  15. Damasio, A. (2003). Feelings of emotion and the self. Annals of the New York Academy of Sciences, 1001, 253–261.

    PubMed  Google Scholar 

  16. Bear, D., Schenk, L., & Benson, H. (1981). Increased autonomic responses to neutral and emotional stimuli in patients with temporal lobe epilepsy. The American Journal of Psychiatry, 138(6), 843–845.

    PubMed  Google Scholar 

  17. Bear, D., & Fedio, F. (1977). Quantitative analysis of interictal behavior in temporal lobe epilepsy. Archives of Neurology, 34, 454–467.

    PubMed  Google Scholar 

  18. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873–880.

    PubMed  Google Scholar 

  19. Mayeux, R. (1984). Behavioral manifestations of movement disorders. Parkinson’s and Huntington’s disease. Neurologic Clinics, 2(3), 527–540.

    PubMed  Google Scholar 

  20. Paradiso, S., Anderson, B. M., Boles Ponto, L. L., Tranel, D., & Robinson, R. G. (2011). Altered neural activity and emotions following right middle cerebral artery stroke. Journal of Stroke and Cerebrovascular Diseases, 20(2), 94–104.

    PubMed  Google Scholar 

  21. Le Jeune, F., Peron, J., Biseul, I., et al. (2008). Subthalamic nucleus stimulation affects orbitofrontal cortex in facial emotion recognition: A PET study. Brain, 131(Pt 6), 1599–1608.

    PubMed  Google Scholar 

  22. Calder, A. J., Keane, J., Lawrence, A. D., & Manes, F. (2004). Impaired recognition of anger following damage to the ventral striatum. Brain, 127(Pt 9), 1958–1969.

    PubMed  Google Scholar 

  23. Tchiteya, B. M., Lecours, A. R., Elie, R., & Lupien, S. J. (2003). Impact of a unilateral brain lesion on cortisol secretion and emotional state: Anterior/posterior dissociation in humans. Psychoneuroendocrinology, 28(5), 674–686.

    PubMed  Google Scholar 

  24. Stocchi, F., & Brusa, L. (2000). Cognition and emotion in different stages and subtypes of Parkinson’s disease. Journal of Neurology, 247(Suppl 2), II114–II121.

    PubMed  Google Scholar 

  25. Zeilig, G., Drubach, D. A., Katz-Zeilig, M., & Karatinos, J. (1996). Pathological laughter and crying in patients with closed traumatic brain injury. Brain Injury, 10(8), 591–597.

    PubMed  Google Scholar 

  26. Saint-Cyr, J. A., Taylor, A. E., & Nicholson, K. (1995). Behavior and the basal ganglia. Advances in Neurology, 65, 1–28.

    PubMed  Google Scholar 

  27. Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.

    PubMed  Google Scholar 

  28. Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.

    PubMed  Google Scholar 

  29. Tasch, E., Cendes, F., Li, L. M., et al. (1998). Hypothalamic hamartomas and gelastic epilepsy: A spectroscopic study. Neurology, 51(4), 1046–1050.

    PubMed  Google Scholar 

  30. Kojima, K., Ogomori, K., Mori, Y., Hirata, K., Kinukawa, N., & Tashiro, N. (1996). Relationship of emotional behaviors induced by electrical stimulation of the hypothalamus to changes in EKG, heart, stomach, adrenal glands, and thymus. Psychosomatic Medicine, 58(4), 383–391.

    PubMed  Google Scholar 

  31. Weddell, R. A. (1994). Effects of subcortical lesion site on human emotional behavior. Brain and Cognition, 25(2), 161–193.

    PubMed  Google Scholar 

  32. Kling, A. S., Tachiki, K., & Lloyd, R. (1993). Neurochemical correlates of the Kluver-Bucy syndrome by in vivo microdialysis in monkey. Behavioural Brain Research, 56(2), 161–170.

    PubMed  Google Scholar 

  33. Pati, S., Abla, A. A., Rekate, H. L., & Ng, Y. T. (2011). Repeat surgery for hypothalamic hamartoma in refractory epilepsy. Neurosurgical Focus, 30(2), E3.

    PubMed  Google Scholar 

  34. Pineda, R., Garcia-Galiano, D., Sanchez-Garrido, M. A., et al. (2010). Characterization of the inhibitory roles of RFRP3, the mammalian ortholog of GnIH, in the control of gonadotropin secretion in the rat: In vivo and in vitro studies. American Journal of Physiology, Endocrinology and Metabolism, 299(1), E39–E46.

    Google Scholar 

  35. Siegel, A., & Victoroff, J. (2009). Understanding human aggression: New insights from neuroscience. International Journal of Law and Psychiatry, 32(4), 209–215.

    PubMed  Google Scholar 

  36. Siegel, A., Bhatt, S., Bhatt, R., & Zalcman, S. S. (2007). The neurobiological bases for development of pharmacological treatments of aggressive disorders. Current Neuropharmacology, 5(2), 135–147.

    PubMed  Google Scholar 

  37. Zalcman, S. S., & Siegel, A. (2006). The neurobiology of aggression and rage: Role of cytokines. Brain, Behavior, and Immunity, 20(6), 507–514.

    PubMed  Google Scholar 

  38. Siegel, A., Roeling, T. A., Gregg, T. R., & Kruk, M. R. (1999). Neuropharmacology of brain-stimulation-evoked aggression. Neuroscience and Biobehavioral Reviews, 23(3), 359–389.

    PubMed  Google Scholar 

  39. Hilton, S. M. (1982). The defence-arousal system and its relevance for circulatory and respiratory control. The Journal of Experimental Biology, 100, 159–174.

    PubMed  Google Scholar 

  40. Mufson, E. J., Balagura, S., & Riss, W. (1976). Tail pinch-induced arousal and stimulus-bound behavior in rats with lateral hypothalamic lesions. Further evaluation of hypothalamic control of feeding and drinking. Brain, Behavior and Evolution, 13(2–3), 154–164.

    PubMed  Google Scholar 

  41. Romaniuk, A., Brudzynski, S., & Gronska, J. (1975). Comparison of defensive behavior evoked by chemical and electrical stimulation of the hypothalamus in cats. Acta Physiologica Polonica, 26(1), 23–31.

    PubMed  Google Scholar 

  42. Romaniuk, A. (1974). Neurochemical bases of defensive behavior in animals. Acta Neurobiologiae Experimentalis, 34(1), 205–214.

    PubMed  Google Scholar 

  43. Zvartau, E. E., & Patkina, N. A. (1973). [Motivational properties of hypothalamic stimulation in cats]. Biulleten’ Eksperimental’noĭ Biologii i Meditsiny, 75(3), 13–16.

    Google Scholar 

  44. Romaniuk, A., Brudzynski, S., & Gronska, J. (1973). Rage reaction evoked by intrahypothalamic injection of carbachol in cats. Acta Physiologica Polonica, 24(5), 623–630.

    PubMed  Google Scholar 

  45. Reeves, A. G., & Plum, F. (1969). Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasm. Archives of Neurology, 20(6), 616–624.

    PubMed  Google Scholar 

  46. Varszegi, M. K., & Decsi, L. (1967). Some characteristics of the rage reaction evoked by chemical stimulation of the hypothalamus. Acta Physiologica Academiae Scientiarum Hungaricae, 32(1), 61–68.

    PubMed  Google Scholar 

  47. Bunney, W. E., Jr., & Davis, J. M. (1965). Norepinephrine in depressive reactions. A review. Archives of General Psychiatry, 13(6), 483–494.

    PubMed  Google Scholar 

  48. Kety, S. (1970). The biogenic amines in the central nervous system: Their possible role in arousal, emotion and learning. In F. O. Schmitt (Ed.), The neurosciences: Second study program. Cambridge, MA: MIT Press.

    Google Scholar 

  49. Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: A review of supporting evidence. The American Journal of Psychiatry, 122, 509–522.

    PubMed  Google Scholar 

  50. Schildkraut, J. J. (1977). Biochemical research in affective disorders. New York: Brunner Mazel.

    Google Scholar 

  51. Gordon, E. K., & Oliver, J. (1971). 3-Methoxy-4-hydroxyphenylethyleneglycol in human cerebrospinal fluid. Clinica Chimica Acta, 35, 145–150.

    Google Scholar 

  52. Jimerson, D., Gordon, E. K., Post, R. M., & Goodwin, F. K. (1975). Central norepinephrine function in man: VMA in the CSF. Brain Research, 99, 434–439.

    PubMed  Google Scholar 

  53. Ashcroft, G. W., Crawford, T. B., Cundall, R. L., et al. (1973). 5-Hydroxytryptamine metabolism in affective illness: The effect of tryptophan administration. Psychological Medicine, 3(3), 326–332.

    PubMed  Google Scholar 

  54. Ashcroft, G. W. (1969). Amine metabolism in brain. Proceedings of the Royal Society of Medicine, 62(11 Part 1), 1099–1101.

    PubMed  Google Scholar 

  55. Anumonye, A., Reading, H. W., Knight, F., & Ashcroft, G. W. (1968). Uric-acid metabolism in manic-depressive illness and during lithium therapy. Lancet, 1(7555), 1290–1293.

    PubMed  Google Scholar 

  56. Ashcroft, G. W., Eccleston, D., Knight, F., McDougall, E. J., & Waddell, J. L. (1965). Changes in amine metabolism produced by antidepressant drugs. Journal of Psychosomatic Research, 9(1), 129–136.

    PubMed  Google Scholar 

  57. Post, R. M., & Ballenger, J. C. (1984). Neurobiology of mood disorders. Baltimore: Williams & Wilkins.

    Google Scholar 

  58. Caley, C. F., & Weber, S. S. (1993). Paroxetine: A selective serotonin reuptake inhibiting antidepressant. The Annals of Pharmacotherapy, 27(10), 1212–1222.

    PubMed  Google Scholar 

  59. Geddes. J. R., Freemantle, N., Mason, J., Eccles, M. P., & Boynton, J. (2000). SSRIs versus other antidepressants for depressive disorder. Cochrane Database of Systematic Reviews (Online), (2), CD001851.

    Google Scholar 

  60. Whittington, C. J., Kendall, T., Fonagy, P., Cottrell, D., Cotgrove, A., & Boddington, E. (2004). Selective serotonin reuptake inhibitors in childhood depression: Systematic review of published versus unpublished data. Lancet, 363(9418), 1341–1345.

    PubMed  Google Scholar 

  61. Farkas, T., Wolf, A. P., Jaeger, J., Brodie, J. D., Christman, D. R., & Fowler, J. S. (1984). Regional brain glucose metabolism in chronic schizophrenia. A positron emission transaxial tomographic study. Archives of General Psychiatry, 41(3), 293–300.

    PubMed  Google Scholar 

  62. Juengling, F. D., Ebert, D., Gut, O., et al. (2000). Prefrontal cortical hypometabolism during low-dose interferon alpha treatment. Psychopharmacology, 152(4), 383–389.

    PubMed  Google Scholar 

  63. Morris, P., & Rapoport, S. I. (1990). Neuroimaging and affective disorder in late life: A review. Canadian Journal of Psychiatry, 35(4), 347–354.

    Google Scholar 

  64. Kishimoto, H., Takazu, O., Ohno, S., et al. (1987). 11C-glucose metabolism in manic and depressed patients. Psychiatry Research, 22(1), 81–88.

    PubMed  Google Scholar 

  65. Buchsbaum, M. S., Wu, J., DeLisi, L. E., et al. (1986). Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. Journal of Affective Disorders, 10(2), 137–152.

    PubMed  Google Scholar 

  66. Biver, F., Wikler, D., Lotstra, F., Damhaut, P., Goldman, S., & Mendlewicz, J. (1997). Serotonin 5-HT2 receptor imaging in major depression: Focal changes in orbito-insular cortex. The British Journal of Psychiatry, 171, 444–448.

    PubMed  Google Scholar 

  67. Kishimoto, H., Yamada, K., Iseki, E., Kosaka, K., & Okoshi, T. (1998). Brain imaging of affective disorders and schizophrenia. Psychiatry and Clinical Neurosciences, 52(Suppl), S212–S214.

    PubMed  Google Scholar 

  68. Staley, J. K., Malison, R. T., & Innis, R. B. (1998). Imaging of the serotonergic system: Interactions of neuroanatomical and functional abnormalities of depression. Biological Psychiatry, 44(7), 534–549.

    PubMed  Google Scholar 

  69. Drevets, W. C., Frank, E., Price, J. C., et al. (1999). PET imaging of serotonin 1A receptor binding in depression. Biological Psychiatry, 46(10), 1375–1387.

    PubMed  Google Scholar 

  70. Ginovart, N., Farde, L., Halldin, C., & Swahn, C. G. (1999). Changes in striatal D2-receptor density following chronic treatment with amphetamine as assessed with PET in nonhuman primates. Synapse (New York, N.Y.), 31(2), 154–162.

    Google Scholar 

  71. Meltzer, C. C., Price, J. C., Mathis, C. A., et al. (1999). PET imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. The American Journal of Psychiatry, 156(12), 1871–1878.

    PubMed  Google Scholar 

  72. Meyer, J. H., Kapur, S., Houle, S., et al. (1999). Prefrontal cortex 5-HT2 receptors in depression: An [18F]setoperone PET imaging study. The American Journal of Psychiatry, 156(7), 1029–1034.

    PubMed  Google Scholar 

  73. Yatham, L. N., Liddle, P. F., Dennie, J., et al. (1999). Decrease in brain serotonin 2 receptor binding in patients with major depression following desipramine treatment: A positron emission tomography study with fluorine-18-labeled setoperone. Archives of General Psychiatry, 56(8), 705–711.

    PubMed  Google Scholar 

  74. Sanacora, G., Mason, G. F., & Krystal, J. H. (2000). Impairment of GABAergic transmission in depression: New insights from neuroimaging studies. Critical Reviews in Neurobiology, 14(1), 23–45.

    PubMed  Google Scholar 

  75. Fu, C. H., Reed, L. J., Meyer, J. H., et al. (2001). Noradrenergic dysfunction in the prefrontal cortex in depression: An [15O] H2O PET study of the neuromodulatory effects of clonidine. Biological Psychiatry, 49(4), 317–325.

    PubMed  Google Scholar 

  76. Hargreaves, R. (2002). Imaging substance P receptors (NK1) in the living human brain using positron emission tomography. The Journal of Clinical Psychiatry, 63(Suppl 11), 18–24.

    PubMed  Google Scholar 

  77. Meyer, J. H., Goulding, V. S., Wilson, A. A., Hussey, D., Christensen, B. K., & Houle, S. (2002). Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology, 163(1), 102–105.

    PubMed  Google Scholar 

  78. Hirvonen, J., Karlsson, H., Kajander, J., et al. (2008). Striatal dopamine D2 receptors in medication-naive patients with major depressive disorder as assessed with [11C]raclopride PET. Psychopharmacology, 197(4), 581–590.

    PubMed  Google Scholar 

  79. Montgomery, A. J., Stokes, P., Kitamura, Y., & Grasby, P. M. (2007). Extrastriatal D2 and striatal D2 receptors in depressive illness: Pilot PET studies using [11C]FLB 457 and [11C]raclopride. Journal of Affective Disorders, 101(1–3), 113–122.

    PubMed  Google Scholar 

  80. Meyer, J. H., McNeely, H. E., Sagrati, S., et al. (2006). Elevated putamen D(2) receptor binding potential in major depression with motor retardation: An [11C]raclopride positron emission tomography study. The American Journal of Psychiatry, 163(9), 1594–1602.

    PubMed  Google Scholar 

  81. Dougherty, D. D., Bonab, A. A., Ottowitz, W. E., et al. (2006). Decreased striatal D1 binding as measured using PET and [11C]SCH 23,390 in patients with major depression with anger attacks. Depression and Anxiety, 23(3), 175–177.

    PubMed  Google Scholar 

  82. Frost, J. J. (1993). Receptor imaging by PET and SPECT: Focus on the opiate receptor. Journal of Receptor Research, 13(1–4), 39–53.

    PubMed  Google Scholar 

  83. Cheng, K. T. (2004). (S,S)-2-[alpha-(2-(2-[18F]Fluoro[2H4]ethoxy)phenoxy)benzyl]morpholine. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20641408.

  84. Leung, K. (2004). (2S,3S)-2-[alpha-(2-[11C]Methylphenoxy)phenylmethyl]morpholine. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20641370.

  85. Bremner, J. D., & McCaffery, P. (2008). The neurobiology of retinoic acid in affective disorders. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 32(2), 315–331.

    Google Scholar 

  86. Gao, S. F., & Bao, A. M. (2011). Corticotropin-releasing hormone, glutamate, and gamma-aminobutyric acid in depression. The Neuroscientist, 17(1), 124–144.

    PubMed  Google Scholar 

  87. Claes, S. (2009). Glucocorticoid receptor polymorphisms in major depression. Annals of the New York Academy of Sciences, 1179, 216–228.

    PubMed  Google Scholar 

  88. Lopez-Duran, N. L., Kovacs, M., & George, C. J. (2009). Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: A meta-analysis. Psychoneuroendocrinology, 34(9), 1272–1283.

    PubMed  Google Scholar 

  89. Fliers, E., Alkemade, A., Wiersinga, W. M., & Swaab, D. F. (2006). Hypothalamic thyroid hormone feedback in health and disease. Progress in Brain Research, 153, 189–207.

    PubMed  Google Scholar 

  90. Swaab, D. F., Bao, A. M., & Lucassen, P. J. (2005). The stress system in the human brain in depression and neurodegeneration. Ageing Research Reviews, 4(2), 141–194.

    PubMed  Google Scholar 

  91. Lasser, R. A., & Baldessarini, R. J. (1997). Thyroid hormones in depressive disorders: A reappraisal of clinical utility. Harvard Review of Psychiatry, 4(6), 291–305.

    PubMed  Google Scholar 

  92. Musselman, D. L., & Nemeroff, C. B. (1996). Depression and endocrine disorders: Focus on the thyroid and adrenal system. The British Journal of Psychiatry. Supplement, 30, 123–128.

    PubMed  Google Scholar 

  93. Dinan, T. G. (1996). Serotonin and the regulation of hypothalamic-pituitary-adrenal axis function. Life Sciences, 58(20), 1683–1694.

    PubMed  Google Scholar 

  94. Gold, P. W., Licinio, J., Wong, M. L., & Chrousos, G. P. (1995). Corticotropin releasing hormone in the pathophysiology of melancholic and atypical depression and in the mechanism of action of antidepressant drugs. Annals of the New York Academy of Sciences, 771, 716–729.

    PubMed  Google Scholar 

  95. Pariante, C. M., Nemeroff, C. B., & Miller, A. H. (1995). Glucocorticoid receptors in depression. Israel Journal of Medical Sciences, 31(12), 705–712.

    PubMed  Google Scholar 

  96. Martignoni, E., Costa, A., Sinforiani, E., et al. (1992). The brain as a target for adrenocortical steroids: Cognitive implications. Psychoneuroendocrinology, 17(4), 343–354.

    PubMed  Google Scholar 

  97. Delbende, C., Delarue, C., Lefebvre, H., et al. (1992). Glucocorticoids, transmitters and stress. The British Journal of Psychiatry. Supplement, 15, 24–35.

    PubMed  Google Scholar 

  98. Yehuda, R., Giller, E. L., Southwick, S. M., Lowy, M. T., & Mason, J. W. (1991). Hypothalamic-pituitary-adrenal dysfunction in posttraumatic stress disorder. Biological Psychiatry, 30(10), 1031–1048.

    PubMed  Google Scholar 

  99. Kathol, R. G., Jaeckle, R. S., Lopez, J. F., & Meller, W. H. (1989). Pathophysiology of HPA axis abnormalities in patients with major depression: An update. The American Journal of Psychiatry, 146(3), 311–317.

    PubMed  Google Scholar 

  100. Rubin, R. T. (1989). Pharmacoendocrinology of major depression. European Archives of Psychiatry and Neurological Sciences, 238(5–6), 259–267.

    PubMed  Google Scholar 

  101. Nemeroff, C. B. (1988). The role of corticotropin-releasing factor in the pathogenesis of major depression. Pharmacopsychiatry, 21(2), 76–82.

    PubMed  Google Scholar 

  102. Stokes, P. E., & Sikes, C. R. (1988). The hypothalamic-pituitary-adrenocortical axis in major depression. Neurologic Clinics, 6(1), 1–19.

    PubMed  Google Scholar 

  103. Coryell, W., Noyes, R., Jr., Clancy, J., Crowe, R., & Chaudhry, D. (1985). Abnormal escape from dexamethasone suppression in agoraphobia with panic attacks. Psychiatry Research, 15(4), 301–311.

    PubMed  Google Scholar 

  104. Cazala, P., Galey, D., & Durkin, T. (1988). Electrical self-stimulation in the medial and lateral septum as compared to the lateral hypothalamus: Differential intervention of reward and learning processes? Physiology & Behavior, 44(1), 53–59.

    Google Scholar 

  105. Dinieri, J. A., Nemeth, C. L., Parsegian, A., et al. (2009). Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. Journal of Neuroscience, 29(6), 1855–1859.

    PubMed  Google Scholar 

  106. Valenstein, E. S. (1973). Brain stimulation and motivation; research and commentary. Glenview, IL: Scott.

    Google Scholar 

  107. Valenstein, E. S., Cox, V. C., & Kakolewski, J. W. (1968). Modification of motivated behavior elicited by electrical stimulation of the hypothalamus. Science (New York, N.Y.), 159(819), 1119–1121.

    Google Scholar 

  108. Valenstein, E. S., Cox, V. C., & Kakolewski, J. W. (1969). Hypothalamic motivational systems: Fixed or plastic neural circuits? Science (New York, N.Y.), 163(871), 1084.

    Google Scholar 

  109. Wise, R. A., & Bozarth, M. A. (1984). Brain reward circuitry: Four circuit elements “wired” in apparent series. Brain Research Bulletin, 12(2), 203–208.

    PubMed  Google Scholar 

  110. Girotti, M., Donegan, J. J., & Morilak, D. A. (2011). Chronic intermittent cold stress sensitizes neuro-immune reactivity in the rat brain. Psychoneuroendocrinology, 36(8), 1164–1174.

    PubMed  Google Scholar 

  111. Zambello, E., Fuchs, E., Abumaria, N., Rygula, R., Domenici, E., & Caberlotto, L. (2010). Chronic psychosocial stress alters NPY system: Different effects in rat and tree shrew. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34(1), 122–130.

    Google Scholar 

  112. Amador-Arjona, A., Delgado-Morales, R., Belda, X., et al. (2010). Susceptibility to stress in transgenic mice overexpressing TrkC, a model of panic disorder. Journal of Psychiatric Research, 44(3), 157–167.

    PubMed  Google Scholar 

  113. Kozicz, T., Bordewin, L. A., Czeh, B., Fuchs, E., & Roubos, E. W. (2008). Chronic psychosocial stress affects corticotropin-releasing factor in the paraventricular nucleus and central extended amygdala as well as urocortin 1 in the non-preganglionic Edinger-Westphal nucleus of the tree shrew. Psychoneuroendocrinology, 33(6), 741–754.

    PubMed  Google Scholar 

  114. Ahrens, T., Deuschle, M., Krumm, B., van der Pompe, G., den Boer, J. A., & Lederbogen, F. (2008). Pituitary-adrenal and sympathetic nervous system responses to stress in women remitted from recurrent major depression. Psychosomatic Medicine, 70(4), 461–467.

    PubMed  Google Scholar 

  115. Tyrka, A. R., Wier, L. M., Price, L. H., et al. (2008). Cortisol and ACTH responses to the Dex/CRH test: Influence of temperament. Hormones and Behavior, 53(4), 518–525.

    PubMed  Google Scholar 

  116. Gotlib, I. H., Joormann, J., Minor, K. L., & Hallmayer, J. (2008). HPA axis reactivity: A mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biological Psychiatry, 63(9), 847–851.

    PubMed  Google Scholar 

  117. Simeon, D., Knutelska, M., Yehuda, R., Putnam, F., Schmeidler, J., & Smith, L. M. (2007). Hypothalamic-pituitary-adrenal axis function in dissociative disorders, post-traumatic stress disorder, and healthy volunteers. Biological Psychiatry, 61(8), 966–973.

    PubMed  Google Scholar 

  118. Young, E. A., Abelson, J. L., & Cameron, O. G. (2005). Interaction of brain noradrenergic system and the hypothalamic-pituitary-adrenal (HPA) axis in man. Psychoneuroendocrinology, 30(8), 807–814.

    PubMed  Google Scholar 

  119. Gilmer, W. S., & McKinney, W. T. (2003). Early experience and depressive disorders: Human and non-human primate studies. Journal of Affective Disorders, 75(2), 97–113.

    PubMed  Google Scholar 

  120. Rinne, T., de Kloet, E. R., Wouters, L., Goekoop, J. G., DeRijk, R. H., & van den Brink, W. (2002). Hyperresponsiveness of hypothalamic-pituitary-adrenal axis to combined dexamethasone/corticotropin-releasing hormone challenge in female borderline personality disorder subjects with a history of sustained childhood abuse. Biological Psychiatry, 52(11), 1102–1112.

    PubMed  Google Scholar 

  121. Groenink, L., Dirks, A., Verdouw, P. M., et al. (2002). HPA axis dysregulation in mice overexpressing corticotropin releasing hormone. Biological Psychiatry, 51(11), 875–881.

    PubMed  Google Scholar 

  122. Penalva, R. G., Flachskamm, C., Zimmermann, S., et al. (2002). Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: An in vivo microdialysis study in mutant mice. Neuroscience, 109(2), 253–266.

    PubMed  Google Scholar 

  123. Graham, Y. P., Heim, C., Goodman, S. H., Miller, A. H., & Nemeroff, C. B. (1999). The effects of neonatal stress on brain development: Implications for psychopathology. Development and Psychopathology, 11(3), 545–565.

    PubMed  Google Scholar 

  124. Karanth, S., Linthorst, A. C., Stalla, G. K., Barden, N., Holsboer, F., & Reul, J. M. (1997). Hypothalamic-pituitary-adrenocortical axis changes in a transgenic mouse with impaired glucocorticoid receptor function. Endocrinology, 138(8), 3476–3485.

    PubMed  Google Scholar 

  125. Brady, L. S., Lynn, A. B., Glowa, J. R., Le, D. Q., & Herkenham, M. (1994). Repeated electroconvulsive shock produces long-lasting increases in messenger RNA expression of corticotropin-releasing hormone and tyrosine hydroxylase in rat brain. Therapeutic implications. Journal of Clinical Investigation, 94(3), 1263–1268.

    PubMed  Google Scholar 

  126. Yehuda, R., Southwick, S. M., Krystal, J. H., Bremner, D., Charney, D. S., & Mason, J. W. (1993). Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. The American Journal of Psychiatry, 150(1), 83–86.

    PubMed  Google Scholar 

  127. Smith, M. A., Davidson, J., Ritchie, J. C., et al. (1989). The corticotropin-releasing hormone test in patients with posttraumatic stress disorder. Biological Psychiatry, 26(4), 349–355.

    PubMed  Google Scholar 

  128. Loosen, P. T. (1985). The TRH-induced TSH response in psychiatric patients: A possible neuroendocrine marker. Psychoneuroendocrinology, 10(3), 237–260.

    PubMed  Google Scholar 

  129. Brouwer, J. P., Appelhof, B. C., Hoogendijk, W. J., et al. (2005). Thyroid and adrenal axis in major depression: A controlled study in outpatients. European Journal of Endocrinology, 152(2), 185–191.

    PubMed  Google Scholar 

  130. Hofmann, P. J., Nutzinger, D. O., Kotter, M. R., & Herzog, G. (2001). The hypothalamic-pituitary-thyroid axis in agoraphobia, panic disorder, major depression and normal controls. Journal of Affective Disorders, 66(1), 75–77.

    PubMed  Google Scholar 

  131. David, M. M., Owen, J. A., Abraham, G., et al. (2000). Thyroid function and response to 48-hour sleep deprivation in treatment-resistant depressed patients. Biological Psychiatry, 48(4), 323–326.

    PubMed  Google Scholar 

  132. Staner, L., Van Veeren, C., Stefos, G., Hubain, P. P., Linkowski, P., & Mendlewicz, J. (1998). Neuroendocrine and clinical characteristics of major depressed patients exhibiting sleep-onset REM. Biological Psychiatry, 43(11), 817–821.

    PubMed  Google Scholar 

  133. Vandoolaeghe, E., Maes, M., Vandevyvere, J., & Neels, H. (1997). Hypothalamic-pituitary-thyroid-axis function in treatment resistant depression. Journal of Affective Disorders, 43(2), 143–150.

    PubMed  Google Scholar 

  134. Baumgartner, A., von Stuckrad, M., Muller-Oerlinghausen, B., Graf, K. J., & Kurten, I. (1995). The hypothalamic-pituitary-thyroid axis in patients maintained on lithium prophylaxis for years: High triiodothyronine serum concentrations are correlated to the prophylactic efficacy. Journal of Affective Disorders, 34(3), 211–218.

    PubMed  Google Scholar 

  135. Kjellman, B. F., Ljunggren, J. G., Beck-Friis, J., & Wetterberg, L. (1985). Effect of TRH on TSH and prolactin levels in affective disorders. Psychiatry Research, 14(4), 353–363.

    PubMed  Google Scholar 

  136. Gold, M. S., Pottash, A. L., & Extein, I. (1981). Hypothyroidism and depression. Evidence from complete thyroid function evaluation. JAMA: The Journal of the American Medical Association, 245(19), 1919–1922.

    Google Scholar 

  137. Furlong, F. W., Brown, G. M., & Beeching, M. F. (1976). Thyrotropin-releasing hormone: Differential antidepressant and endocrinological effects. The American Journal of Psychiatry, 133(10), 1187–1190.

    PubMed  Google Scholar 

  138. Stone, E. A., Lehmann, M. L., Lin, Y., & Quartermain, D. (2006). Depressive behavior in mice due to immune stimulation is accompanied by reduced neural activity in brain regions involved in positively motivated behavior. Biological Psychiatry, 60(8), 803–811.

    PubMed  Google Scholar 

  139. Vogel, G., Neill, D., Hagler, M., Kors, D., & Hartley, P. (1990). Decreased intracranial self-stimulation in a new animal model of endogenous depression. Neuroscience and Biobehavioral Reviews, 14(1), 65–68.

    PubMed  Google Scholar 

  140. Chuang, J. C., Krishnan, V., Yu, H. G., et al. (2010). A beta3-adrenergic-leptin-melanocortin circuit regulates behavioral and metabolic changes induced by chronic stress. Biological Psychiatry, 67(11), 1075–1082.

    PubMed  Google Scholar 

  141. Touma, C., Gassen, N. C., Herrmann, L., et al. (2011). FK506 binding protein 5 shapes stress responsiveness: Modulation of neuroendocrine reactivity and coping behavior. Biological Psychiatry, 70, 928–936.

    PubMed  Google Scholar 

  142. Acuna-Goycolea, C., Tamamaki, N., Yanagawa, Y., Obata, K., & van den Pol, A. N. (2005). Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. Journal of Neuroscience, 25(32), 7406–7419.

    PubMed  Google Scholar 

  143. Dijkstra, I., Tilders, F. J., Aguilera, G., et al. (1998). Reduced activity of hypothalamic corticotropin-releasing hormone neurons in transgenic mice with impaired glucocorticoid receptor function. Journal of Neuroscience, 18(10), 3909–3918.

    PubMed  Google Scholar 

  144. Lanfumey, L., Mannoury La Cour, C., Froger, N., & Hamon, M. (2000). 5-HT-HPA interactions in two models of transgenic mice relevant to major depression. Neurochemical Research, 25(9–10), 1199–1206.

    PubMed  Google Scholar 

  145. Georgotas, A., Stokes, P. E., Krakowski, M., Fanelli, C., & Cooper, T. (1984). Hypothalamic-pituitary-adrenocortical function in geriatric depression: Diagnostic and treatment implications. Biological Psychiatry, 19(5), 685–693.

    PubMed  Google Scholar 

  146. Stokes, P. E., Stoll, P. M., Koslow, S. H., et al. (1984). Pretreatment DST and hypothalamic-pituitary-adrenocortical function in depressed patients and comparison groups. A multicenter study. Archives of General Psychiatry, 41(3), 257–267.

    PubMed  Google Scholar 

  147. Hayes, P. E., & Ettigi, P. (1983). Dexamethasone suppression test in diagnosis of depressive illness. Clinical Pharmacy, 2(6), 538–545.

    PubMed  Google Scholar 

  148. Coryell, W., & Schlesser, M. A. (1983). Dexamethasone suppression test response in major depression: Stability across hospitalizations. Psychiatry Research, 8(3), 179–189.

    PubMed  Google Scholar 

  149. Sarai, M., Taniguchi, N., Kagomoto, T., Kameda, H., Uema, T., & Hishikawa, Y. (1982). Major depressive episode and low dose dexamethasone suppression test. Folia Psychiatrica et Neurologica Japonica, 36(2), 109–114.

    PubMed  Google Scholar 

  150. De Wied, D., & Sigling, H. O. (2002). Neuropeptides involved in the pathophysiology of schizophrenia and major depression. Neurotoxicity Research, 4(5–6), 453–468.

    PubMed  Google Scholar 

  151. de Wied, D. (1974). Pituitary-adrenal system hormones and behavior. In F. O. S. G. F. Worden (Ed.), The neurosciences: Third study program (pp. 653–666). Cambridge, MA: MIT Press.

    Google Scholar 

  152. Carroll, B. J., & Davies, B. (1970). Clinical associations of ll-hydroxycorticosteroid suppression and non-suppression in severe depressive illness. British Medical Journal, 1, 789–791.

    PubMed  Google Scholar 

  153. Griep, E. N., Boersma, J. W., & de Kloet, E. R. (1993). Altered reactivity of the hypothalamic-pituitary-adrenal axis in the primary fibromyalgia syndrome. Journal of Rheumatology, 20(3), 469–474.

    PubMed  Google Scholar 

  154. Leonard, B. E. (2005). The HPA, and immune axes in stress: The involvement of the serotonergic system. European Psychiatry, 20(Suppl 3), S302–S306.

    PubMed  Google Scholar 

  155. Reiche, E. M., Morimoto, H. K., & Nunes, S. M. (2005). Stress and depression-induced immune dysfunction: Implications for the development and progression of cancer. International Review of Psychiatry (Abingdon, England), 17(6), 515–527.

    Google Scholar 

  156. Abe, H., Hidaka, N., Kawagoe, C., et al. (2007). Prenatal psychological stress causes higher emotionality, depression-like behavior, and elevated activity in the hypothalamo-pituitary-adrenal axis. Neuroscience Research, 59(2), 145–151.

    PubMed  Google Scholar 

  157. Rao, U., Hammen, C., Ortiz, L. R., Chen, L. A., & Poland, R. E. (2008). Effects of early and recent adverse experiences on adrenal response to psychosocial stress in depressed adolescents. Biological Psychiatry, 64(6), 521–526.

    PubMed  Google Scholar 

  158. Touma, C., Bunck, M., Glasl, L., et al. (2008). Mice selected for high versus low stress reactivity: A new animal model for affective disorders. Psychoneuroendocrinology, 33(6), 839–862.

    PubMed  Google Scholar 

  159. El Hage, W., Powell, J. F., & Surguladze, S. A. (2009). Vulnerability to depression: What is the role of stress genes in gene x environment interaction? Psychological Medicine, 39(9), 1407–1411.

    PubMed  Google Scholar 

  160. MacMillan, H. L., Georgiades, K., Duku, E. K., et al. (2009). Cortisol response to stress in female youths exposed to childhood maltreatment: Results of the youth mood project. Biological Psychiatry, 66(1), 62–68.

    PubMed  Google Scholar 

  161. Neigh, G. N., Gillespie, C. F., & Nemeroff, C. B. (2009). The neurobiological toll of child abuse and neglect. Trauma, Violence & Abuse, 10(4), 389–410.

    Google Scholar 

  162. Solas, M., Aisa, B., Mugueta, M. C., Del Rio, J., Tordera, R. M., & Ramirez, M. J. (2010). Interactions between age, stress and insulin on cognition: Implications for Alzheimer’s disease. Neuropsychopharmacology, 35(8), 1664–1673.

    PubMed  Google Scholar 

  163. Holsen, L. M., Spaeth, S. B., Lee, J. H., et al. (2011). Stress response circuitry hypoactivation related to hormonal dysfunction in women with major depression. Journal of Affective Disorders, 131(1–3), 379–387.

    PubMed  Google Scholar 

  164. Touma, C. (2011). Stress and affective disorders: Animal models elucidating the molecular basis of neuroendocrine-behavior interactions. Pharmacopsychiatry, 44(Suppl 1), S15–S26.

    PubMed  Google Scholar 

  165. Aziz, N. A., Pijl, H., Frolich, M., Roelfsema, F., & Roos, R. A. (2011). Diurnal secretion profiles of growth hormone, thyrotrophin and prolactin in Parkinson’s disease. Journal of Neuroendocrinology, 23(6), 519–524.

    PubMed  Google Scholar 

  166. Chung, S., Son, G. H., & Kim, K. (2011). Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochimica et Biophysica Acta, 1812(5), 581–591.

    PubMed  Google Scholar 

  167. Pompili, M., Serafini, G., Innamorati, M., et al. (2010). The hypothalamic-pituitary-adrenal axis and serotonin abnormalities: A selective overview for the implications of suicide prevention. European Archives of Psychiatry and Clinical Neuroscience, 260(8), 583–600.

    PubMed  Google Scholar 

  168. Putnam, K. M., Pizzagalli, D. A., Gooding, D. C., Kalin, N. H., & Davidson, R. J. (2008). Neural activity and diurnal variation of cortisol: Evidence from brain electrical tomography analysis and relevance to anhedonia. Psychophysiology, 45(6), 886–895.

    PubMed  Google Scholar 

  169. Son, G. H., Chung, S., & Kim, K. (2011). The adrenal peripheral clock: Glucocorticoid and the circadian timing system. Frontiers in Neuroendocrinology, 32, 451–465.

    PubMed  Google Scholar 

  170. Straub, R. H., Cutolo, M., Buttgereit, F., & Pongratz, G. (2010). Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. Journal of Internal Medicine, 267(6), 543–560.

    PubMed  Google Scholar 

  171. Touma, C., Fenzl, T., Ruschel, J., et al. (2009). Rhythmicity in mice selected for extremes in stress reactivity: Behavioural, endocrine and sleep changes resembling endophenotypes of major depression. PLoS One, 4(1), e4325.

    PubMed  Google Scholar 

  172. Verma, P., Hellemans, K. G., Choi, F. Y., Yu, W., & Weinberg, J. (2010). Circadian phase and sex effects on depressive/anxiety-like behaviors and HPA axis responses to acute stress. Physiology & Behavior, 99(3), 276–285.

    Google Scholar 

  173. Staner, L., Duval, F., Calvi-Gries, F., et al. (2001). Morning and evening TSH response to TRH and sleep EEG disturbances in major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 25(3), 535–547.

    Google Scholar 

  174. Sullivan, P. F., Wilson, D. A., Mulder, R. T., & Joyce, P. R. (1997). The hypothalamic-pituitary-thyroid axis in major depression. Acta Psychiatrica Scandinavica, 95(5), 370–378.

    PubMed  Google Scholar 

  175. Thase, M. E., Dube, S., Bowler, K., et al. (1996). Hypothalamic-pituitary-adrenocortical activity and response to cognitive behavior therapy in unmedicated, hospitalized depressed patients. The American Journal of Psychiatry, 153(7), 886–891.

    PubMed  Google Scholar 

  176. Rosenthal, N. E., & Blehar, M. (1989). Seasonal affective disorders and phototherapy. New York: Guilford Press.

    Google Scholar 

  177. Breslau, N., Roth, T., Rosenthal, L., & Andreski, P. (1997). Daytime sleepiness: An epidemiological study of young adults. American Journal of Public Health, 87(10), 1649–1653.

    PubMed  Google Scholar 

  178. Teicher, M. H., Glod, C. A., Magnus, E., et al. (1997). Circadian rest-activity disturbances in seasonal affective disorder. Archives of General Psychiatry, 54(2), 124–130.

    PubMed  Google Scholar 

  179. Sack, D. A., Nurnberger, J., Rosenthal, N. E., Ashburn, E., & Wehr, T. A. (1985). Potentiation of antidepressant medications by phase advance of the sleep-wake cycle. The American Journal of Psychiatry, 142(5), 606–608.

    PubMed  Google Scholar 

  180. Albers, H. E., Lydic, R., Gander, P. H., & Moore-Ede, M. C. (1984). Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Research, 300, 275–284.

    PubMed  Google Scholar 

  181. Jiang, W. G., Li, S. X., Zhou, S. J., Sun, Y., Shi, J., & Lu, L. (2011). Chronic unpredictable stress induces a reversible change of PER2 rhythm in the suprachiasmatic nucleus. Brain Research, 1399, 25–32.

    PubMed  Google Scholar 

  182. Kalman, J., & Kalman, S. (2009). [Depression as chronobiological illness]. Neuropsychopharmacologia Hungarica, 11(2), 69–81.

    PubMed  Google Scholar 

  183. Forbes, D., Culum, I., Lischka, A. R., et al. Light therapy for managing cognitive, sleep, functional, behavioural, or psychiatric disturbances in dementia. Cochrane Database of Systematic Reviews (Online), (4), CD003946.

    Google Scholar 

  184. Srinivasan, V., Pandi-Perumal, S. R., Trakht, I., et al. (2009). Pathophysiology of depression: Role of sleep and the melatonergic system. Psychiatry Research, 165(3), 201–214.

    PubMed  Google Scholar 

  185. Grandin, L. D., Alloy, L. B., & Abramson, L. Y. (2006). The social zeitgeber theory, circadian rhythms, and mood disorders: Review and evaluation. Clinical Psychology Review, 26(6), 679–694.

    PubMed  Google Scholar 

  186. Cohen, R. A., & Albers, H. E. (1985). Neuropsychological and circadian deficits associated with pituitary craniopharyngioma. Journal of Clinical and Experimental Neuropsychology, 7(6), 619.

    Google Scholar 

  187. Heaton, R. K., Baade, L. E., & Johnson, K. L. (1978). Neuropsychological test results associated with psychiatric disorders in adults. Psychological Bulletin, 85, 141–162.

    PubMed  Google Scholar 

  188. Heaton, R. K., & Crowley, T. J. (1981). Effects of psychiatric disorders and their somatic treatments on neuropsychological test results. In S. B. Filskov & T. J. Boll (Eds.), Handbook of clinical neuropsychology. New York: Wiley.

    Google Scholar 

  189. Taylor, M. A., Abrams, R., & Gaztanaga, P. (1975). Manic-depressive illness and schizophrenia: A partial validation of research diagnostic criteria utilizing neuropsychological testing. Comprehensive Psychiatry, 16(1), 91–96.

    PubMed  Google Scholar 

  190. Taylor, M. A., Greenspan, B., & Abrams, R. (1979). Lateralized neuropsychological dysfunction in affective disorder and schizophrenia. The American Journal of Psychiatry, 136(8), 1031–1034.

    PubMed  Google Scholar 

  191. Taylor, M. A., Redfield, J., & Abrams, R. (1981). Neuropsychological dysfunction in schizophrenia and affective disease. Biological Psychiatry, 16(5), 467–478.

    PubMed  Google Scholar 

  192. Flor-Henry, P., & Yeudall, L. T. (1979). Neuropscyhological investigation of schizophrenia and manic-depressive psychoses. In P. Flor-Henry & J. Gruzelier (Eds.), Hemisphere asymmetries of function in psychopathology. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  193. Flor-Henry, P. (1983). Cerebral basis of psychopathology. Boston: J. Wright Publishing. pp. 149–182.

    Google Scholar 

  194. Flor-Henry, P., & Gruzelier, J. (1983). Laterality and psychopathology. Amsterdam: Elsevier Science. Sole distributors for the USA and Canada, Elsevier Science Pub. Co.

    Google Scholar 

  195. Cohen, R., Lohr, I., Paul, R., & Boland, R. (2001). Impairments of attention and effort among patients with major affective disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(3), 385–395.

    Google Scholar 

  196. Breslow, R., Kocsis, J., & Belkin, B. (1980). Memory deficits in depression: Evidence utilizing the Wechsler Memory Scale. Perceptual and Motor Skills, 51(2), 541–542.

    PubMed  Google Scholar 

  197. Cronholm, B., & Ottosson, J. O. (1961). Memory functions in endogenous depression before and after electroconvulsive therapy. Archives of General Psychiatry, 5, 193–199.

    PubMed  Google Scholar 

  198. Stromgren, L. (1977). The influence of depression on memory. Acta Psychiatrica Scandinavica, 56, 109–128.

    PubMed  Google Scholar 

  199. Weingartner, H., Cohen, R. M., Bunney, W. E., Jr., Ebert, M. H., & Kaye, W. (1982). Memory-learning impairments in progressive dementia and depression. The American Journal of Psychiatry, 139(1), 135–136.

    PubMed  Google Scholar 

  200. Weingartner, H., Cohen, R. M., Murphy, D. L., Martello, J., & Gerdt, C. (1981). Cognitive processes in depression. Archives of General Psychiatry, 38(1), 42–47.

    PubMed  Google Scholar 

  201. Jenkins, M., Malloy, P., Salloway, S., et al. (1998). Memory processes in depressed geriatric patients with and without subcortical hyperintensities on MRI. Journal of Neuroimaging, 8(1), 20–26.

    PubMed  Google Scholar 

  202. Hammar, A., Isaksen, L., Schmid, M., Ardal, G., & Strand, M. (2011). Patients with major depression show intact memory performance-given optimal conditions. Applied Neuropsychology, 18(3), 191–196.

    PubMed  Google Scholar 

  203. Otto, M. W., Bruder, G. E., Fava, M., Delis, D. C., Quitkin, F. M., & Rosenbaum, J. F. (1994). Norms for depressed patients for the California verbal learning test: Associations with depression severity and self-report of cognitive difficulties. Archives of Clinical Neuropsychology, 9(1), 81–88.

    PubMed  Google Scholar 

  204. Ilsley, J. E., Moffoot, A. P., & O’Carroll, R. E. (1995). An analysis of memory dysfunction in major depression. Journal of Affective Disorders, 35(1–2), 1–9.

    PubMed  Google Scholar 

  205. Bremner, J. D., Narayan, M., Anderson, E. R., Staib, L. H., Miller, H. L., & Charney, D. S. (2000). Hippocampal volume reduction in major depression. The American Journal of Psychiatry, 157(1), 115–118.

    PubMed  Google Scholar 

  206. Burt, T., Prudic, J., Peyser, S., Clark, J., & Sackeim, H. A. (2000). Learning and memory in bipolar and unipolar major depression: Effects of aging. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13(4), 246–253.

    PubMed  Google Scholar 

  207. Basso, M. R., & Bornstein, R. A. (1999). Relative memory deficits in recurrent versus first-episode major depression on a word-list learning task. Neuropsychology, 13(4), 557–563.

    PubMed  Google Scholar 

  208. Naismith, S. L., Hickie, I. B., Ward, P. B., Scott, E., & Little, C. (2006). Impaired implicit sequence learning in depression: A probe for frontostriatal dysfunction? Psychological Medicine, 36(3), 313–323.

    PubMed  Google Scholar 

  209. Dresler, M., Kluge, M., Pawlowski, M., Schussler, P., Steiger, A., & Genzel, L. (2011). A double dissociation of memory impairments in major depression. Journal of Psychiatric Research, 45, 1593–1599.

    PubMed  Google Scholar 

  210. Dere, E., Pause, B. M., & Pietrowsky, R. (2010). Emotion and episodic memory in neuropsychiatric disorders. Behavioural Brain Research, 215(2), 162–171.

    PubMed  Google Scholar 

  211. Kasper, S., & McEwen, B. S. (2008). Neurobiological and clinical effects of the antidepressant tianeptine. CNS Drugs, 22(1), 15–26.

    PubMed  Google Scholar 

  212. Nissen, C., Holz, J., Blechert, J., et al. (2010). Learning as a model for neural plasticity in major depression. Biological Psychiatry, 68(6), 544–552.

    PubMed  Google Scholar 

  213. Ramel, W., Goldin, P. R., Eyler, L. T., Brown, G. G., Gotlib, I. H., & McQuaid, J. R. (2007). Amygdala reactivity and mood-congruent memory in individuals at risk for depressive relapse. Biological Psychiatry, 61(2), 231–239.

    PubMed  Google Scholar 

  214. Wann, B. P., Bah, T. M., Boucher, M., et al. (2007). Vulnerability for apoptosis in the limbic system after myocardial infarction in rats: A possible model for human postinfarct major depression. Journal of Psychiatry & Neuroscience, 32(1), 11–16.

    Google Scholar 

  215. Madsen, K., Haahr, M. T., Marner, L., et al. (2011). Age and sex effects on 5-HT(4) receptors in the human brain: A [(11)C]SB207145 PET study. Journal of Cerebral Blood Flow and Metabolism, 31(6), 1475–1481.

    PubMed  Google Scholar 

  216. Douglas, K. M., & Porter, R. J. (2009). Longitudinal assessment of neuropsychological function in major depression. The Australian and New Zealand Journal of Psychiatry, 43(12), 1105–1117.

    PubMed  Google Scholar 

  217. Byrne, D. C. (1977). Affect and vigilance performance in depressive illness. Journal of Psychiatric Research, 13, 185–191.

    PubMed  Google Scholar 

  218. Malone, J. R. L., & Hemsley, D. R. (1977). Lowered responsiveness and auditory signal detectability during depression. Psychological Medicine, 7, 717–722.

    PubMed  Google Scholar 

  219. Frith, C. D., Stevens, M., Johnstone, E. C., Deakin, J. F., Lawler, P., & Crow, T. J. (1983). Effects of ECT and depression on various aspects of memory. The British Journal of Psychiatry, 142, 610–617.

    PubMed  Google Scholar 

  220. Cohen, R. M., Weingartner, H., Smallberg, S. A., Pickar, D., & Murphy, D. L. (1982). Effort and cognition in depression. Archives of General Psychiatry, 39(5), 593–597.

    PubMed  Google Scholar 

  221. Guenther, T., Schonknecht, P., Becker, G., et al. (2011). Impact of EEG-vigilance on brain glucose uptake measured with [(18)F]FDG and PET in patients with depressive episode or mild cognitive impairment. NeuroImage, 56(1), 93–101.

    PubMed  Google Scholar 

  222. Raskin, A., Friedman, A. S., & DiMascio, A. (1982). Cognitive and performance deficits in depression. Psychopharmacology Bulletin, 18(4), 196–202.

    PubMed  Google Scholar 

  223. Caine, E. D. (1981). Pseudodementia: Current concepts and future directions. Archives of General Psychiatry, 38, 1359–1364.

    PubMed  Google Scholar 

  224. Caine, E. D. (1986). The neuropsychology of depression: The pseudodementiasyndrome. New York: Oxford University Press.

    Google Scholar 

  225. Zakzanis, K. K., Leach, L., & Kaplan, E. (1998). On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 11(3), 111–119.

    PubMed  Google Scholar 

  226. Politis, A., Lykouras, L., Mourtzouchou, P., & Christodoulou, G. N. (2004). Attentional disturbances in patients with unipolar psychotic depression: A selective and sustained attention study. Comprehensive Psychiatry, 45(6), 452–459.

    PubMed  Google Scholar 

  227. Weiland-Fiedler, P., Erickson, K., Waldeck, T., et al. (2004). Evidence for continuing neuropsychological impairments in depression. Journal of Affective Disorders, 82(2), 253–258.

    PubMed  Google Scholar 

  228. Quraishi, S., & Frangou, S. (2002). Neuropsychology of bipolar disorder: A review. Journal of Affective Disorders, 72(3), 209–226.

    PubMed  Google Scholar 

  229. Cohen, R. M., Semple, W. E., Gross, M., et al. (1989). Evidence for common alterations in cerebral glucose metabolism in major affective disorders and schizophrenia. Neuropsychopharmacology, 2(4), 241–254.

    PubMed  Google Scholar 

  230. Han, G., Klimes-Dougan, B., Jepsen, S., et al. (2012). Selective neurocognitive impairments in adolescents with major depressive disorder. Journal of Adolescence, 35, 11–20.

    PubMed  Google Scholar 

  231. Konrad, C., Geburek, A. J., Rist, F., et al. (2010). Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychological Medicine, 22, 1–15.

    Google Scholar 

  232. Siegle, G. J., Condray, R., Thase, M. E., Keshavan, M., & Steinhauer, S. R. (2010). Sustained gamma-band EEG following negative words in depression and schizophrenia. International Journal of Psychophysiology, 75(2), 107–118.

    PubMed  Google Scholar 

  233. Paelecke-Habermann, Y., Pohl, J., & Leplow, B. (2005). Attention and executive functions in remitted major depression patients. Journal of Affective Disorders, 89(1–3), 125–135.

    PubMed  Google Scholar 

  234. Marshall, P. S., Forstot, M., Callies, A., Peterson, P. K., & Schenck, C. H. (1997). Cognitive slowing and working memory difficulties in chronic fatigue syndrome. Psychosomatic Medicine, 59(1), 58–66.

    PubMed  Google Scholar 

  235. Barch, D. M., Sheline, Y. I., Csernansky, J. G., & Snyder, A. Z. (2003). Working memory and prefrontal cortex dysfunction: Specificity to schizophrenia compared with major depression. Biological Psychiatry, 53(5), 376–384.

    PubMed  Google Scholar 

  236. Pelosi, L., Slade, T., Blumhardt, L. D., & Sharma, V. K. (2000). Working memory dysfunction in major depression: An event-related potential study. Clinical Neurophysiology, 111(9), 1531–1543.

    PubMed  Google Scholar 

  237. Sweeney, J. A., Kmiec, J. A., & Kupfer, D. J. (2000). Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biological Psychiatry, 48(7), 674–684.

    PubMed  Google Scholar 

  238. Zobel, A. W., Schulze-Rauschenbach, S., von Widdern, O. C., et al. (2004). Improvement of working but not declarative memory is correlated with HPA normalization during antidepressant treatment. Journal of Psychiatric Research, 38(4), 377–383.

    PubMed  Google Scholar 

  239. Gohier, B., Ferracci, L., Surguladze, S. A., et al. (2009). Cognitive inhibition and working memory in unipolar depression. Journal of Affective Disorders, 116(1–2), 100–105.

    PubMed  Google Scholar 

  240. Veer, I. M., Beckmann, C. F., van Tol, M. J., et al. (2010). Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Frontiers in Systems Neuroscience, 4, 41.

    PubMed  Google Scholar 

  241. Blackwood, S. K., MacHale, S. M., Power, M. J., Goodwin, G. M., & Lawrie, S. M. (1998). Effects of exercise on cognitive and motor function in chronic fatigue syndrome and depression. Journal of Neurology, Neurosurgery, and Psychiatry, 65(4), 541–546.

    PubMed  Google Scholar 

  242. Izquierdo, G., Campoy, F., Jr., Mir, J., Gonzalez, M., & Martinez-Parra, C. (1991). Memory and learning disturbances in multiple sclerosis. MRI lesions and neuropsychological correlation. European Journal of Radiology, 13(3), 220–224.

    PubMed  Google Scholar 

  243. Grant, M. M., Thase, M. E., & Sweeney, J. A. (2001). Cognitive disturbance in outpatient depressed younger adults: Evidence of modest impairment. Biological Psychiatry, 50(1), 35–43.

    PubMed  Google Scholar 

  244. Meiran, N., Diamond, G. M., Toder, D., & Nemets, B. (2011). Cognitive rigidity in unipolar depression and obsessive compulsive disorder: Examination of task switching, stroop, working memory updating and post-conflict adaptation. Psychiatry Research, 185(1–2), 149–156.

    PubMed  Google Scholar 

  245. Lockwood, K. A., Alexopoulos, G. S., & van Gorp, W. G. (2002). Executive dysfunction in geriatric depression. The American Journal of Psychiatry, 159(7), 1119–1126.

    PubMed  Google Scholar 

  246. Maalouf, F. T., Brent, D., Clark, L., et al. (2011). Neurocognitive impairment in adolescent major depressive disorder: State vs. trait illness markers. Journal of Affective Disorders, 133(3), 625–632.

    PubMed  Google Scholar 

  247. Veiel, H. O. (1997). A preliminary profile of neuropsychological deficits associated with major depression. Journal of Clinical and Experimental Neuropsychology, 19(4), 587–603.

    PubMed  Google Scholar 

  248. Maalouf, F. T., Klein, C., Clark, L., et al. (2010). Impaired sustained attention and executive dysfunction: Bipolar disorder versus depression-specific markers of affective disorders. Neuropsychologia, 48(6), 1862–1868.

    PubMed  Google Scholar 

  249. Sole, B., Bonnin, C. M., Torrent, C., et al. (2012). Neurocognitive impairment and psychosocial functioning in bipolar II disorder. Acta Psychiatrica Scandinavica, 125, 309–317.

    PubMed  Google Scholar 

  250. Lyche, P., Jonassen, R., Stiles, T. C., Ulleberg, P., & Landro, N. I. (2011). Attentional functions in major depressive disorders with and without comorbid anxiety. Archives of Clinical Neuropsychology, 26(1), 38–47.

    PubMed  Google Scholar 

  251. Langenecker, S. A., Saunders, E. F., Kade, A. M., Ransom, M. T., & McInnis, M. G. (2010). Intermediate: Cognitive phenotypes in bipolar disorder. Journal of Affective Disorders, 122(3), 285–293.

    PubMed  Google Scholar 

  252. Hansen, T. S., Larsen, K., & Engberg, A. W. (2008). The association of functional oral intake and pneumonia in patients with severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(11), 2114–2120.

    PubMed  Google Scholar 

  253. Clark, L., Sarna, A., & Goodwin, G. M. (2005). Impairment of executive function but not memory in first-degree relatives of patients with bipolar I disorder and in euthymic patients with unipolar depression. The American Journal of Psychiatry, 162(10), 1980–1982.

    PubMed  Google Scholar 

  254. Meyer, T. D., & Blechert, J. (2005). Are there attentional deficits in people putatively at risk for affective disorders? Journal of Affective Disorders, 84(1), 63–72.

    PubMed  Google Scholar 

  255. Savitz, J., van der Merwe, L., Solms, M., & Ramesar, R. (2007). Neurocognitive function in an extended Afrikaner-ancestry family with affective illness. Journal of Psychiatry & Neuroscience, 32(2), 116–120.

    Google Scholar 

  256. Hocking, M. C., Barnes, M., Shaw, C., Lochman, J. E., Madan-Swain, A., & Saeed, S. (2011). Executive function and attention regulation as predictors of coping success in youth with functional abdominal pain. Journal of Pediatric Psychology, 36(1), 64–73.

    PubMed  Google Scholar 

  257. Herrera-Guzman, I., Herrera-Abarca, J. E., Gudayol-Ferre, E., et al. (2010). Effects of selective serotonin reuptake and dual serotonergic-noradrenergic reuptake treatments on attention and executive functions in patients with major depressive disorder. Psychiatry Research, 177(3), 323–329.

    PubMed  Google Scholar 

  258. Willemse-van Son, A. H., Ribbers, G. M., Hop, W. C., van Duijn, C. M., & Stam, H. J. (2008). Association between apolipoprotein-epsilon4 and long-term outcome after traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 79(4), 426–430.

    PubMed  Google Scholar 

  259. Schutte, C., & Hanks, R. (2010). Impact of the presence of alcohol at the time of injury on acute and one-year cognitive and functional recovery after traumatic brain injury. The International Journal of Neuroscience, 120(8), 551–556.

    PubMed  Google Scholar 

  260. Lautenbacher, S., Spernal, J., & Krieg, J. C. (2002). Divided and selective attention in panic disorder. A comparative study of patients with panic disorder, major depression and healthy controls. European Archives of Psychiatry and Clinical Neuroscience, 252(5), 210–213.

    PubMed  Google Scholar 

  261. Morrison, W. E., Arbelaez, J. J., Fackler, J. C., De Maio, A., & Paidas, C. N. (2004). Gender and age effects on outcome after pediatric traumatic brain injury. Pediatric Critical Care Medicine, 5(2), 145–151.

    PubMed  Google Scholar 

  262. Kraepelin, E. (1931). Dementia praecox and paraphrenia. Edinburgh: Livingstone.

    Google Scholar 

  263. Bleuler, E. (1950). Dementia praecox. New York: International Universities Press.

    Google Scholar 

  264. Neale, J. M., & Oltmanns, T. F. (1980). Schizophrenia. New York: Wiley.

    Google Scholar 

  265. Andreasen, N. C., & Olsen, S. (1982). Negative v positive schizophrenia: Definition and validation. Archives of General Psychiatry, 39(7), 789–794.

    PubMed  Google Scholar 

  266. Kety, S. S. (1980). The syndrome of schizophrenia: Unresolved questions and opportunities for research. The British Journal of Psychiatry, 136, 421–436.

    PubMed  Google Scholar 

  267. Mirsky, A. F., & Duncan, C. C. (1986). Etiology and expression of schizophrenia: Neurobiological and psychosocial factors. Annual Review of Psychology, 37, 291–319.

    PubMed  Google Scholar 

  268. van Os, J., & Kapur, S. (2009). Schizophrenia. Lancet, 374(9690), 635–645.

    PubMed  Google Scholar 

  269. Picchioni, M. M., & Murray, R. M. (2007). Schizophrenia. British Medical Journal, 335(7610), 91–95.

    PubMed  Google Scholar 

  270. Rosenthal, D., Wender, P. H., Kety, S. S., Schulsinger, F., Welner, J., & Rieder, R. O. (1975). Parent–child relationships and psychopathological disorder in the child. Archives of General Psychiatry, 32(4), 466–476.

    PubMed  Google Scholar 

  271. Gottesman, I. I., & Shields, J. (1982). Schizophrenia: The epigenetic puzzle. Cambridge: Cambridge University Press.

    Google Scholar 

  272. Heston, L. L. (1966). Psychiatric disorders in foster home reared children of schizophrenic mothers. The British Journal of Psychiatry, 112, 819–825.

    PubMed  Google Scholar 

  273. Wender, P. H. (1974). Some speculations concerning a possible biochemical basis of minimal brain dysfunction. Life Sciences, 14(9), 1605–1621.

    PubMed  Google Scholar 

  274. Kety, S. S., Wender, P. H., Jacobsen, B., et al. (1994). Mental illness in the biological and adoptive relatives of schizophrenic adoptees. Replication of the Copenhagen Study in the rest of Denmark. Archives of General Psychiatry, 51(6), 442–455.

    PubMed  Google Scholar 

  275. Freedman, D. E., Kety, S. S., Rosenthal, D., Wender, P., & Schulsinger, F. (1972). The significance of genetics in schizophrenia. The American Journal of Psychiatry, 128(11), 1464–1465.

    PubMed  Google Scholar 

  276. Rosenthal, D., Wender, P. H., Kety, S. S., Welner, J., & Schulsinger, F. (1971). The adopted-away offspring of schizophrenics. The American Journal of Psychiatry, 128(3), 307–311.

    PubMed  Google Scholar 

  277. Drake, R. J., & Lewis, S. W. (2005). Early detection of schizophrenia. Current Opinion in Psychiatry, 18(2), 147–150.

    PubMed  Google Scholar 

  278. Singer, M. T., & Wynne, L. C. (1965). Thought disorder and family relations of schizophrenics: IV. Results and implications. Archives of General Psychiatry, 12, 201–212.

    PubMed  Google Scholar 

  279. Mirsky, A. F., Silberman, E. K., Latz, A., & Nagler, S. (1985). Adult outcomes of high-risk children: Differential effects of town and kibbutz rearing. Schizophrenia Bulletin, 11, 150–154.

    PubMed  Google Scholar 

  280. Kleinman, J. E., Casanova, M. F., & Jaskiw, G. E. (1988). The neuropathology of schizophrenia. Schizophrenia Bulletin, 14, 209–216.

    PubMed  Google Scholar 

  281. Agid, O., Mamo, D., Ginovart, N., et al. (2007). Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response–a double-blind PET study in schizophrenia. Neuropsychopharmacology, 32(6), 1209–1215.

    PubMed  Google Scholar 

  282. Alexander, K. S., Brooks, J. M., Sarter, M., & Bruno, J. P. (2009). Disruption of mesolimbic regulation of prefrontal cholinergic transmission in an animal model of schizophrenia and normalization by chronic clozapine treatment. Neuropsychopharmacology, 34(13), 2710–2720.

    PubMed  Google Scholar 

  283. Amato, D., Natesan, S., Yavich, L., Kapur, S., & Muller, C. P. (2011). Dynamic regulation of dopamine and serotonin responses to salient stimuli during chronic haloperidol treatment. The International Journal of Neuropsychopharmacology, 14, 1–13.

    Google Scholar 

  284. Bennett, M. (2009). Positive and negative symptoms in schizophrenia: The NMDA receptor hypofunction hypothesis, neuregulin/ErbB4 and synapse regression. The Australian and New Zealand Journal of Psychiatry, 43(8), 711–721.

    PubMed  Google Scholar 

  285. Hu, Z., Cooper, M., Crockett, D. P., & Zhou, R. (2004). Differentiation of the midbrain dopaminergic pathways during mouse development. The Journal of Comparative Neurology, 476(3), 301–311.

    PubMed  Google Scholar 

  286. Shelton, R. C., & Weinberger, D. R. (1986). X-ray computerized tomography studies in schizophrenia: A review and synthesis. In H. A. Nasrallah & D. R. Weinberger (Eds.), The neurology of schizophrenia (pp. 207–250). Amsterdam: Elsevier.

    Google Scholar 

  287. Shelton, R. C., Karson, C. N., Doran, A. R., Pickar, D., Bigelow, L. B., & Weinberger, D. R. (1988). Cerebral structural pathology in schizophrenia: Evidence for a selective prefrontal cortical defect. The American Journal of Psychiatry, 145(2), 154–163.

    PubMed  Google Scholar 

  288. Berman, K. F., Weinberger, D. R., Shelton, R. C., & Zec, R. F. (1987). A relationship between anatomical and physiological brain pathology in schizophrenia: Lateral cerebral ventricular size predicts cortical blood flow. The American Journal of Psychiatry, 144(10), 1277–1282.

    PubMed  Google Scholar 

  289. Zahn, T., Van Kammen, D. P., Schooler, C., & Mann, L. S. (1982). Autonomic activity in schizophrenia: Relationships to cortical atrophy and symptomatology. Psychophysiology, 19, 593.

    Google Scholar 

  290. Freedman, B., & Chapman, L. J. (1973). Early subjective experience in schizophrenic episodes. Journal of Abnormal Psychology, 82(1), 46–54.

    PubMed  Google Scholar 

  291. McGhie, A. (1969). Psychological aspects of attention and its disorders. In L. Harold, P. J. Vinken, & G. W. Bruyn (Eds.), Handbook of clinical neurology (Disorders of higher nervous activity, Vol. 3). New York: Wiley.

    Google Scholar 

  292. Feldon, J., & Weiner, I. (1991). The latent inhibition model of schizophrenic attention disorder Haloperidol and sulpiride enhance rats’ ability to ignore irrelevant stimuli. Biological Psychiatry, 29(7), 635–646.

    PubMed  Google Scholar 

  293. Gjerde, P. F. (1983). Attentional capacity dysfunction and arousal in schizophrenia. Psychological Bulletin, 93, 57–72.

    PubMed  Google Scholar 

  294. Gjerde, P. F. (1986). Arousal and the disruption of language production processes in schizophrenia. The Behavioral and Brain Sciences, 9(3), 524.

    Google Scholar 

  295. Oltmanns, T. F., Ohayon, J., & Neale, J. M. (1978). The effect of anti-psychotic medication and diagnostic criteria on distractability in schizophrenia. Journal of Psychiatric Research, 14, 81–91.

    PubMed  Google Scholar 

  296. Wielgus, M. S., & Harvey, P. D. (1988). Dichotic listening and recall in schizophrenia and mania. Schizophrenia Bulletin, 14(4), 689–700.

    PubMed  Google Scholar 

  297. Harvey, P. D., Walker, E., & Wielgus, M. S. (1986). Psychological markers of vulnerability to schizophrenia: Research and future directions. Progress in Experimental Personality Research, 14, 231–267.

    PubMed  Google Scholar 

  298. Schwartz, F., Carr, A. C., Munich, R. L., Glauber, S., Lesser, B., & Murray, J. (1989). Reaction time impairment in schizophrenia and affective illness: The role of attention. Biological Psychiatry, 25, 540–548.

    PubMed  Google Scholar 

  299. Payne, R. W., Mattussek, P., & George, E. I. (1959). An experimental study of schizophrenic thought disorder. Journal of Mental Science, 105, 627–652.

    PubMed  Google Scholar 

  300. Nuechterlein, K. H. (1977). Reaction time and attention in schizophrenia: A critical evaluation of the data and theories. Schizophrenia Bulletin, 3, 373–428.

    PubMed  Google Scholar 

  301. Nuechterlein, K. H., & Dawson, M. E. (1984). Information processing and attentional functioning in the developmental course of schizophrenic disorders. Schizophrenia Bulletin, 10, 160–203.

    PubMed  Google Scholar 

  302. Callaway, E., & Naghdi, S. (1982). An information processing model for schizophrenia. Archives of General Psychiatry, 39, 339–347.

    PubMed  Google Scholar 

  303. Winters, K. C., Stone, A. A., Weintraub, S., & Neale, J. M. (1981). Cognitive and attentional deficits in children vulnerable to psychopathology. Journal of Abnormal Child Psychology, 9(4), 435–453.

    PubMed  Google Scholar 

  304. Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology. General, 108, 356–388.

    Google Scholar 

  305. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190.

    Google Scholar 

  306. Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  307. Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 55–84). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  308. Chapman, L. J., & Chapman, J. P. (1973). Disordered thought in schizophrenia. New York: Appleton.

    Google Scholar 

  309. Chapman, L. J., & Chapman, J. P. (1978). The measurement of differential deficit. Journal of Psychiatric Research, 14(1–4), 303–311.

    PubMed  Google Scholar 

  310. Gruzelier, J. H., & Venables, P. H. (1972). Skin conductance orienting activity in a heterogeneous sample of schizophrenics. The Journal of Nervous and Mental Disease, 155, 277–287.

    PubMed  Google Scholar 

  311. Schell, A. M., Dawson, M. E., Rissling, A., et al. (2005). Electrodermal predictors of functional outcome and negative symptoms in schizophrenia. Psychophysiology, 42(4), 483–492.

    PubMed  Google Scholar 

  312. Dawson, M. E., & Schell, A. M. (2002). What does electrodermal activity tell us about prognosis in the schizophrenia spectrum? Schizophrenia Research, 54(1–2), 87–93.

    PubMed  Google Scholar 

  313. Dawson, M. E., Nuechterlein, K. H., Schell, A. M., Gitlin, M., & Ventura, J. (1994). Autonomic abnormalities in schizophrenia. State or trait indicators? Archives of General Psychiatry, 51(10), 813–824.

    PubMed  Google Scholar 

  314. Dawson, M. E., Hazlett, E. A., Filion, D. L., Nuechterlein, K. H., & Schell, A. M. (1993). Attention and schizophrenia: Impaired modulation of the startle reflex. Journal of Abnormal Psychology, 102(4), 633–641.

    PubMed  Google Scholar 

  315. Dawson, M. E., & Nuechterlein, K. H. (1984). Psychophysiological dysfunctions in the developmental course of schizophrenic disorders. Schizophrenia Bulletin, 10(2), 204–232.

    PubMed  Google Scholar 

  316. Zahn, T. (1988). Studies of the autonomic psychophysiology and attention in schizophrenia. Schizophrenia Bulletin, 14, 205–208.

    PubMed  Google Scholar 

  317. Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review, 66(3), 183–201.

    PubMed  Google Scholar 

  318. Venables, P. H. (1984). Cerebral mechanisms, autonomic responsiveness, and attention in schizophrenia. Nebraska Symposium on Motivation, 31, 47–91.

    PubMed  Google Scholar 

  319. Venables, P. H. (1981). Psychophysiology of abnormal behaviour. British Medical Bulletin, 37(2), 199–203.

    PubMed  Google Scholar 

  320. Green, M. F., Nuechterlein, K. H., & Satz, P. (1989). The relationship of symptomatology and medication to electrodermal activity in schizophrenia. Psychophysiology, 26(2), 148–157.

    PubMed  Google Scholar 

  321. Zahn, T. P., Rapoport, J. L., & Thompson, C. L. (1981). Autonomic effects of dextroamphetamine in normal men: Implications for hyperactivity and schizophrenia. Psychiatry Research, 4(1), 39–47.

    PubMed  Google Scholar 

  322. Zahn, T. P., Jacobsen, L. K., Gordon, C. T., McKenna, K., Frazier, J. A., & Rapoport, J. L. (1997). Autonomic nervous system markers of psychopathology in childhood-onset schizophrenia. Archives of General Psychiatry, 54(10), 904–912.

    PubMed  Google Scholar 

  323. Bob, P., Susta, M., Chladek, J., Glaslova, K., & Palus, M. (2009). Chaos in schizophrenia associations, reality or metaphor? International Journal of Psychophysiology, 73(3), 179–185.

    PubMed  Google Scholar 

  324. Reekie, Y. L., Braesicke, K., Man, M. S., & Roberts, A. C. (2008). Uncoupling of behavioral and autonomic responses after lesions of the primate orbitofrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 105(28), 9787–9792.

    PubMed  Google Scholar 

  325. Bob, P., Chladek, J., Susta, M., Glaslova, K., Jagla, F., & Kukleta, M. (2007). Neural chaos and schizophrenia. General Physiology and Biophysics, 26(4), 298–305.

    PubMed  Google Scholar 

  326. Williams, L. M., Das, P., Liddell, B. J., et al. (2007). Fronto-limbic and autonomic disjunctions to negative emotion distinguish schizophrenia subtypes. Psychiatry Research, 155(1), 29–44.

    PubMed  Google Scholar 

  327. Zahn, T. P., & Pickar, D. (2005). Autonomic activity in relation to symptom ratings and reaction time in unmedicated patients with schizophrenia. Schizophrenia Research, 79(2–3), 257–270.

    PubMed  Google Scholar 

  328. Martinez, V., Parikh, V., & Sarter, M. (2005). Sensitized attentional performance and Fos-immunoreactive cholinergic neurons in the basal forebrain of amphetamine-pretreated rats. Biological Psychiatry, 57(10), 1138–1146.

    PubMed  Google Scholar 

  329. Williams, L. M., Das, P., Harris, A. W., et al. (2004). Dysregulation of arousal and amygdala-prefrontal systems in paranoid schizophrenia. The American Journal of Psychiatry, 161(3), 480–489.

    PubMed  Google Scholar 

  330. Bahramali, H., Lim, L. C., Rennie, C., Meares, R., & Gordon, E. (2001). ERPs associated with and without an “orienting reflex” in patients with schizophrenia. The International Journal of Neuroscience, 108(3–4), 163–174.

    PubMed  Google Scholar 

  331. Zahn, T. P., Pickar, D., & van Kammen, D. P. (2001). Neuroleptic effects on autonomic activity in schizophrenia: Between-group and within-subject paradigms and comparisons with controls. Schizophrenia Bulletin, 27(3), 503–515.

    PubMed  Google Scholar 

  332. Hollister, J. M., Mednick, S. A., Brennan, P., & Cannon, T. D. (1994). Impaired autonomic nervous system-habituation in those at genetic risk for schizophrenia. Archives of General Psychiatry, 51(7), 552–558.

    PubMed  Google Scholar 

  333. Done, D. J. (1990). The arousal hypothesis of schizophrenia: Current status. British Journal of Hospital Medicine, 43(6), 407.

    PubMed  Google Scholar 

  334. Schnur, D. B., Bernstein, A. S., Mukherjee, S., Loh, J., Degreef, G., & Reidel, J. (1989). The autonomic orienting response and CT scan findings in schizophrenia. Schizophrenia Research, 2(6), 449–455.

    PubMed  Google Scholar 

  335. Saarma, J. (1974). Autonomic component of the orienting reflex in schizophrenics. Biological Psychiatry, 9(1), 55–60.

    PubMed  Google Scholar 

  336. Lykken, D. T., & Maley, M. (1968). Autonomic versus cortical arousal in schizophrenics and non-psychotics. Journal of Psychiatric Research, 6(1), 21–32.

    PubMed  Google Scholar 

  337. Yee, C. M., Mathis, K. I., Sun, J. C., et al. (2010). Integrity of emotional and motivational states during the prodromal, first-episode, and chronic phases of schizophrenia. Journal of Abnormal Psychology, 119(1), 71–82.

    PubMed  Google Scholar 

  338. Kring, A. M., & Moran, E. K. (2008). Emotional response deficits in schizophrenia: Insights from affective science. Schizophrenia Bulletin, 34(5), 819–834.

    PubMed  Google Scholar 

  339. Dinzeo, T. J., Cohen, A. S., Nienow, T. M., & Docherty, N. M. (2008). Arousability in schizophrenia: Relationship to emotional and physiological reactivity and symptom severity. Acta Psychiatrica Scandinavica, 117(6), 432–439.

    PubMed  Google Scholar 

  340. Kinderman, P., Prince, S., Waller, G., & Peters, E. (2003). Self-discrepancies, attentional bias and persecutory delusions. The British Journal of Clinical Psychology, 42(Pt 1), 1–12.

    PubMed  Google Scholar 

  341. Schell, A. M., Dawson, M. E., Nuechterlein, K. H., Subotnik, K. L., & Ventura, J. (2002). The temporal stability of electrodermal variables over a one-year period in patients with recent-onset schizophrenia and in normal subjects. Psychophysiology, 39(2), 124–132.

    PubMed  Google Scholar 

  342. Dixon, M. J., King, S., Stip, E., & Cormier, H. (2000). Continuous performance test differences among schizophrenic out-patients living in high and low expressed emotion environments. Psychological Medicine, 30(5), 1141–1153.

    PubMed  Google Scholar 

  343. White, P. M., & Yee, C. M. (1997). Effects of attentional and stressor manipulations on the P50 gating response. Psychophysiology, 34(6), 703–711.

    PubMed  Google Scholar 

  344. Hazlett, E. A., Dawson, M. E., Filion, D. L., Schell, A. M., & Nuechterlein, K. H. (1997). Autonomic orienting and the allocation of processing resources in schizophrenia patients and putatively at-risk individuals. Journal of Abnormal Psychology, 106(2), 171–181.

    PubMed  Google Scholar 

  345. Bernstein, A. S., Schnur, D. B., Bernstein, P., Yeager, A., Wrable, J., & Smith, S. (1995). Differing patterns of electrodermal and finger pulse responsivity in schizophrenia and depression. Psychological Medicine, 25(1), 51–62.

    PubMed  Google Scholar 

  346. Levinson, D. F. (1991). Skin conductance orienting response in unmedicated RDC schizophrenic, schizoaffective, depressed, and control subjects. Biological Psychiatry, 30(7), 663–683.

    PubMed  Google Scholar 

  347. Levit, R. A., Sutton, S., & Zubin, J. (1973). Evoked potential correlates of information processing in psychiatric patients. Psychological Medicine, 3, 487–494.

    PubMed  Google Scholar 

  348. Pfefferbaum, A., Ford, J. M., White, P. M., & Roth, W. T. (1989). P3 in schizophrenia is affected by stimulus modality, response requirements, medication status, and negative symptoms. Archives of General Psychiatry, 46(11), 1035–1044.

    PubMed  Google Scholar 

  349. Roth, W. T., Horvath, T. B., Pfefferbaum, A., & Kopell, B. S. (1980). Event-related potentials in schizophrenics. Electroencephalography and Clinical Neurophysiology, 48(2), 127–139.

    PubMed  Google Scholar 

  350. Verleger, R., & Cohen, R. (1978). Effects of certainty, modality shift and guess outcome on evoked potentials and reaction times in chronic schizophrenics. Psychological Medicine, 8(1), 81–93.

    PubMed  Google Scholar 

  351. Pfefferbaum, A., Wenegrat, B. G., Ford, J. M., Roth, W. T., & Kopell, B. S. (1984). Clinical application of the P3 component of event-related potentials. II. Dementia, depression and schizophrenia. Electroencephalography and Clinical Neurophysiology, 59(2), 104–124.

    PubMed  Google Scholar 

  352. O’Donnell, B. F., Faux, S. F., McCarley, R. W., et al. (1995). Increased rate of P300 latency prolongation with age in schizophrenia. Electrophysiological evidence for a neurodegenerative process. Archives of General Psychiatry, 52(7), 544–549.

    PubMed  Google Scholar 

  353. Salisbury, D. F., O’Donnell, B. F., McCarley, R. W., Shenton, M. E., & Benavage, A. (1994). The N2 event-related potential reflects attention deficit in schizophrenia. Biological Psychology, 39(1), 1–13.

    PubMed  Google Scholar 

  354. O’Donnell, B. F., Shenton, M. E., McCarley, R. W., et al. (1993). The auditory N2 component in schizophrenia: Relationship to MRI temporal lobe gray matter and to other ERP abnormalities. Biological Psychiatry, 34(1–2), 26–40.

    PubMed  Google Scholar 

  355. O’Donnell, B. F., Hokama, H., McCarley, R. W., et al. (1994). Auditory ERPs to non-target stimuli in schizophrenia: Relationship to probability, task-demands, and target ERPs. International Journal of Psychophysiology, 17(3), 219–231.

    PubMed  Google Scholar 

  356. Baribeau-Braun, J., Picton, T. W., & Gosselin, J. Y. (1983). Schizophrenia: A neurophysiological evaluation of abnormal information processing. Science (New York, N.Y.), 219(4586), 874–876.

    Google Scholar 

  357. Duncan, C. C., Morihisa, J. M., Fawcett, R. W., & Kirch, D. G. (1987). P300 in schizophrenia: State or trait marker? Psychopharmacology Bulletin, 23, 497–501.

    Google Scholar 

  358. Duncan, C. C., Perlstein, W. M., & Morihisa, J. M. (1987). The P300 metric in schizophrenia: Effects of probability and modality. Electroencephalography and Clinical Neurophysiology. Supplement, 40, 670–674.

    PubMed  Google Scholar 

  359. Faux, S. F., Shenton, M. E., McCarley, R. W., Nestor, P. G., Marcy, B., & Ludwig, A. (1990). Preservation of P300 event-related potential topographic asymmetries in schizophrenia with use of either linked-ear or nose reference sites. Electroencephalography and Clinical Neurophysiology, 75(5), 378–391.

    PubMed  Google Scholar 

  360. McCarley, R. W., Faux, S. F., Shenton, M. E., Nestor, P. G., & Holinger, D. P. (1991). Is there P300 asymmetry in schizophrenia? Archives of General Psychiatry, 48(4), 380–383.

    PubMed  Google Scholar 

  361. McCarley, R. W., Faux, S. F., Shenton, M. E., Nestor, P. G., & Adams, J. (1991). Event-related potentials in schizophrenia: Their biological and clinical correlates and a new model of schizophrenic pathophysiology. Schizophrenia Research, 4(2), 209–231.

    PubMed  Google Scholar 

  362. Shenton, M. E., O’Donnell, B. F., Nestor, P. G., et al. (1993). Temporal lobe abnormalities in a patient with schizophrenia who has word-finding difficulty: Use of high-resolution magnetic resonance imaging and auditory P300 event-related potentials. Harvard Review of Psychiatry, 1(2), 110–117.

    PubMed  Google Scholar 

  363. Hokama, H., Shenton, M. E., Nestor, P. G., et al. (1995). Caudate, putamen, and globus pallidus volume in schizophrenia: A quantitative MRI study. Psychiatry Research, 61(4), 209–229.

    PubMed  Google Scholar 

  364. Kikinis, R., Shenton, M. E., Gerig, G., et al. (1994). Temporal lobe sulco-gyral pattern anomalies in schizophrenia: An in vivo MR three-dimensional surface rendering study. Neuroscience Letters, 182(1), 7–12.

    PubMed  Google Scholar 

  365. McCarley, R. W., Shenton, M. E., O’Donnell, B. F., et al. (1993). Auditory P300 abnormalities and left posterior superior temporal gyrus volume reduction in schizophrenia. Archives of General Psychiatry, 50(3), 190–197.

    PubMed  Google Scholar 

  366. Kayser, J., Tenke, C. E., Gil, R., & Bruder, G. E. (2010). ERP generator patterns in schizophrenia during tonal and phonetic oddball tasks: Effects of response hand and silent count. Clinical EEG and Neuroscience, 41(4), 184–195.

    PubMed  Google Scholar 

  367. Knott, V., Millar, A., & Fisher, D. (2009). Sensory gating and source analysis of the auditory P50 in low and high suppressors. NeuroImage, 44(3), 992–1000.

    PubMed  Google Scholar 

  368. Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. (2008). Spatial attention modulates initial afferent activity in human primary visual cortex. Cerebral Cortex, 18(11), 2629–2636.

    PubMed  Google Scholar 

  369. Yeap, S., Kelly, S. P., Sehatpour, P., et al. (2006). Early visual sensory deficits as endophenotypes for schizophrenia: High-density electrical mapping in clinically unaffected first-degree relatives. Archives of General Psychiatry, 63(11), 1180–1188.

    PubMed  Google Scholar 

  370. Butler, P. D., Martinez, A., Foxe, J. J., et al. (2007). Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain, 130(Pt 2), 417–430.

    PubMed  Google Scholar 

  371. Gonzalez-Hernandez, J. A., Cedeno, I., Pita-Alcorta, C., Diaz-Comas, L., Galan, L., & Figueredo-Rodriguez, P. (2003). Dynamic event-related potentials and rapid source analysis reveals an intermittent short-lasting dysfrontality in schizophrenia. NeuroImage, 19(4), 1655–1663.

    PubMed  Google Scholar 

  372. Kasai, K., Nakagome, K., Itoh, K., et al. (2002). Impaired cortical network for preattentive detection of change in speech sounds in schizophrenia: A high-resolution event-related potential study. The American Journal of Psychiatry, 159(4), 546–553.

    PubMed  Google Scholar 

  373. Mulert, C., Gallinat, J., Pascual-Marqui, R., et al. (2001). Reduced event-related current density in the anterior cingulate cortex in schizophrenia. NeuroImage, 13(4), 589–600.

    PubMed  Google Scholar 

  374. Reite, M., Teale, P., Goldstein, L., Whalen, J., & Linnville, S. (1989). Late auditory magnetic sources may differ in the left hemisphere of schizophrenic patients. A preliminary report. Archives of General Psychiatry, 46(6), 565–572.

    PubMed  Google Scholar 

  375. McCarley, R. W., Niznikiewicz, M. A., Salisbury, D. F., et al. (1999). Cognitive dysfunction in schizophrenia: Unifying basic research and clinical aspects. European Archives of Psychiatry and Clinical Neuroscience, 249(Suppl 4), 69–82.

    PubMed  Google Scholar 

  376. Nestor, P. G., Akdag, S. J., O’Donnell, B. F., et al. (1998). Word recall in schizophrenia: A connectionist model. The American Journal of Psychiatry, 155(12), 1685–1690.

    PubMed  Google Scholar 

  377. Nestor, P. G., Kimble, M. O., O’Donnell, B. F., et al. (1997). Aberrant semantic activation in schizophrenia: A neurophysiological study. The American Journal of Psychiatry, 154(5), 640–646.

    PubMed  Google Scholar 

  378. Nestor, P. G., Shenton, M. E., McCarley, R. W., et al. (1993). Neuropsychological correlates of MRI temporal lobe abnormalities in schizophrenia. The American Journal of Psychiatry, 150(12), 1849–1855.

    PubMed  Google Scholar 

  379. Grillon, C., Ameli, R., & Glazer, W. M. (1991). N400 and semantic categorization in schizophrenia. Biological Psychiatry, 29(5), 467–480.

    PubMed  Google Scholar 

  380. Koyama, S., Nageishi, Y., Shimokochi, M., et al. (1991). The N400 component of event-related potentials in schizophrenic patients: A preliminary study. Electroencephalography and Clinical Neurophysiology, 78(2), 124–132.

    PubMed  Google Scholar 

  381. Niznikiewicz, M., Mittal, M. S., Nestor, P. G., & McCarley, R. W. (2010). Abnormal inhibitory processes in semantic networks in schizophrenia. International Journal of Psychophysiology, 75(2), 133–140.

    PubMed  Google Scholar 

  382. Niznikiewicz, M. A., Friedman, M., Shenton, M. E., et al. (2004). Processing sentence context in women with schizotypal personality disorder: An ERP study. Psychophysiology, 41(3), 367–371.

    PubMed  Google Scholar 

  383. Salisbury, D. F., Shenton, M. E., Nestor, P. G., & McCarley, R. W. (2002). Semantic bias, homograph comprehension, and event-related potentials in schizophrenia. Clinical Neurophysiology, 113(3), 383–395.

    PubMed  Google Scholar 

  384. Salisbury, D. F., O’Donnell, B. F., McCarley, R. W., Nestor, P. G., & Shenton, M. E. (2000). Event-related potentials elicited during a context-free homograph task in normal versus schizophrenic subjects. Psychophysiology, 37(4), 456–463.

    PubMed  Google Scholar 

  385. Niznikiewicz, M. A., O’Donnell, B. F., Nestor, P. G., et al. (1997). ERP assessment of visual and auditory language processing in schizophrenia. Journal of Abnormal Psychology, 106(1), 85–94.

    PubMed  Google Scholar 

  386. Adams, J., Faux, S. F., Nestor, P. G., et al. (1993). ERP abnormalities during semantic processing in schizophrenia. Schizophrenia Research, 10(3), 247–257.

    PubMed  Google Scholar 

  387. Orzack, M. H., Kornetsky, C., & Freeman, H. (1967). The effects of daily administration of carphenazine on attention in the schizophrenic patient. Psychopharmacologia, 11(1), 31–38.

    PubMed  Google Scholar 

  388. Orzack, M. H., & Kornetsky, C. (1966). Attention dysfunction in chronic schizophrenia. Archives of General Psychiatry, 14(3), 323–326.

    PubMed  Google Scholar 

  389. Rosvold, H. E., & Delgado, J. M. R. (1956). The effect on delayed-alternation test performance of stimulating or destroying electrically structures within the frontal lobes of the monkey’s brain. Journal of Comparative and Physiological Psychology, 49(4), 365–372.

    PubMed  Google Scholar 

  390. Nuechterlein, K. H., & Subotnik, K. L. (1996). The role of neurocognitive deficits in understanding adaptive functioning in severe psychiatric illness: Commentary on Hawkins and Cooper. Psychiatry, 59(4), 389–392.

    PubMed  Google Scholar 

  391. Nuechterlein, K. H. (1986). Childhood precursors of adult schizophrenia. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 27(2), 133–144.

    PubMed  Google Scholar 

  392. Nuechterlein, K. H., Edell, W. S., Norris, M., & Dawson, M. E. (1986). Attentional vulnerability indicators, thought disorder, and negative symptoms. Schizophrenia Bulletin, 12(3), 408–426.

    PubMed  Google Scholar 

  393. Nuechterlein, K. H., & Dawson, M. E. (1984). A heuristic vulnerability/stress model of schizophrenic episodes. Schizophrenia Bulletin, 10(2), 300–312.

    PubMed  Google Scholar 

  394. Nuechterlein, K. H. (1983). Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. Journal of Abnormal Psychology, 92(1), 4–28.

    PubMed  Google Scholar 

  395. Nuechterlein, K. H. (1977). Refocusing on attentional dysfunctions in schizophrenia. Schizophrenia Bulletin, 3(3), 457–469.

    PubMed  Google Scholar 

  396. Nuechterlein, K. H., Parasuraman, R., & Jiang, Q. (1983). Visual sustained attention: Image degradation produces rapid sensitivity decrement over time. Science (New York, N.Y.), 220(4594), 327–329.

    Google Scholar 

  397. Nestor, P. G., Faux, S. F., McCarley, R. W., Shenton, M. E., & Sands, S. F. (1990). Measurement of visual sustained attention in schizophrenia using signal detection analysis and a newly developed computerized CPT task. Schizophrenia Research, 3(5–6), 329–332.

    PubMed  Google Scholar 

  398. Cornblatt, B. A., & Keilp, J. G. (1994). Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin, 20(1), 31–46.

    PubMed  Google Scholar 

  399. Rutschmann, J., Cornblatt, B., & Erlenmeyer-Kimling, L. (1986). Sustained attention in children at risk for schizophrenia: Findings with two visual continuous performance tests in a new sample. Journal of Abnormal Child Psychology, 14(3), 365–385.

    PubMed  Google Scholar 

  400. Erlenmeyer-Kimling, L., & Cornblatt, B. (1987). The New York High-Risk Project: A followup report. Schizophrenia Bulletin, 13(3), 451–461.

    PubMed  Google Scholar 

  401. Erlenmeyer-Kimling, L., & Cornblatt, B. (1987). High-risk research in schizophrenia: A summary of what has been learned. Journal of Psychiatric Research, 21(4), 401–411.

    PubMed  Google Scholar 

  402. Cornblatt, B. A., Risch, N. J., Faris, G., Friedman, D., & Erlenmeyer-Kimling, L. (1988). The continuous performance test, identical pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Research, 26(2), 223–238.

    PubMed  Google Scholar 

  403. Cornblatt, B. A., Lenzenweger, M. F., & Erlenmeyer-Kimling, L. (1989). The continuous performance test, identical pairs version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Research, 29(1), 65–85.

    PubMed  Google Scholar 

  404. Keefe, R. S., Silverman, J. M., Siever, L. J., & Cornblatt, B. A. (1991). Refining phenotype characterization in genetic linkage studies of schizophrenia. Social Biology, 38(3–4), 197–218.

    PubMed  Google Scholar 

  405. Cornblatt, B. A., Lenzenweger, M. F., Dworkin, R. H., & Erlenmeyer-Kimling, L. (1992). Childhood attentional dysfunctions predict social deficits in unaffected adults at risk for schizophrenia. The British Journal of Psychiatry. Supplement, 18, 59–64.

    PubMed  Google Scholar 

  406. Erlenmeyer-Kimling, L., & Cornblatt, B. A. (1992). A summary of attentional findings in the New York High-Risk Project. Journal of Psychiatric Research, 26(4), 405–426.

    PubMed  Google Scholar 

  407. Erlenmeyer-Kimling, L., Cornblatt, B. A., Rock, D., Roberts, S., Bell, M., & West, A. (1993). The New York High-Risk Project: Anhedonia, attentional deviance, and psychopathology. Schizophrenia Bulletin, 19(1), 141–153.

    PubMed  Google Scholar 

  408. Braff, D., Stone, C., Callaway, E., Geyer, M., Glick, I., & Bali, L. (1978). Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology, 15(4), 339–343.

    PubMed  Google Scholar 

  409. Braff, D. L. (1981). Impaired speed of information processing in nonmedicated schizotypal patients. Schizophrenia Bulletin, 7(3), 499–508.

    PubMed  Google Scholar 

  410. Braff, D. L. (1989). Sensory input deficits and negative symptoms in schizophrenic patients. The American Journal of Psychiatry, 146(8), 1006–1011.

    PubMed  Google Scholar 

  411. Braff, D. L. (1992). Reply to cognitive therapy and schizophrenia. Schizophrenia Bulletin, 18(1), 37–38.

    PubMed  Google Scholar 

  412. Braff, D. L. (1993). Information processing and attention dysfunctions in schizophrenia. Schizophrenia Bulletin, 19(2), 233–259.

    PubMed  Google Scholar 

  413. Braff, D. L. (2010). Prepulse inhibition of the startle reflex: A window on the brain in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 349–371.

    PubMed  Google Scholar 

  414. Braff, D. L., & Geyer, M. A. (1990). Sensorimotor gating and schizophrenia. Human and animal model studies. Archives of General Psychiatry, 47(2), 181–188.

    PubMed  Google Scholar 

  415. Braff, D. L., & Light, G. A. (2004). Preattentional and attentional cognitive deficits as targets for treating schizophrenia. Psychopharmacology, 174(1), 75–85.

    PubMed  Google Scholar 

  416. Braff, D. L., Light, G. A., & Swerdlow, N. R. (2007). Prepulse inhibition and P50 suppression are both deficient but not correlated in schizophrenia patients. Biological Psychiatry, 61(10), 1204–1207.

    PubMed  Google Scholar 

  417. Cullum, C. M., Harris, J. G., Waldo, M. C., et al. (1993). Neurophysiological and neuropsychological evidence for attentional dysfunction in schizophrenia. Schizophrenia Research, 10(2), 131–141.

    PubMed  Google Scholar 

  418. Adler, L. E., & Waldo, M. C. (1991). Counterpoint: A sensory gating–hippocampal model of schizophrenia. Schizophrenia Bulletin, 17(1), 19–24.

    PubMed  Google Scholar 

  419. Nagamoto, H. T., Adler, L. E., Waldo, M. C., Griffith, J., & Freedman, R. (1991). Gating of auditory response in schizophrenics and normal controls. Effects of recording site and stimulation interval on the P50 wave. Schizophrenia Research, 4(1), 31–40.

    PubMed  Google Scholar 

  420. Waldo, M. C., Adler, L. E., & Freedman, R. (1988). Defects in auditory sensory gating and their apparent compensation in relatives of schizophrenics. Schizophrenia Research, 1(1), 19–24.

    PubMed  Google Scholar 

  421. Freedman, R., Adler, L. E., Baker, N., Waldo, M., & Mizner, G. (1987). Candidate for inherited neurobiological dysfunction in schizophrenia. Somatic Cell and Molecular Genetics, 13(4), 479–484.

    PubMed  Google Scholar 

  422. Freedman, R., Adler, L. E., Gerhardt, G. A., et al. (1987). Neurobiological studies of sensory gating in schizophrenia. Schizophrenia Bulletin, 13(4), 669–678.

    PubMed  Google Scholar 

  423. Freedman, R., Adler, L. E., Waldo, M. C., Pachtman, E., & Franks, R. D. (1983). Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: Comparison of medicated and drug-free patients. Biological Psychiatry, 18(5), 537–551.

    PubMed  Google Scholar 

  424. Moritz, S., Ruff, C., Wilke, U., Andresen, B., Krausz, M., & Naber, D. (2001). Negative priming in schizophrenia: Effects of masking and prime presentation time. Schizophrenia Research, 48(2–3), 291–299.

    PubMed  Google Scholar 

  425. Peters, E. R., Pickering, A. D., & Hemsley, D. R. (1994). ‘Cognitive inhibition’ and positive symptomatology in schizotypy. The British Journal of Clinical Psychology, 33(Pt 1), 33–48.

    PubMed  Google Scholar 

  426. Beech, A., McManus, D., Baylis, G., Tipper, S., & Agar, K. (1991). Individual differences in cognitive processes: Towards an explanation of schizophrenic symptomatology. British Journal of Psychology, 82(Pt 4), 417–426.

    PubMed  Google Scholar 

  427. Beech, A., Powell, T., McWilliam, J., & Claridge, G. (1989). Evidence of reduced ‘cognitive inhibition’ in schizophrenia. The British Journal of Clinical Psychology, 28(Pt 2), 109–116.

    PubMed  Google Scholar 

  428. Beech, A., & Claridge, G. (1987). Individual differences in negative priming: Relations with schizotypal personality traits. British Journal of Psychology, 78(Pt 3), 349–356.

    PubMed  Google Scholar 

  429. Elkins, I. J., & Cromwell, R. L. (1994). Priming effects in schizophrenia: Associative interference and facilitation as a function of visual context. Journal of Abnormal Psychology, 103(4), 791–800.

    PubMed  Google Scholar 

  430. Green, M. F., Nuechterlein, K. H., & Mintz, J. (1994). Backward masking in schizophrenia and mania. II. Specifying the visual channels. Archives of General Psychiatry, 51(12), 945–951.

    PubMed  Google Scholar 

  431. Braff, D. L., & Saccuzzo, D. P. (1985). The time course of information-processing deficits in schizophrenia. The American Journal of Psychiatry, 142(2), 170–174.

    PubMed  Google Scholar 

  432. Saccuzzo, D. P., & Braff, D. L. (1980). Associative cognitive dysfunction in schizophrenia and old age. The Journal of Nervous and Mental Disease, 168(1), 41–45.

    PubMed  Google Scholar 

  433. Saccuzzo, D. P., & Braff, D. L. (1986). Information-processing abnormalities: Trait- and state-dependent components. Schizophrenia Bulletin, 12(3), 447–459.

    PubMed  Google Scholar 

  434. Saccuzzo, D. S., Cadenhead, K. S., & Braff, D. L. (1996). Backward versus forward visual masking deficits in schizophrenic patients: Centrally, not peripherally, mediated? The American Journal of Psychiatry, 153(12), 1564–1570.

    PubMed  Google Scholar 

  435. Nestor, P., & O’Donnell, B. F. (1998). The mind adrift: Attention dysregulation in schizoprenia. In R. Parasuraman (Ed.), The attentive brain. Cambridge, MA: MIT Press.

    Google Scholar 

  436. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.

    Google Scholar 

  437. Nestor, P. G., Faux, S. F., McCarley, R. W., et al. (1992). Attentional cues in chronic schizophrenia: Abnormal disengagement of attention. Journal of Abnormal Psychology, 101(4), 682–689.

    PubMed  Google Scholar 

  438. Granholm, E., Asarnow, R. F., Verney, S. P., Nelson, P., & Jeste, D. V. (1996). Span of apprehension deficits in older outpatients with schizophrenia. Schizophrenia Research, 20(1–2), 51–56.

    PubMed  Google Scholar 

  439. Strandburg, R. J., Marsh, J. T., Brown, W. S., et al. (1994). Reduced attention-related negative potentials in schizophrenic adults. Psychophysiology, 31(3), 272–281.

    PubMed  Google Scholar 

  440. Elkins, I. J., Cromwell, R. L., & Asarnow, R. F. (1992). Span of apprehension in schizophrenic patients as a function of distractor masking and laterality. Journal of Abnormal Psychology, 101(1), 53–60.

    PubMed  Google Scholar 

  441. Strandburg, R. J., Marsh, J. T., Brown, W. S., Asarnow, R. F., Guthrie, D., & Higa, J. (1991). Reduced attention-related negative potentials in schizophrenic children. Electroencephalography and Clinical Neurophysiology, 79(4), 291–307.

    PubMed  Google Scholar 

  442. Asarnow, R. F., Marder, S. R., Mintz, J., Van Putten, T., & Zimmerman, K. E. (1988). Differential effect of low and conventional doses of fluphenazine on schizophrenic outpatients with good or poor information-processing abilities. Archives of General Psychiatry, 45(9), 822–826.

    PubMed  Google Scholar 

  443. Asarnow, R. F., Nuechterlein, K. H., & Marder, S. R. (1983). Span of apprehension performance, neuropsychological functioning, and indices of psychosis-proneness. The Journal of Nervous and Mental Disease, 171(11), 662–669.

    PubMed  Google Scholar 

  444. Asarnow, R. F., & MacCrimmon, D. J. (1982). Attention/information processing, neuropsychological functioning, and thought disorder during the acute and partial recovery phases of schizophrenia: A longitudinal study. Psychiatry Research, 7(3), 309–319.

    PubMed  Google Scholar 

  445. Asarnow, R. F., & MacCrimmon, D. J. (1981). Span of apprehension deficits during the postpsychotic stages of schizophrenia. A replication and extension. Archives of General Psychiatry, 38(9), 1006–1011.

    PubMed  Google Scholar 

  446. Miller, M. B., Chapman, L. J., Chapman, J. P., & Barnett, E. M. (1990). Schizophrenic deficit in span of apprehension. Journal of Abnormal Psychology, 99(3), 313–316.

    PubMed  Google Scholar 

  447. Mathis, K. I., Wynn, J. K., Breitmeyer, B., Nuechterlein, K. H., & Green, M. F. (2011). The attentional blink in schizophrenia: Isolating the perception/attention interface. Journal of Psychiatric Research, 45, 1346–1351.

    PubMed  Google Scholar 

  448. Luck, S. J., & Gold, J. M. (2008). The construct of attention in schizophrenia. Biological Psychiatry, 64(1), 34–39.

    PubMed  Google Scholar 

  449. Allen, H. A. (1982). Dichotic monitoring and focused versus divided attention in schizophrenia. The British Journal of Clinical Psychology, 21(Pt 3), 205–212.

    PubMed  Google Scholar 

  450. Green, E. J. (1985). Interhemispheric coordination and focused attention in chronic and acute schizophrenia. The British Journal of Clinical Psychology, 24(Pt 3), 197–204.

    PubMed  Google Scholar 

  451. Morrens, M., Wezenberg, E., Verkes, R. J., Hulstijn, W., Ruigt, G. S., & Sabbe, B. G. (2007). Psychomotor and memory effects of haloperidol, olanzapine, and paroxetine in healthy subjects after short-term administration. Journal of Clinical Psychopharmacology, 27(1), 15–21.

    PubMed  Google Scholar 

  452. Morrens, M., Hulstijn, W., & Sabbe, B. (2007). Psychomotor slowing in schizophrenia. Schizophrenia Bulletin, 33(4), 1038–1053.

    PubMed  Google Scholar 

  453. Schatz, J. (1998). Cognitive processing efficiency in schizophrenia: Generalized vs domain specific deficits. Schizophrenia Research, 30(1), 41–49.

    PubMed  Google Scholar 

  454. Brebion, G., Amador, X., Smith, M. J., & Gorman, J. M. (1998). Memory impairment and schizophrenia: The role of processing speed. Schizophrenia Research, 30(1), 31–39.

    PubMed  Google Scholar 

  455. Brebion, G., David, A. S., Bressan, R. A., & Pilowsky, L. S. (2006). Processing speed: A strong predictor of verbal memory performance in schizophrenia. Journal of Clinical and Experimental Neuropsychology, 28(3), 370–382.

    PubMed  Google Scholar 

  456. Brebion, G., David, A. S., Bressan, R. A., & Pilowsky, L. S. (2007). Role of processing speed and depressed mood on encoding, storage, and retrieval memory functions in patients diagnosed with schizophrenia. Journal of the International Neuropsychological Society, 13(1), 99–107.

    PubMed  Google Scholar 

  457. Brebion, G., Gorman, J. M., Malaspina, D., Sharif, Z., & Amador, X. (2001). Clinical and cognitive factors associated with verbal memory task performance in patients with schizophrenia. The American Journal of Psychiatry, 158(5), 758–764.

    PubMed  Google Scholar 

  458. Brebion, G., Smith, M. J., Gorman, J. M., Malaspina, D., Sharif, Z., & Amador, X. (2000). Memory and schizophrenia: Differential link of processing speed and selective attention with two levels of encoding. Journal of Psychiatric Research, 34(2), 121–127.

    PubMed  Google Scholar 

  459. Morrens, M., Hulstijn, W., Lewi, P., & Sabbe, B. (2008). Bleuler revisited: Psychomotor slowing in schizophrenia as part of a catatonic symptom cluster. Psychiatry Research, 161(1), 121–125.

    PubMed  Google Scholar 

  460. Morrens, M., Hulstijn, W., Matton, C., et al. (2008). Delineating psychomotor slowing from reduced processing speed in schizophrenia. Cognitive Neuropsychiatry, 13(6), 457–471.

    PubMed  Google Scholar 

  461. Minzenberg, M. J., Poole, J. H., Vinogradov, S., Shenaut, G. K., & Ober, B. A. (2003). Slowed lexical access is uniquely associated with positive and disorganised symptoms in schizophrenia. Cognitive Neuropsychiatry, 8(2), 107–127.

    PubMed  Google Scholar 

  462. Zierhut, K. C., Schulte-Kemna, A., Kaufmann, J., Steiner, J., Bogerts, B., & Schiltz, K. (2013). Distinct structural alterations independently contributing to working memory deficits and symptomatology in paranoid schizophrenia. Cortex, 49, 1063–1072.

    PubMed  Google Scholar 

  463. Raffard, S., & Bayard, S. (2012). Understanding the executive functioning heterogeneity in schizophrenia. Brain and Cognition, 79(1), 60–69.

    PubMed  Google Scholar 

  464. Dichter, G. S., Bellion, C., Casp, M., & Belger, A. (2010). Impaired modulation of attention and emotion in schizophrenia. Schizophrenia Bulletin, 36(3), 595–606.

    PubMed  Google Scholar 

  465. Morrens, M., Hulstijn, W., & Sabbe, B. (2008). The effects of atypical and conventional antipsychotics on reduced processing speed and psychomotor slowing in schizophrenia: A cross-sectional exploratory study. Clinical Therapeutics, 30(4), 684–692.

    PubMed  Google Scholar 

  466. Fuller, R., & Jahanshahi, M. (1999). Concurrent performance of motor tasks and processing capacity in patients with schizophrenia. Journal of Neurology, Neurosurgery, and Psychiatry, 66(5), 668–671.

    PubMed  Google Scholar 

  467. Moriarty, P. J., Harvey, P. D., Mitropoulou, V., Granholm, E., Silverman, J. M., & Siever, L. J. (2003). Reduced processing resource availability in schizotypal personality disorder: Evidence from a dual-task CPT study. Journal of Clinical and Experimental Neuropsychology, 25(3), 335–347.

    PubMed  Google Scholar 

  468. Nuechterlein, K. H., Pashler, H. E., & Subotnik, K. L. (2006). Translating basic attentional paradigms to schizophrenia research: Reconsidering the nature of the deficits. Development and Psychopathology, 18(3), 831–851.

    PubMed  Google Scholar 

  469. van Raalten, T. R., Ramsey, N. F., Jansma, J. M., Jager, G., & Kahn, R. S. (2008). Automatization and working memory capacity in schizophrenia. Schizophrenia Research, 100(1–3), 161–171.

    PubMed  Google Scholar 

  470. Kathmann, N., Wagner, M., Rendtorff, N., Schochlin, C., & Engel, R. R. (1995). Information processing during eye tracking as revealed by event-related potentials in schizophrenics, alcoholics, and healthy controls. Schizophrenia Research, 16(2), 145–156.

    PubMed  Google Scholar 

  471. Tracy, J. I., Monaco, C., McMichael, H., et al. (1998). Information-processing characteristics of explicit time estimation by patients with schizophrenia and normal controls. Perceptual and Motor Skills, 86(2), 515–526.

    PubMed  Google Scholar 

  472. Park, S., & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49(12), 975–982.

    PubMed  Google Scholar 

  473. Park, S., & Holzman, P. S. (1993). Association of working memory deficit and eye tracking dysfunction in schizophrenia. Schizophrenia Research, 11(1), 55–61.

    PubMed  Google Scholar 

  474. Nuechterlein, K. H., Dawson, M. E., & Green, M. F. (1994). Information-processing abnormalities as neuropsychological vulnerability indicators for schizophrenia. Acta Psychiatrica Scandinavica. Supplementum, 384, 71–79.

    PubMed  Google Scholar 

  475. Fleming, K., Goldberg, T. E., Gold, J. M., & Weinberger, D. R. (1995). Verbal working memory dysfunction in schizophrenia: Use of a Brown-Peterson paradigm. Psychiatry Research, 56(2), 155–161.

    PubMed  Google Scholar 

  476. Carter, C., Robertson, L., Nordahl, T., Chaderjian, M., Kraft, L., & O’Shora-Celaya, L. (1996). Spatial working memory deficits and their relationship to negative symptoms in unmedicated schizophrenia patients. Biological Psychiatry, 40(9), 930–932.

    PubMed  Google Scholar 

  477. Condray, R., Steinhauer, S. R., van Kammen, D. P., & Kasparek, A. (1996). Working memory capacity predicts language comprehension in schizophrenic patients. Schizophrenia Research, 20(1–2), 1–13.

    PubMed  Google Scholar 

  478. Docherty, N. M., Hawkins, K. A., Hoffman, R. E., Quinlan, D. M., Rakfeldt, J., & Sledge, W. H. (1996). Working memory, attention, and communication disturbances in schizophrenia. Journal of Abnormal Psychology, 105(2), 212–219.

    PubMed  Google Scholar 

  479. Faraone, S. V., Seidman, L. J., Kremen, W. S., Toomey, R., Lyons, M. J., & Tsuang, M. T. (1996). Neuropsychological functioning among the elderly nonpsychotic relatives of schizophrenic patients. Schizophrenia Research, 21(1), 27–31.

    PubMed  Google Scholar 

  480. Fleming, K., Goldberg, T. E., Binks, S., Randolph, C., Gold, J. M., & Weinberger, D. R. (1997). Visuospatial working memory in patients with schizophrenia. Biological Psychiatry, 41(1), 43–49.

    PubMed  Google Scholar 

  481. Ganguli, R., Carter, C., Mintun, M., et al. (1997). PET brain mapping study of auditory verbal supraspan memory versus visual fixation in schizophrenia. Biological Psychiatry, 41(1), 33–42.

    PubMed  Google Scholar 

  482. Goldberg, T. E., Patterson, K. J., Taqqu, Y., & Wilder, K. (1998). Capacity limitations in short-term memory in schizophrenia: Tests of competing hypotheses. Psychological Medicine, 28(3), 665–673.

    PubMed  Google Scholar 

  483. Karatekin, C., & Asarnow, R. F. (1998). Working memory in childhood-onset schizophrenia and attention-deficit/hyperactivity disorder. Psychiatry Research, 80(2), 165–176.

    PubMed  Google Scholar 

  484. Stone, M., Gabrieli, J. D., Stebbins, G. T., & Sullivan, E. V. (1998). Working and strategic memory deficits in schizophrenia. Neuropsychology, 12(2), 278–288.

    PubMed  Google Scholar 

  485. Wexler, B. E., Stevens, A. A., Bowers, A. A., Sernyak, M. J., & Goldman-Rakic, P. S. (1998). Word and tone working memory deficits in schizophrenia. Archives of General Psychiatry, 55(12), 1093–1096.

    PubMed  Google Scholar 

  486. Strandburg, R. J., Marsh, J. T., Brown, W. S., et al. (1999). Continuous-processing related ERPS in adult schizophrenia: Continuity with childhood onset schizophrenia. Biological Psychiatry, 45(10), 1356–1369.

    PubMed  Google Scholar 

  487. Conklin, H. M., Curtis, C. E., Katsanis, J., & Iacono, W. G. (2000). Verbal working memory impairment in schizophrenia patients and their first-degree relatives: Evidence from the digit span task. The American Journal of Psychiatry, 157(2), 275–277.

    PubMed  Google Scholar 

  488. Roitman, S. E., Mitropoulou, V., Keefe, R. S., et al. (2000). Visuospatial working memory in schizotypal personality disorder patients. Schizophrenia Research, 41(3), 447–455.

    PubMed  Google Scholar 

  489. Barrantes-Vidal, N., Aguilera, M., Campanera, S., et al. (2007). Working memory in siblings of schizophrenia patients. Schizophrenia Research, 95(1–3), 70–75.

    PubMed  Google Scholar 

  490. Basar-Eroglu, C., Brand, A., Hildebrandt, H., Karolina Kedzior, K., Mathes, B., & Schmiedt, C. (2007). Working memory related gamma oscillations in schizophrenia patients. International Journal of Psychophysiology, 64(1), 39–45.

    PubMed  Google Scholar 

  491. Franke, C., Reuter, B., Schulz, L., & Kathmann, N. (2007). Schizophrenia patients show impaired response switching in saccade tasks. Biological Psychology, 76(1–2), 91–99.

    PubMed  Google Scholar 

  492. Azuma, R., Daly, E. M., Campbell, L. E., et al. (2009). Visuospatial working memory in children and adolescents with 22q11.2 deletion syndrome; an fMRI study. Journal of Neurodevelopmental Disorders, 1(1), 46–60.

    PubMed  Google Scholar 

  493. Zanello, A., Curtis, L., Badan Ba, M., & Merlo, M. C. (2009). Working memory impairments in first-episode psychosis and chronic schizophrenia. Psychiatry Research, 165(1–2), 10–18.

    PubMed  Google Scholar 

  494. Chapman, L. J. (1979). Recent advances in the study of schizophrenic cognition. Schizophrenia Bulletin, 5(4), 568–580.

    PubMed  Google Scholar 

  495. Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: A meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives of General Psychiatry, 64(5), 532–542.

    PubMed  Google Scholar 

  496. Spindler, K. A., Sullivan, E. V., Menon, V., Lim, K. O., & Pfefferbaum, A. (1997). Deficits in multiple systems of working memory in schizophrenia. Schizophrenia Research, 27(1), 1–10.

    PubMed  Google Scholar 

  497. Elvevag, B., Weinberger, D. R., Suter, J. C., & Goldberg, T. E. (2000). Continuous performance test and schizophrenia: A test of stimulus–response compatibility, working memory, response readiness, or none of the above? The American Journal of Psychiatry, 157(5), 772–780.

    PubMed  Google Scholar 

  498. Cameron, A. M., Oram, J., Geffen, G. M., Kavanagh, D. J., McGrath, J. J., & Geffen, L. B. (2002). Working memory correlates of three symptom clusters in schizophrenia. Psychiatry Research, 110(1), 49–61.

    PubMed  Google Scholar 

  499. Giakoumaki, S. G., Roussos, P., Pallis, E. G., & Bitsios, P. (2011). Sustained attention and working memory deficits follow a familial pattern in schizophrenia. Archives of Clinical Neuropsychology, 26, 687–695.

    PubMed  Google Scholar 

  500. Meltzer, H. Y., Thompson, P. A., Lee, M. A., & Ranjan, R. (1996). Neuropsychologic deficits in schizophrenia: Relation to social function and effect of antipsychotic drug treatment. Neuropsychopharmacology, 14(3 Suppl), 27S–33S.

    PubMed  Google Scholar 

  501. Morice, R., & Delahunty, A. (1996). Frontal/executive impairments in schizophrenia. Schizophrenia Bulletin, 22(1), 125–137.

    PubMed  Google Scholar 

  502. Weinberger, D. R., & Gallhofer, B. (1997). Cognitive function in schizophrenia. International Clinical Psychopharmacology, 12(Suppl 4), S29–S36.

    PubMed  Google Scholar 

  503. Goldberg, T. E., Aloia, M. S., Gourovitch, M. L., Missar, D., Pickar, D., & Weinberger, D. R. (1998). Cognitive substrates of thought disorder, I: The semantic system. The American Journal of Psychiatry, 155(12), 1671–1676.

    PubMed  Google Scholar 

  504. Hutton, S. B., Puri, B. K., Duncan, L. J., Robbins, T. W., Barnes, T. R., & Joyce, E. M. (1998). Executive function in first-episode schizophrenia. Psychological Medicine, 28(2), 463–473.

    PubMed  Google Scholar 

  505. Mahurin, R. K., Velligan, D. I., & Miller, A. L. (1998). Executive-frontal lobe cognitive dysfunction in schizophrenia: A symptom subtype analysis. Psychiatry Research, 79(2), 139–149.

    PubMed  Google Scholar 

  506. Faraone, S. V., Seidman, L. J., Kremen, W. S., Toomey, R., Pepple, J. R., & Tsuang, M. T. (1999). Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: A 4-year follow-up study. Journal of Abnormal Psychology, 108(1), 176–181.

    PubMed  Google Scholar 

  507. Elliott, R., McKenna, P. J., Robbins, T. W., & Sahakian, B. J. (1995). Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychological Medicine, 25(3), 619–630.

    PubMed  Google Scholar 

  508. Barr, W. B., Bilder, R. M., Goldberg, E., Kaplan, E., & Mukherjee, S. (1989). The neuropsychology of schizophrenic speech. Journal of Communication Disorders, 22(5), 327–349.

    PubMed  Google Scholar 

  509. McGrath, J. (1991). Ordering thoughts on thought disorder. The British Journal of Psychiatry, 158, 307–316.

    PubMed  Google Scholar 

  510. Hanes, K. R., Andrewes, D. G., & Pantelis, C. (1995). Cognitive flexibility and complex integration in Parkinson’s disease, Huntington’s disease, and schizophrenia. Journal of the International Neuropsychological Society, 1(6), 545–553.

    PubMed  Google Scholar 

  511. Seidman, L. J., Yurgelun-Todd, D., Kremen, W. S., et al. (1994). Relationship of prefrontal and temporal lobe MRI measures to neuropsychological performance in chronic schizophrenia. Biological Psychiatry, 35(4), 235–246.

    PubMed  Google Scholar 

  512. Kaiser, S., & Weisbrod, M. (2007). Intentionality as a link between the neuropsychology and the symptoms of schizophrenia. Psychopathology, 40(4), 221–228.

    PubMed  Google Scholar 

  513. Daprati, E., Nico, D., Franck, N., & Sirigu, A. (2003). Being the agent: Memory for action events. Consciousness and Cognition, 12(4), 670–683.

    PubMed  Google Scholar 

  514. Nieoullon, A., & Coquerel, A. (2003). Dopamine: A key regulator to adapt action, emotion, motivation and cognition. Current Opinion in Neurology, 16(Suppl 2), S3–S9.

    PubMed  Google Scholar 

  515. Castner, S. A., & Williams, G. V. (2007). Tuning the engine of cognition: A focus on NMDA/D1 receptor interactions in prefrontal cortex. Brain and Cognition, 63(2), 94–122.

    PubMed  Google Scholar 

  516. Fuchs, T. (2007). The temporal structure of intentionality and its disturbance in schizophrenia. Psychopathology, 40(4), 229–235.

    PubMed  Google Scholar 

  517. Woods, S. P., Twamley, E. W., Dawson, M. S., Narvaez, J. M., & Jeste, D. V. (2007). Deficits in cue detection and intention retrieval underlie prospective memory impairment in schizophrenia. Schizophrenia Research, 90(1–3), 344–350.

    PubMed  Google Scholar 

  518. Roy, M., Roy, M. A., & Grondin, S. (2008). [Perturbed consciousness in schizophrenia: An evaluation of C.D. Frith’s model]. Encephale, 34(4), 369–375.

    PubMed  Google Scholar 

  519. Twamley, E. W., Woods, S. P., Zurhellen, C. H., et al. (2008). Neuropsychological substrates and everyday functioning implications of prospective memory impairment in schizophrenia. Schizophrenia Research, 106(1), 42–49.

    PubMed  Google Scholar 

  520. Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.

    PubMed  Google Scholar 

  521. Behrwind, S. D., Dafotakis, M., Halfter, S., et al. (2011). Executive control in chronic schizophrenia: A perspective from manual stimulus–response compatibility task performance. Behavioural Brain Research, 223(1), 24–29.

    PubMed  Google Scholar 

  522. Montag, C., Schubert, F., Heinz, A., & Gallinat, J. (2008). Prefrontal cortex glutamate correlates with mental perspective-taking. PLoS One, 3(12), e3890.

    PubMed  Google Scholar 

  523. Schlosser, R. G., Koch, K., Wagner, G., et al. (2008). Inefficient executive cognitive control in schizophrenia is preceded by altered functional activation during information encoding: An fMRI study. Neuropsychologia, 46(1), 336–347.

    PubMed  Google Scholar 

  524. Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top-down control of visual search in schizophrenia. Schizophrenia Research, 94(1–3), 148–155.

    PubMed  Google Scholar 

  525. Mathalon, D. H., Heinks, T., & Ford, J. M. (2004). Selective attention in schizophrenia: Sparing and loss of executive control. The American Journal of Psychiatry, 161(5), 872–881.

    PubMed  Google Scholar 

  526. MacDonald, A. W., III, & Carter, C. S. (2003). Event-related FMRI study of context processing in dorsolateral prefrontal cortex of patients with schizophrenia. Journal of Abnormal Psychology, 112(4), 689–697.

    PubMed  Google Scholar 

  527. Selye, H. (1950). Stress and the general adaptation syndrome. British Medical Journal, 1(4667), 1383–1392.

    PubMed  Google Scholar 

  528. van’t Ent, D., van Beijsterveldt, C. E., Derks, E. M., et al. (2009). Neuroimaging of response interference in twins concordant or discordant for inattention and hyperactivity symptoms. Neuroscience, 164(1), 16–29.

    Google Scholar 

  529. Rubia, K., Halari, R., Smith, A. B., Mohammad, M., Scott, S., & Brammer, M. J. (2009). Shared and disorder-specific prefrontal abnormalities in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure CD during interference inhibition and attention allocation. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 50(6), 669–678.

    PubMed  Google Scholar 

  530. Chamberlain, S. R., Hampshire, A., Muller, U., et al. (2009). Atomoxetine modulates right inferior frontal activation during inhibitory control: A pharmacological functional magnetic resonance imaging study. Biological Psychiatry, 65(7), 550–555.

    PubMed  Google Scholar 

  531. Rubia, K., Halari, R., Cubillo, A., Mohammad, A. M., Brammer, M., & Taylor, E. (2009). Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naive children with ADHD during a rewarded continuous performance task. Neuropharmacology, 57(7–8), 640–652.

    PubMed  Google Scholar 

  532. Yerkes, R., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology of Psychology, 18, 459–482.

    Google Scholar 

  533. Baddeley, A. D. (1972). Selective attention and performance in dangerous environments. British Journal of Psychology, 63(4), 537–546.

    PubMed  Google Scholar 

  534. Klisz, D., Schwartz, M. L., & Adams, K. M. (1972). Effects of manifest anxiety and auditory distraction on a motor steadiness battery. Perceptual and Motor Skills, 35(1), 203–209.

    PubMed  Google Scholar 

  535. Sarason, I. G. (1972). Test anxiety and the model who fails. Journal of Personality and Social Psychology, 22(3), 410–413.

    PubMed  Google Scholar 

  536. Houston, B. K. (1969). Field independence and performance in distraction. Journal of Psychology, 72(1), 65–69.

    PubMed  Google Scholar 

  537. Heimstra, N. W., Ellingstad, V. S., & DeKock, A. R. (1967). Effects of operator mood on performance in a simulated driving task. Perceptual and Motor Skills, 25(3), 729–735.

    PubMed  Google Scholar 

  538. Baddeley, A. D., & Colquhoun, W. P. (1969). Signal probability and vigilance: A reappraisal of the ‘signal-rate’ effect. British Journal of Psychology, 60(2), 169–178.

    PubMed  Google Scholar 

  539. Broadbent, D. E., & Gregory, M. (1965). Effects of noise and of signal rate pon vigilance analysed by means of decision theory. Human Factors, 7, 155–162.

    PubMed  Google Scholar 

  540. Colquhoun, W. P. (1961). The effect of unwanted signals on performance on a vigilance task. Ergonomics, 4, 41–51.

    Google Scholar 

  541. Colquhoun WPB, A. D. (1967). Influence of signal probability during pretraining on vigilance decrement. Journal of Experimental Psychology, 73, 153–155.

    Google Scholar 

  542. Jerison, H. J. (1967). Signal detection theory in the analysis of human vigilance. Human Factors, 9, 285–288.

    PubMed  Google Scholar 

  543. Mackworth, J. F., & Taylor, M. M. (1963). The d′ measure of signal detectability in vigilance-like situations. Canadian Journal of Psychology, 17, 302–325.

    PubMed  Google Scholar 

  544. Mackworth, J. F. (1965). Deterioration of signal detectability during a vigilance task as a function of background event rate. Psychonomic Science, 3, 421–422.

    Google Scholar 

  545. Brezinova, V., & Kendell, R. E. (1977). Smooth pursuit eye movements of schizophrenics and normal people under stress. The British Journal of Psychiatry, 130, 59–63.

    PubMed  Google Scholar 

  546. Nottelmann, E. D., & Hill, K. T. (1977). Test anxiety and off-task behavior in evaluative situations. Child Development, 48(1), 225–231.

    PubMed  Google Scholar 

  547. Herman, C. P., Polivy, J., Pliner, P., Threlkeld, J., & Munic, D. (1978). Distractibility in dieters and nondieters: An alternative view of “externality”. Journal of Personality and Social Psychology, 36(5), 536–548.

    PubMed  Google Scholar 

  548. Holroyd, K. A., Westbrook, T., Wolf, M., & Badhorn, E. (1978). Performance, cognition, and physiological responding in test anxiety. Journal of Abnormal Psychology, 87(4), 442–451.

    PubMed  Google Scholar 

  549. Staak, M., Raff, G., & Nusser, W. (1979). Pharmacopsychological investigations concerning the combined effects of dipotassium clorazepate and ethanol. International Journal of Clinical Pharmacology and Biopharmacy, 17(5), 205–212.

    PubMed  Google Scholar 

  550. Kane, J. E. (1978). Cognitive aspects of performance. British Journal of Sports Medicine, 12(4), 201–207.

    PubMed  Google Scholar 

  551. Zimmermann-Tansella, C. (1984). Psychological performance of anxious patients in tests used in anxiolytic drug trials. Journal of Clinical Psychology, 40(5), 1143–1150.

    PubMed  Google Scholar 

  552. Dunn, J. A. (1968). Anxiety, stress, and the performance of complex intellectual tasks: A new look at an old question. Journal of Consulting and Clinical Psychology, 32(6), 669–673.

    PubMed  Google Scholar 

  553. Suinn, R. M. (1965). Anxiety and intellectual performance: A partial failure to replicate. Journal of Consulting Psychology, 29, 81–82.

    PubMed  Google Scholar 

  554. Sarason, I. G. (1963). Test anxiety and intellectual performance. Journal of Abnormal and Social Psychology, 66, 73–75.

    PubMed  Google Scholar 

  555. Sarason, I. G. (1957). Test anxiety, general anxiety, and intellectual performance. Journal of Consulting Psychology, 21(6), 485–490.

    PubMed  Google Scholar 

  556. Sarason, I. G. (1956). The relationship of anxiety and lack of defensiveness to intellectual performance. Journal of Consulting Psychology, 20(3), 220–222.

    PubMed  Google Scholar 

  557. Heath, D. H. (1956). Individual anxiety thresholds and their effect on intellectual performance. Journal of Abnormal Psychology, 52(3), 403–408.

    PubMed  Google Scholar 

  558. Osler, S. F. (1954). Intellectual performance as a function of two types of psychological stress. Journal of Experimental Psychology, 47(2), 115–121.

    PubMed  Google Scholar 

  559. Frost, L. A., Moffitt, T. E., & McGee, R. (1989). Neuropsychological correlates of psychopathology in an unselected cohort of young adolescents. Journal of Abnormal Psychology, 98(3), 307–313.

    PubMed  Google Scholar 

  560. Fair, D. A., Posner, J., Nagel, B. J., et al. (2010). Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biological Psychiatry, 68(12), 1084–1091.

    PubMed  Google Scholar 

  561. Price, R. B., Siegle, G., & Mohlman, J. (2012). Emotional stroop performance in older adults: Effects of habitual worry. The American Journal of Geriatric Psychiatry, 20, 795–805.

    Google Scholar 

  562. Wu, H. I., Chang, Y. H., Lai, C. C., et al. (2011). The effect of comorbid anxiety disorder on neuropsychological function in bipolar II disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 1841–1845.

    Google Scholar 

  563. Castaneda, A. E., Suvisaari, J., Marttunen, M., et al. (2011). Cognitive functioning in a population-based sample of young adults with anxiety disorders. European Psychiatry, 26(6), 346–353.

    PubMed  Google Scholar 

  564. Oosterlaan, J., & Sergeant, J. A. (1998). Response inhibition and response re-engagement in attention-deficit/hyperactivity disorder, disruptive, anxious and normal children. Behavioural Brain Research, 94(1), 33–43.

    PubMed  Google Scholar 

  565. Li, X., Wang, M., Poliakoff, E., & Luo, Y. J. (2007). Attention to threat in high and low trait-anxious individuals: A study using extremely threatening pictorial cues. Perceptual and Motor Skills, 104(3 Pt 2), 1097–1106.

    PubMed  Google Scholar 

  566. Dennis, T. A., & Chen, C. C. (2007). Neurophysiological mechanisms in the emotional modulation of attention: The interplay between threat sensitivity and attentional control. Biological Psychology, 76(1–2), 1–10.

    PubMed  Google Scholar 

  567. Blair, K. S., Smith, B. W., Mitchell, D. G., et al. (2007). Modulation of emotion by cognition and cognition by emotion. NeuroImage, 35(1), 430–440.

    PubMed  Google Scholar 

  568. Weinberger, D. A., Schwartz, G. E., & Davidson, R. J. (1979). Low-anxious, high-anxious, and repressive coping styles: Psychometric patterns and behavioral and physiological responses to stress. Journal of Abnormal Psychology, 88(4), 369–380.

    PubMed  Google Scholar 

  569. Wolters, L. H., de Haan, E., Vervoort, L., Hogendoorn, S. M., Boer, F., & Prins, P. J. (2012). The time-course of threat processing in children: a temporal dissociation between selective attention and behavioral interference. Anxiety, Stress, and Coping, 25(3), 259–273. doi:10.1080/10615806.2011.581278.

    Google Scholar 

  570. Van Dam, N. T., Earleywine, M., & Altarriba, J. (2012). Anxiety attenuates awareness of emotional faces during rapid serial visual presentation. Emotion (Washington, D.C.), 12, 196–806.

    Google Scholar 

  571. Ansari, T. L., & Derakshan, N. (2011). The neural correlates of cognitive effort in anxiety: Effects on processing efficiency. Biological Psychology, 86(3), 337–348.

    PubMed  Google Scholar 

  572. Galvin, J. A., Benson, H., Deckro, G. R., Fricchione, G. L., & Dusek, J. A. (2006). The relaxation response: Reducing stress and improving cognition in healthy aging adults. Complementary Therapies in Clinical Practice, 12(3), 186–191.

    PubMed  Google Scholar 

  573. Eli, I., Baht, R., & Blacher, S. (2004). Prediction of success and failure of behavior modification as treatment for dental anxiety. European Journal of Oral Sciences, 112(4), 311–315.

    PubMed  Google Scholar 

  574. Spencer, C. M., Serysheva, E., Yuva-Paylor, L. A., Oostra, B. A., Nelson, D. L., & Paylor, R. (2006). Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between Fragile X-related proteins. Human Molecular Genetics, 15(12), 1984–1994.

    PubMed  Google Scholar 

  575. Jazbec, S., Hardin, M. G., Schroth, E., McClure, E., Pine, D. S., & Ernst, M. (2006). Age-related influence of contingencies on a saccade task. Experimental Brain Research, 174(4), 754–762.

    Google Scholar 

  576. Dehghani, M., Sharpe, L., & Nicholas, M. K. (2004). Modification of attentional biases in chronic pain patients: A preliminary study. European Journal of Pain (London, England)., 8(6), 585–594.

    Google Scholar 

  577. Rosing, D., Klebingat, K. J., & Beier, K. M. (2006). [Sex therapy for male sexual dysfunction]. Der Urologe. Ausg. A, 45(8), 975–980.

    PubMed  Google Scholar 

  578. Field, A. P. (2006). Watch out for the beast: Fear information and attentional bias in children. Journal of Clinical Child and Adolescent Psychology, 35(3), 431–439.

    PubMed  Google Scholar 

  579. Chandavarkar, U., Azzam, A., & Mathews, C. A. (2007). Anxiety symptoms and perceived performance in medical students. Depression and Anxiety, 24(2), 103–111.

    PubMed  Google Scholar 

  580. Heinz, A., & Smolka, M. N. (2006). The effects of catechol O-methyltransferase genotype on brain activation elicited by affective stimuli and cognitive tasks. Reviews in the Neurosciences, 17(3), 359–367.

    PubMed  Google Scholar 

  581. Morgan, C. J., Perry, E. B., Cho, H. S., Krystal, J. H., & D’Souza, D. C. (2006). Greater vulnerability to the amnestic effects of ketamine in males. Psychopharmacology, 187(4), 405–414.

    PubMed  Google Scholar 

  582. Hess, T. M., & Hinson, J. T. (2006). Age-related variation in the influences of aging stereotypes on memory in adulthood. Psychology and Aging, 21(3), 621–625.

    PubMed  Google Scholar 

  583. Serra-Pinheiro, M. A., Schmitz, M., Mattos, P., & Souza, I. (2004). [Oppositional defiant disorder: A review of neurobiological and environmental correlates, comorbidities, treatment and prognosis]. Revista Brasileira de Psiquiatria, 26(4), 273–276.

    PubMed  Google Scholar 

  584. Karande, S. (2005). Attention deficit hyperactivity disorder—A review for family physicians. Indian Journal of Medical Sciences, 59(12), 546–555.

    PubMed  Google Scholar 

  585. Tang, N. K. (2010). Brief CBT-I for insomnia comorbid with social phobia: A case study. Behavioural and Cognitive Psychotherapy, 38(1), 113–122.

    PubMed  Google Scholar 

  586. Legerstee, J. S., Tulen, J. H., Dierckx, B., Treffers, P. D., Verhulst, F. C., & Utens, E. M. (2010). CBT for childhood anxiety disorders: Differential changes in selective attention between treatment responders and non-responders. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 51(2), 162–172.

    PubMed  Google Scholar 

  587. Saletu, A., Parapatics, S., Saletu, B., et al. (2005). On the pharmacotherapy of sleep bruxism: Placebo-controlled polysomnographic and psychometric studies with clonazepam. Neuropsychobiology, 51(4), 214–225.

    PubMed  Google Scholar 

  588. Stanley, M. A., Diefenbach, G. J., & Hopko, D. R. (2004). Cognitive behavioral treatment for older adults with generalized anxiety disorder. A therapist manual for primary care settings. Behavior Modification, 28(1), 73–117.

    PubMed  Google Scholar 

  589. Papay, J. P., Hedl, J. J., Jr., & Spielberger, C. D. (2005). Effects of anxiety on communication tasks for children in traditional and individualized-multiage classrooms. Psychological Reports, 96(1), 57–66.

    PubMed  Google Scholar 

  590. Thomas-Anterion, C., Truche, A., Sciessere, K., Guyot, E., Hibert, O., & Paris, N. (2005). [Self-evaluation of physical, cognitive and mood symptoms in a cohort of traumatic and vascular brain injury patients participating in social and neuropsychological remediation programmes]. Revue Neurologique, 161(1), 67–73.

    PubMed  Google Scholar 

  591. March, J. S. (2010). Attention bias modification training and the new interventions research. Biological Psychiatry, 68(11), 978–979.

    PubMed  Google Scholar 

  592. Poltavski, D. V., & Petros, T. (2005). Effects of transdermal nicotine on prose memory and attention in smokers and nonsmokers. Physiology & Behavior, 83(5), 833–843.

    Google Scholar 

  593. Kraus, M. R., Schafer, A., Wissmann, S., Reimer, P., & Scheurlen, M. (2005). Neurocognitive changes in patients with hepatitis C receiving interferon alfa-2b and ribavirin. Clinical Pharmacology and Therapeutics, 77(1), 90–100.

    PubMed  Google Scholar 

  594. Aronen, E. T., Vuontela, V., Steenari, M. R., Salmi, J., & Carlson, S. (2005). Working memory, psychiatric symptoms, and academic performance at school. Neurobiology of Learning and Memory, 83(1), 33–42.

    PubMed  Google Scholar 

  595. Proietti, L., Longo, B., & Duscio, D. (2002). [Suspected glutaraldehyde poisoning: A case report]. La Medicina del lavoro, 93(1), 43–47.

    PubMed  Google Scholar 

  596. Rokke, P. D., Arnell, K. M., Koch, M. D., & Andrews, J. T. (2002). Dual-task attention deficits in dysphoric mood. Journal of Abnormal Psychology, 111(2), 370–379.

    PubMed  Google Scholar 

  597. Hovanitz, C. A., Filippides, M., Lindsay, D., & Scheff, J. (2002). Muscle tension and physiologic hyperarousal, performance, and state affectivity: Assessing the independence of effects in frequent headache and depression. Applied Psychophysiology and Biofeedback, 27(1), 29–44.

    PubMed  Google Scholar 

  598. Exton, M. S., Baase, J., Pithan, V., Goebel, M. U., Limmroth, V., & Schedlowski, M. (2002). Neuropsychological performance and mood states following acute interferon-beta-1b administration in healthy males. Neuropsychobiology, 45(4), 199–204.

    PubMed  Google Scholar 

  599. Greisberg, S., & McKay, D. (2003). Neuropsychology of obsessive-compulsive disorder: A review and treatment implications. Clinical Psychology Review, 23(1), 95–117.

    PubMed  Google Scholar 

  600. Girdler, N. M., Lyne, J. P., Wallace, R., et al. (2002). A randomised, controlled trial of cognitive and psychomotor recovery from midazolam sedation following reversal with oral flumazenil. Anaesthesia, 57(9), 868–876.

    PubMed  Google Scholar 

  601. Dere, E., Topic, B., De Souza Silva, M. A., Fink, H., Buddenberg, T., & Huston, J. P. (2003). NMDA-receptor antagonism via dextromethorphan and ifenprodil modulates graded anxiety test performance of C57BL/6 mice. Behavioural Pharmacology, 14(3), 245–249.

    PubMed  Google Scholar 

  602. Vollema, M. G., & Postma, B. (2002). Neurocognitive correlates of schizotypy in first degree relatives of schizophrenia patients. Schizophrenia Bulletin, 28(3), 367–377.

    PubMed  Google Scholar 

  603. Gomez, R. (2003). Underlying processes in the poor response inhibition of children with attention-deficit/hyperactivity disorder. Journal of Attention Disorders, 6(3), 111–122.

    PubMed  Google Scholar 

  604. Burn, D. J., & McKeith, I. G. (2003). Current treatment of dementia with Lewy bodies and dementia associated with Parkinson’s disease. Movement Disorders, 18(Suppl 6), S72–S79.

    PubMed  Google Scholar 

  605. Spurr, J. M., & Stopa, L. (2003). The observer perspective: Effects on social anxiety and performance. Behaviour Research and Therapy, 41(9), 1009–1028.

    PubMed  Google Scholar 

  606. Hilsabeck, R. C., Thompson, M. D., Irby, J. W., Adams, R. L., Scott, J. G., & Gouvier, W. D. (2003). Partial cross-validation of the Wechsler Memory Scale-Revised (WMS-R) General Memory-Attention/Concentration Malingering Index in a nonlitigating sample. Archives of Clinical Neuropsychology, 18(1), 71–79.

    PubMed  Google Scholar 

  607. Inaba, M., & Ohira, H. (2003). [The effect of selective attention to emotional stimuli on recognition memory in anxiety]. Shinrigaku Kenkyu, 74(4), 320–326.

    PubMed  Google Scholar 

  608. Barker, M. J., Greenwood, K. M., Jackson, M., & Crowe, S. F. (2004). Cognitive effects of long-term benzodiazepine use: A meta-analysis. CNS Drugs, 18(1), 37–48.

    PubMed  Google Scholar 

  609. Poirier, M. F., Galinowski, A., Amado, I., et al. (2004). Double-blind comparative study of the action of repeated administration of milnacipran versus placebo on cognitive functions in healthy volunteers. Human Psychopharmacology, 19(1), 1–7.

    PubMed  Google Scholar 

  610. Hasler, F., Grimberg, U., Benz, M. A., Huber, T., & Vollenweider, F. X. (2004). Acute psychological and physiological effects of psilocybin in healthy humans: A double-blind, placebo-controlled dose-effect study. Psychopharmacology, 172(2), 145–156.

    PubMed  Google Scholar 

  611. London, E. D., Simon, S. L., Berman, S. M., et al. (2004). Mood disturbances and regional cerebral metabolic abnormalities in recently abstinent methamphetamine abusers. Archives of General Psychiatry, 61(1), 73–84.

    PubMed  Google Scholar 

  612. Putman, P., Van Honk, J., Kessels, R. P., Mulder, M., & Koppeschaar, H. P. (2004). Salivary cortisol and short and long-term memory for emotional faces in healthy young women. Psychoneuroendocrinology, 29(7), 953–960.

    PubMed  Google Scholar 

  613. Mackin, R. S., Arean, P. A., Delucchi, K. L., & Mathews, C. A. (2011). Cognitive functioning in individuals with severe compulsive hoarding behaviors and late life depression. International Journal of Geriatric Psychiatry, 26(3), 314–321.

    PubMed  Google Scholar 

  614. Seeber, A., Schaper, M., Zupanic, M., et al. (2004). Toluene exposure below 50 ppm and cognitive function: A follow-up study with four repeated measurements in rotogravure printing plants. International Archives of Occupational and Environmental Health, 77(1), 1–9.

    PubMed  Google Scholar 

  615. Tereshchenko, I. V., Goldyreva, T. P., & Sandakova, E. A. (2002). [Autonomic system disorders in endemic goiter]. Klinicheskaia meditsina, 80(3), 52–57.

    PubMed  Google Scholar 

  616. Richter, E. O., Davis, K. D., Hamani, C., Hutchison, W. D., Dostrovsky, J. O., & Lozano, A. M. (2008). Cingulotomy for psychiatric disease: Microelectrode guidance, a callosal reference system for documenting lesion location, and clinical results. Neurosurgery, 62(6 Suppl 3), 957–965.

    PubMed  Google Scholar 

  617. Kasai, K., Yamada, H., Kamio, S., et al. (2002). Do high or low doses of anxiolytics and hypnotics affect mismatch negativity in schizophrenic subjects? An EEG and MEG study. Clinical Neurophysiology, 113(1), 141–150.

    PubMed  Google Scholar 

  618. Ponsford, J., Willmott, C., Rothwell, A., et al. (2001). Impact of early intervention on outcome after mild traumatic brain injury in children. Pediatrics, 108(6), 1297–1303.

    PubMed  Google Scholar 

  619. Pretorius, J. L., Phillips, M., Langley, R. W., Szabadi, E., & Bradshaw, C. M. (2001). Comparison of clozapine and haloperidol on some autonomic and psychomotor functions, and on serum prolactin concentration, in healthy subjects. British Journal of Clinical Pharmacology, 52(3), 322–326.

    PubMed  Google Scholar 

  620. Astradsson, E., Granath, L., Heedman, P. A., & Starkhammar, H. (2001). Cancer patients hospitalised for palliative reasons. Symptoms and needs presented at a university hospital. Supportive Care in Cancer, 9(2), 97–102.

    PubMed  Google Scholar 

  621. Baer, L., Rauch, S. L., Ballantine, H. T., Jr., et al. (1995). Cingulotomy for intractable obsessive-compulsive disorder. Prospective long-term follow-up of 18 patients. Archives of General Psychiatry, 52(5), 384–392.

    PubMed  Google Scholar 

  622. Baer, L., Rauch, S. L., Jenike, M. A., et al. (1994). Cingulotomy in a case of concomitant obsessive-compulsive disorder and Tourette’s syndrome. Archives of General Psychiatry, 51(1), 73–74.

    PubMed  Google Scholar 

  623. Muller-Vahl, K. R., Koblenz, A., Jobges, M., Kolbe, H., Emrich, H. M., & Schneider, U. (2001). Influence of treatment of Tourette syndrome with delta9-tetrahydrocannabinol (delta9-THC) on neuropsychological performance. Pharmacopsychiatry, 34(1), 19–24.

    PubMed  Google Scholar 

  624. Cohen, R. A., Kaplan, R. F., Meadows, M. E., & Wilkinson, H. (1994). Habituation and sensitization of the orienting response following bilateral anterior cingulotomy. Neuropsychologia, 32(5), 609–617.

    PubMed  Google Scholar 

  625. Cohen, R. A., Kaplan, R. F., Moser, D. J., Jenkins, M. A., & Wilkinson, H. (1999). Impairments of attention after cingulotomy. Neurology, 53(4), 819–824.

    PubMed  Google Scholar 

  626. Cohen, R. A., Kaplan, R. F., Zuffante, P., et al. (1999). Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(4), 444–453.

    PubMed  Google Scholar 

  627. Cohen, R. A., Paul, R., Zawacki, T. M., Moser, D. J., Sweet, L., & Wilkinson, H. (2001). Emotional and personality changes following cingulotomy. Emotion, 1(1), 38–50.

    PubMed  Google Scholar 

  628. Connor, K. M., Davidson, J. R., Sutherland, S., & Weisler, R. (1999). Social phobia: Issues in assessment and management. Epilepsia, 40(Suppl 6), S60–S65; discussion S73–S74.

    PubMed  Google Scholar 

  629. Giovagnoli, A. R. (1999). Quality of life in patients with stable disease after surgery, radiotherapy, and chemotherapy for malignant brain tumour. Journal of Neurology, Neurosurgery, and Psychiatry, 67(3), 358–363.

    PubMed  Google Scholar 

  630. Crawley, J. N. (1999). Behavioral phenotyping of transgenic and knockout mice: Experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Research, 835(1), 18–26.

    PubMed  Google Scholar 

  631. Constans, J. I., Mathews, A., Brantley, P. J., & James, T. (1999). Attentional reactions to an MI: The impact of mood state, worry, and coping style. Journal of Psychosomatic Research, 46(5), 415–423.

    PubMed  Google Scholar 

  632. Nuttin, B., Cosyns, P., Demeulemeester, H., Gybels, J., & Meyerson, B. (1999). Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet, 354(9189), 1526.

    PubMed  Google Scholar 

  633. Gorissen, M. E., & Eling, P. A. (1998). Dual task performance after diazepam intake: Can resource depletion explain the benzodiazepine-induced amnesia? Psychopharmacology, 138(3–4), 354–361.

    PubMed  Google Scholar 

  634. Brandes, D., Ben-Schachar, G., Gilboa, A., Bonne, O., Freedman, S., & Shalev, A. Y. (2002). PTSD symptoms and cognitive performance in recent trauma survivors. Psychiatry Research, 110(3), 231–238.

    PubMed  Google Scholar 

  635. Siegelaar, S. E., Olff, M., Bour, L. J., et al. (2006). The auditory startle response in post-traumatic stress disorder. Experimental Brain Research, 174(1), 1–6.

    PubMed  Google Scholar 

  636. Elofsson, U. O., von Scheele, B., Theorell, T., & Sondergaard, H. P. (2008). Physiological correlates of eye movement desensitization and reprocessing. Journal of Anxiety Disorders, 22(4), 622–634.

    PubMed  Google Scholar 

  637. Felmingham, K. L., Rennie, C., Manor, B., & Bryant, R. A. (2011). Eye tracking and physiological reactivity to threatening stimuli in posttraumatic stress disorder. Journal of Anxiety Disorders, 25(5), 668–673.

    PubMed  Google Scholar 

  638. Adenauer, H., Catani, C., Keil, J., Aichinger, H., & Neuner, F. (2010). Is freezing an adaptive reaction to threat? Evidence from heart rate reactivity to emotional pictures in victims of war and torture. Psychophysiology, 47(2), 315–322.

    PubMed  Google Scholar 

  639. Pine, D. S., Mogg, K., Bradley, B. P., et al. (2005). Attention bias to threat in maltreated children: Implications for vulnerability to stress-related psychopathology. The American Journal of Psychiatry, 162(2), 291–296.

    PubMed  Google Scholar 

  640. El Khoury-Malhame, M., Reynaud, E., Soriano, A., et al. (2011). Amygdala activity correlates with attentional bias in PTSD. Neuropsychologia, 49(7), 1969–1973.

    PubMed  Google Scholar 

  641. Paul, R., Henry, L., Grieve, S. M., et al. (2008). The relationship between early life stress and microstructural integrity of the corpus callosum in a non-clinical population. Neuropsychiatric Disease and Treatment, 4(1), 193–201.

    PubMed  Google Scholar 

  642. Cohen, R. A., Paul, R. H., Stroud, L., et al. (2006). Early life stress and adult emotional experience: An international perspective. International Journal of Psychiatry in Medicine, 36(1), 35–52.

    PubMed  Google Scholar 

  643. Cohen, R. A., Grieve, S., Hoth, K. F., et al. (2006). Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biological Psychiatry, 59(10), 975–982.

    PubMed  Google Scholar 

  644. Heidbreder, C. A., Weiss, I. C., Domeney, A. M., et al. (2000). Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience, 100(4), 749–768.

    PubMed  Google Scholar 

  645. Jezierski, G., Zehle, S., Bock, J., Braun, K., & Gruss, M. (2007). Early stress and chronic methylphenidate cross-sensitize dopaminergic responses in the adolescent medial prefrontal cortex and nucleus accumbens. Journal of Neurochemistry, 103(6), 2234–2244.

    PubMed  Google Scholar 

  646. Pechtel, P., & Pizzagalli, D. A. (2011). Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology, 214(1), 55–70.

    PubMed  Google Scholar 

  647. Emmons, K. M., Marcus, B. H., Linnan, L., Rossi, J. S., & Abrams, D. B. (1994). Mechanisms in multiple risk factor interventions: Smoking, physical activity, and dietary fat intake among manufacturing workers. Working Well Research Group. Preventive Medicine, 23(4), 481–489.

    PubMed  Google Scholar 

  648. Niaura, R., Goldstein, M., & Abrams, D. (1991). A bioinformational systems perspective on tobacco dependence. British Journal of Addiction, 86(5), 593–597.

    PubMed  Google Scholar 

  649. Abrams, D. B. (1999). Nicotine addiction: Paradigms for research in the 21st century. Nicotine & Tobacco Research, 1(Suppl 2), S211–S215.

    Google Scholar 

  650. Hitsman, B., Shen, B. J., Cohen, R. A., et al. (2010). Measuring smoking-related preoccupation and compulsive drive: Evaluation of the obsessive compulsive smoking scale. Psychopharmacology, 211(4), 377–387.

    PubMed  Google Scholar 

  651. Niaura, R. S., Rohsenow, D. J., Binkoff, J. A., Monti, P. M., Pedraza, M., & Abrams, D. B. (1988). Relevance of cue reactivity to understanding alcohol and smoking relapse. Journal of Abnormal Psychology, 97(2), 133–152.

    PubMed  Google Scholar 

  652. Colby, S. M., Rohsenow, D. J., Monti, P. M., et al. (2004). Effects of tobacco deprivation on alcohol cue reactivity and drinking among young adults. Addictive Behaviors, 29(5), 879–892.

    PubMed  Google Scholar 

  653. Hutchison, K. E., Monti, P. M., Rohsenow, D. J., et al. (1999). Effects of naltrexone with nicotine replacement on smoking cue reactivity: Preliminary results. Psychopharmacology, 142(2), 139–143.

    PubMed  Google Scholar 

  654. Niaura, R., Shadel, W. G., Abrams, D. B., Monti, P. M., Rohsenow, D. J., & Sirota, A. (1998). Individual differences in cue reactivity among smokers trying to quit: Effects of gender and cue type. Addictive Behaviors, 23(2), 209–224.

    PubMed  Google Scholar 

  655. Shadel, W. G., Niaura, R., & Abrams, D. B. (2001). Effect of different cue stimulus delivery channels on craving reactivity: Comparing in vivo and video cues in regular cigarette smokers. Journal of Behavior Therapy and Experimental Psychiatry, 32(4), 203–209.

    PubMed  Google Scholar 

  656. Shadel, W. G., Niaura, R., Abrams, D. B., et al. (1998). Scripted imagery manipulations and smoking cue reactivity in a clinical sample of self-quitters. Experimental and Clinical Psychopharmacology, 6(2), 179–186.

    PubMed  Google Scholar 

  657. Janes, A. C., Frederick, B., Richardt, S., et al. (2009). Brain fMRI reactivity to smoking-related images before and during extended smoking abstinence. Experimental and Clinical Psychopharmacology, 17(6), 365–373.

    PubMed  Google Scholar 

  658. King, A., McNamara, P., Angstadt, M., & Phan, K. L. (2010). Neural substrates of alcohol-induced smoking urge in heavy drinking nondaily smokers. Neuropsychopharmacology, 35(3), 692–701.

    PubMed  Google Scholar 

  659. Knott, V. J., Naccache, L., Cyr, E., et al. (2008). Craving-induced EEG reactivity in smokers: Effects of mood induction, nicotine dependence and gender. Neuropsychobiology, 58(3–4), 187–199.

    PubMed  Google Scholar 

  660. McClernon, F. J., Kozink, R. V., Lutz, A. M., & Rose, J. E. (2009). 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology, 204(1), 25–35.

    PubMed  Google Scholar 

  661. Moon, J., & Lee, J. H. (2009). Cue exposure treatment in a virtual environment to reduce nicotine craving: A functional MRI study. Cyberpsychology & Behavior, 12(1), 43–45.

    Google Scholar 

  662. Parker, A. B., & Gilbert, D. G. (2008). Brain activity during anticipation of smoking-related and emotionally positive pictures in smokers and nonsmokers: A new measure of cue reactivity. Nicotine & Tobacco Research, 10(11), 1627–1631.

    Google Scholar 

  663. McClernon, F. J., Kozink, R. V., & Rose, J. E. (2008). Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacology, 33(9), 2148–2157.

    PubMed  Google Scholar 

  664. McClernon, F. J., Hiott, F. B., Liu, J., Salley, A. N., Behm, F. M., & Rose, J. E. (2007). Selectively reduced responses to smoking cues in amygdala following extinction-based smoking cessation: Results of a preliminary functional magnetic resonance imaging study. Addiction Biology, 12(3–4), 503–512.

    PubMed  Google Scholar 

  665. Dawkins, L., Powell, J. H., West, R., Powell, J., & Pickering, A. (2006). A double-blind placebo controlled experimental study of nicotine: I–effects on incentive motivation. Psychopharmacology, 189(3), 355–367.

    PubMed  Google Scholar 

  666. Lee, J. H., Lim, Y., Wiederhold, B. K., & Graham, S. J. (2005). A functional magnetic resonance imaging (FMRI) study of cue-induced smoking craving in virtual environments. Applied Psychophysiology and Biofeedback, 30(3), 195–204.

    PubMed  Google Scholar 

  667. David, S. P., Munafo, M. R., Johansen-Berg, H., et al. (2005). Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: A functional magnetic resonance imaging study. Biological Psychiatry, 58(6), 488–494.

    PubMed  Google Scholar 

  668. Chiamulera, C. (2005). Cue reactivity in nicotine and tobacco dependence: A “multiple-action” model of nicotine as a primary reinforcement and as an enhancer of the effects of smoking-associated stimuli. Brain Research. Brain Research Reviews, 48(1), 74–97.

    PubMed  Google Scholar 

  669. Powell, J., Dawkins, L., & Davis, R. E. (2002). Smoking, reward responsiveness, and response inhibition: Tests of an incentive motivational model. Biological Psychiatry, 51(2), 151–163.

    PubMed  Google Scholar 

  670. McDonough, B. E., & Warren, C. A. (2001). Effects of 12-h tobacco deprivation on event-related potentials elicited by visual smoking cues. Psychopharmacology, 154(3), 282–291.

    PubMed  Google Scholar 

  671. Warren, C. A., & McDonough, B. E. (1999). Event-related brain potentials as indicators of smoking cue-reactivity. Clinical Neurophysiology, 110(9), 1570–1584.

    PubMed  Google Scholar 

  672. McCaffery, J. M., Haley, A. P., Sweet, L. H., et al. (2009). Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. American Journal of Clinical Nutrition, 90(4), 928–934.

    PubMed  Google Scholar 

  673. Stoeckel, L. E., Kim, J., Weller, R. E., Cox, J. E., Cook, E. W., III, & Horwitz, B. (2009). Effective connectivity of a reward network in obese women. Brain Research Bulletin, 79(6), 388–395.

    PubMed  Google Scholar 

  674. Nijs, I. M., Franken, I. H., & Muris, P. (2008). Food cue-elicited brain potentials in obese and healthy-weight individuals. Eating Behaviors, 9(4), 462–470.

    PubMed  Google Scholar 

  675. Ferriday, D., & Brunstrom, J. M. (2008). How does food-cue exposure lead to larger meal sizes? The British Journal of Nutrition, 100(6), 1325–1332.

    PubMed  Google Scholar 

  676. Bulik, C. M., Sullivan, P. F., Joyce, P. R., Carter, F. A., & McIntosh, V. V. (1998). Predictors of 1-year treatment outcome in bulimia nervosa. Comprehensive Psychiatry, 39(4), 206–214.

    PubMed  Google Scholar 

  677. Gomez-Nicola, D., Valle-Argos, B., Suardiaz, M., Taylor, J. S., & Nieto-Sampedro, M. (2008). Role of IL-15 in spinal cord and sciatic nerve after chronic constriction injury: Regulation of macrophage and T-cell infiltration. Journal of Neurochemistry, 107(6), 1741–1752.

    PubMed  Google Scholar 

  678. Bradley, M. M., Silakowski, T., & Lang, P. J. (2008). Fear of pain and defensive activation. Pain, 137(1), 156–163.

    PubMed  Google Scholar 

  679. Coffey, S. F., Stasiewicz, P. R., Hughes, P. M., & Brimo, M. L. (2006). Trauma-focused imaginal exposure for individuals with comorbid posttraumatic stress disorder and alcohol dependence: Revealing mechanisms of alcohol craving in a cue reactivity paradigm. Psychology of Addictive Behaviors, 20(4), 425–435.

    PubMed  Google Scholar 

  680. Bordnick, P. S., Graap, K. M., Copp, H. L., Brooks, J., & Ferrer, M. (2005). Virtual reality cue reactivity assessment in cigarette smokers. Cyberpsychology & Behavior, 8(5), 487–492.

    Google Scholar 

  681. Elibero, A., Janse Van Rensburg, K., & Drobes, D. J. (2011). Acute effects of aerobic exercise and hatha yoga on craving to smoke. Nicotine & Tobacco Research, 13, 1140–1148.

    Google Scholar 

  682. Tetley, A. C., Brunstrom, J. M., & Griffiths, P. L. (2010). The role of sensitivity to reward and impulsivity in food-cue reactivity. Eating Behaviors, 11(3), 138–143.

    PubMed  Google Scholar 

  683. Rejeski, W. J., Blumenthal, T. D., Miller, G. D., Lobe, M., Davis, C., & Brown, L. (2010). State craving, food availability, and reactivity to preferred snack foods. Appetite, 54(1), 77–83.

    PubMed  Google Scholar 

  684. Decamp, E., & Schneider, J. S. (2006). Effects of nicotinic therapies on attention and executive functions in chronic low-dose MPTP-treated monkeys. The European Journal of Neuroscience, 24(7), 2098–2104.

    PubMed  Google Scholar 

  685. Disney, A. A., Aoki, C., & Hawken, M. J. (2007). Gain modulation by nicotine in macaque v1. Neuron, 56(4), 701–713.

    PubMed  Google Scholar 

  686. Gould, T. J., Rukstalis, M., & Lewis, M. C. (2005). Atomoxetine and nicotine enhance prepulse inhibition of acoustic startle in C57BL/6 mice. Neuroscience Letters, 377(2), 85–90.

    PubMed  Google Scholar 

  687. Hahn, B., Ross, T. J., Yang, Y., Kim, I., Huestis, M. A., & Stein, E. A. (2007). Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. Journal of Neuroscience, 27(13), 3477–3489.

    PubMed  Google Scholar 

  688. Heishman, S. J., & Henningfield, J. E. (2000). Tolerance to repeated nicotine administration on performance, subjective, and physiological responses in nonsmokers. Psychopharmacology, 152(3), 321–333.

    PubMed  Google Scholar 

  689. Jacobsen, L. K., Krystal, J. H., Mencl, W. E., Westerveld, M., Frost, S. J., & Pugh, K. R. (2005). Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biological Psychiatry, 57(1), 56–66.

    PubMed  Google Scholar 

  690. Jarvik, M. E. (1991). Beneficial effects of nicotine. British Journal of Addiction, 86(5), 571–575.

    PubMed  Google Scholar 

  691. Kumari, V., Gray, J. A., ffytche, D. H., et al. (2003). Cognitive effects of nicotine in humans: An fMRI study. NeuroImage, 19(3), 1002–1013.

    PubMed  Google Scholar 

  692. Nikolaus, S., Antke, C., Kley, K., et al. (2007). Investigating the dopaminergic synapse in vivo. I. Molecular imaging studies in humans. Reviews in the Neurosciences, 18(6), 439–472.

    PubMed  Google Scholar 

  693. Postma, P., Gray, J. A., Sharma, T., et al. (2006). A behavioural and functional neuroimaging investigation into the effects of nicotine on sensorimotor gating in healthy subjects and persons with schizophrenia. Psychopharmacology, 184(3–4), 589–599.

    PubMed  Google Scholar 

  694. Potter, A. S., Bucci, D. J., & Newhouse, P. A. (2012). Manipulation of nicotinic acetylcholine receptors differentially affects behavioral inhibition in human subjects with and without disordered baseline impulsivity. Psychopharmacology, 220, 331–340.

    PubMed  Google Scholar 

  695. Miyata, H., Itasaka, M., Kimura, N., & Nakayama, K. (2011). Decreases in brain reward function reflect nicotine- and methamphetamine-withdrawal aversion in rats. Current Neuropharmacology, 9(1), 63–67.

    PubMed  Google Scholar 

  696. Paolini, M., & De Biasi, M. (2011). Mechanistic insights into nicotine withdrawal. Biochemical Pharmacology, 82(8), 996–1007.

    PubMed  Google Scholar 

  697. Blum, K., Liu, Y., Shriner, R., & Gold, M. S. (2011). Reward circuitry dopaminergic activation regulates food and drug craving behavior. Current Pharmaceutical Design, 17(12), 1158–1167.

    PubMed  Google Scholar 

  698. Wignall, N. D., & de Wit, H. (2011). Effects of nicotine on attention and inhibitory control in healthy nonsmokers. Experimental and Clinical Psychopharmacology, 19(3), 183–191.

    PubMed  Google Scholar 

  699. Volkow, N. D., Baler, R. D., & Goldstein, R. Z. (2011). Addiction: Pulling at the neural threads of social behaviors. Neuron, 69(4), 599–602.

    PubMed  Google Scholar 

  700. Volkow, N. D., Wang, G. J., & Baler, R. D. (2011). Reward, dopamine and the control of food intake: Implications for obesity. Trends in Cognitive Sciences, 15(1), 37–46.

    PubMed  Google Scholar 

  701. Volkow, N. D., Wang, G. J., Kollins, S. H., et al. (2009). Evaluating dopamine reward pathway in ADHD: Clinical implications. JAMA: The Journal of the American Medical Association, 302(10), 1084–1091.

    Google Scholar 

  702. Sofuoglu, M. (2010). Cognitive enhancement as a pharmacotherapy target for stimulant addiction. Addiction, 105(1), 38–48.

    PubMed  Google Scholar 

  703. Burger, K. S., & Stice, E. (2011). Variability in reward responsivity and obesity: Evidence from brain imaging studies. Current Drug Abuse Reviews, 4, 182–189.

    PubMed  Google Scholar 

  704. Shin, A. C., & Berthoud, H. R. (2011). Food reward functions as affected by obesity and bariatric surgery. International Journal of Obesity, 35(Suppl 3), S40–S44.

    PubMed  Google Scholar 

  705. Hollmann, M., Hellrung, L., Pleger, B., et al. (2012). Neural correlates of the volitional regulation of the desire for food. International Journal of Obesity, 36, 648–655.

    PubMed  Google Scholar 

  706. Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10367–10371.

    PubMed  Google Scholar 

  707. Daws, L. C., Avison, M. J., Robertson, S. D., Niswender, K. D., Galli, A., & Saunders, C. (2011). Insulin signaling and addiction. Neuropharmacology, 61(7), 1123–1128.

    PubMed  Google Scholar 

  708. Berthoud, H. R., Lenard, N. R., & Shin, A. C. (2011). Food reward, hyperphagia, and obesity. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 300(6), R1266–R1277.

    PubMed  Google Scholar 

  709. Green, E., Jacobson, A., Haase, L., & Murphy, C. (2011). Reduced nucleus accumbens and caudate nucleus activation to a pleasant taste is associated with obesity in older adults. Brain Research, 1386, 109–117.

    PubMed  Google Scholar 

  710. Liu, L. L., Li, B. M., Yang, J., & Wang, Y. W. (2008). Does dopaminergic reward system contribute to explaining comorbidity obesity and ADHD? Medical Hypotheses, 70(6), 1118–1120.

    PubMed  Google Scholar 

  711. Siep, N., Roefs, A., Roebroeck, A., Havermans, R., Bonte, M. L., & Jansen, A. (2009). Hunger is the best spice: An fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behavioural Brain Research, 198(1), 149–158.

    PubMed  Google Scholar 

  712. Robinson, A. M., Hopkins, M. E., & Bucci, D. J. (2011). Effects of physical exercise on ADHD-like behavior in male and female adolescent spontaneously hypertensive rats. Developmental Psychobiology, 53(4), 383–390.

    PubMed  Google Scholar 

  713. Garland, T., Jr., Schutz, H., Chappell, M. A., et al. (2011). The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: Human and rodent perspectives. The Journal of Experimental Biology, 214(Pt 2), 206–229.

    PubMed  Google Scholar 

  714. Eisenmann, J. C., & Wickel, E. E. (2009). The biological basis of physical activity in children: Revisited. Pediatric Exercise Science, 21(3), 257–272.

    PubMed  Google Scholar 

  715. Janse Van Rensburg, K., Taylor, A., Hodgson, T., & Benattayallah, A. (2009). Acute exercise modulates cigarette cravings and brain activation in response to smoking-related images: An fMRI study. Psychopharmacology, 203(3), 589–598.

    PubMed  Google Scholar 

  716. Rhodes, J. S., Gammie, S. C., & Garland, T., Jr. (2005). Neurobiology of mice selected for high voluntary wheel-running activity. Integrative and Comparative Biology, 45(3), 438–455.

    PubMed  Google Scholar 

  717. Johnson, J., & Siegel, D. (1987). Active vs. passive attentional manipulation and multidimensional perceptions of exercise intensity. Canadian Journal of Sport Sciences, 12(1), 41–45.

    PubMed  Google Scholar 

  718. Archer, T., & Kostrzewa, R. M. (2011). Physical exercise alleviates ADHD symptoms: Regional deficits and development trajectory. Neurotoxicity Research, 21, 195–201.

    PubMed  Google Scholar 

  719. Barnes, R. T., Coombes, S. A., Armstrong, N. B., Higgins, T. J., & Janelle, C. M. (2010). Evaluating attentional and affective changes following an acute exercise bout using a modified dot-probe protocol. Journal of Sports Sciences, 28(10), 1065–1076.

    PubMed  Google Scholar 

  720. Bell, M., Bryson, G., Greig, T., Corcoran, C., & Wexler, B. E. (2001). Neurocognitive enhancement therapy with work therapy: Effects on neuropsychological test performance. Archives of General Psychiatry, 58(8), 763–768.

    PubMed  Google Scholar 

  721. Kubesch, S., Bretschneider, V., Freudenmann, R., et al. (2003). Aerobic endurance exercise improves executive functions in depressed patients. The Journal of Clinical Psychiatry, 64(9), 1005–1012.

    PubMed  Google Scholar 

  722. Kucyi, A., Alsuwaidan, M. T., Liauw, S. S., & McIntyre, R. S. (2010). Aerobic physical exercise as a possible treatment for neurocognitive dysfunction in bipolar disorder. Postgraduate Medicine, 122(6), 107–116.

    PubMed  Google Scholar 

  723. Langfeld, H. S., & Allport, F. H. (1916). Fluctuations of attention. In H. S. Langfeld & F. H. Allport (Eds.), An elementary laboratory course in psychology, second revised edition (pp. 104–105). Boston: Houghton.

    Google Scholar 

  724. Mabandla, M. V., Kellaway, L. A., Daniels, W. M., & Russell, V. A. (2009). Effect of exercise on dopamine neuron survival in prenatally stressed rats. Metabolic Brain Disease, 24(4), 525–539.

    PubMed  Google Scholar 

  725. Maxwell, J. P., Masters, R. S., & Poolton, J. M. (2006). Performance breakdown in sport: The roles of reinvestment and verbal knowledge. Research Quarterly for Exercise and Sport, 77(2), 271–276.

    PubMed  Google Scholar 

  726. Muller, T., & Muhlack, S. (2010). Effect of exercise on reactivity and motor behaviour in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 81(7), 747–753.

    PubMed  Google Scholar 

  727. Lochman, J. E., Powell, N. P., Boxmeyer, C. L., & Jimenez-Camargo, L. (2011). Cognitive-behavioral therapy for externalizing disorders in children and adolescents. Child and Adolescent Psychiatric Clinics of North America, 20(2), 305–318.

    PubMed  Google Scholar 

  728. Edwards, L. Y., & Edwards, C. L. (2010). Psychosocial treatments in pain management of sickle cell disease. Journal of the National Medical Association, 102(11), 1084–1094.

    PubMed  Google Scholar 

  729. Moryl, N., Coyle, N., Essandoh, S., & Glare, P. (2010). Chronic pain management in cancer survivors. Journal of the National Comprehensive Cancer Network, 8(9), 1104–1110.

    PubMed  Google Scholar 

  730. Zautra, A. J., Davis, M. C., Reich, J. W., et al. (2008). Comparison of cognitive behavioral and mindfulness meditation interventions on adaptation to rheumatoid arthritis for patients with and without history of recurrent depression. Journal of Consulting and Clinical Psychology, 76(3), 408–421.

    PubMed  Google Scholar 

  731. McCracken, L. M., Gauntlett-Gilbert, J., & Vowles, K. E. (2007). The role of mindfulness in a contextual cognitive-behavioral analysis of chronic pain-related suffering and disability. Pain, 131(1–2), 63–69.

    PubMed  Google Scholar 

  732. Turner, J. A., Mancl, L., & Aaron, L. A. (2005). Brief cognitive-behavioral therapy for temporomandibular disorder pain: Effects on daily electronic outcome and process measures. Pain, 117(3), 377–387.

    PubMed  Google Scholar 

  733. Cook, A. J. (1998). Cognitive-behavioral pain management for elderly nursing home residents. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 53(1), P51–P59.

    PubMed  Google Scholar 

  734. Keefe, F. J., Dunsmore, J., & Burnett, R. (1992). Behavioral and cognitive-behavioral approaches to chronic pain: Recent advances and future directions. Journal of Consulting and Clinical Psychology, 60(4), 528–536.

    PubMed  Google Scholar 

  735. Nicholas, M. K., Wilson, P. H., & Goyen, J. (1991). Operant-behavioural and cognitive-behavioural treatment for chronic low back pain. Behaviour Research and Therapy, 29(3), 225–238.

    PubMed  Google Scholar 

  736. Edelson, J., & Fitzpatrick, J. L. (1989). A comparison of cognitive-behavioral and hypnotic treatments of chronic pain. Journal of Clinical Psychology, 45(2), 316–323.

    PubMed  Google Scholar 

  737. Turner, J. A., & Clancy, S. (1986). Strategies for coping with chronic low back pain: Relationship to pain and disability. Pain, 24(3), 355–364.

    PubMed  Google Scholar 

  738. Chan, A. S., Han, Y. M., & Cheung, M. C. (2008). Electroencephalographic (EEG) measurements of mindfulness-based Triarchic body-pathway relaxation technique: A pilot study. Applied Psychophysiology and Biofeedback, 33(1), 39–47.

    PubMed  Google Scholar 

  739. Chiesa, A., & Serretti, A. (2010). A systematic review of neurobiological and clinical features of mindfulness meditations. Psychological Medicine, 40(8), 1239–1252.

    PubMed  Google Scholar 

  740. Garland, E. L., Gaylord, S. A., Boettiger, C. A., & Howard, M. O. (2010). Mindfulness training modifies cognitive, affective, and physiological mechanisms implicated in alcohol dependence: Results of a randomized controlled pilot trial. Journal of Psychoactive Drugs, 42(2), 177–192.

    PubMed  Google Scholar 

  741. Hoppes, K. (2006). The application of mindfulness-based cognitive interventions in the treatment of co-occurring addictive and mood disorders. CNS Spectrums, 11(11), 829–851.

    PubMed  Google Scholar 

  742. Kabat-Zinn, J. (1982). An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: Theoretical considerations and preliminary results. General Hospital Psychiatry, 4(1), 33–47.

    PubMed  Google Scholar 

  743. Lynn, S. J., Barnes, S., Deming, A., & Accardi, M. (2010). Hypnosis, rumination, and depression: Catalyzing attention and mindfulness-based treatments. The International Journal of Clinical and Experimental Hypnosis, 58(2), 202–221.

    PubMed  Google Scholar 

  744. Takahashi, T., Murata, T., Hamada, T., et al. (2005). Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. International Journal of Psychophysiology, 55(2), 199–207.

    PubMed  Google Scholar 

  745. van den Hurk, P. A., Giommi, F., Gielen, S. C., Speckens, A. E., & Barendregt, H. P. (2010). Greater efficiency in attentional processing related to mindfulness meditation. Quarterly Journal of Experimental Psychology, 63(6), 1168–1180.

    Google Scholar 

  746. Weber, B., Jermann, F., Gex-Fabry, M., Nallet, A., Bondolfi, G., & Aubry, J. M. (2010). Mindfulness-based cognitive therapy for bipolar disorder: A feasibility trial. European Psychiatry, 25(6), 334–337.

    PubMed  Google Scholar 

  747. Zylowska, L., Ackerman, D. L., Yang, M. H., et al. (2008). Mindfulness meditation training in adults and adolescents with ADHD: A feasibility study. Journal of Attention Disorders, 11(6), 737–746.

    PubMed  Google Scholar 

  748. Labbe, E. (2011). Psychology moment by moment: A guide to enhancing your clinical practice with mindfulness and meditation. Oakland, CA: New Harbinger.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Psychiatric Disturbances of Attention. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics