Skip to main content

Attention Disturbances Associated with Neurological Disease

  • Chapter
  • First Online:
The Neuropsychology of Attention

Abstract

Disturbances of attention are among the common manifestations of neurological diseases and other medical illnesses that affect the brain. For example, one study of patients with peripheral vascular disease, transient ischemic attacks, and “silent” stroke found that 25 % of patients fell below the fifth tile on measures of attention [1]. Yet, these disturbances have typically received less emphasis than other cognitive syndromes in the neuropsychological research literature. There are several likely explanations for this: (1) Attention disturbances cannot be localized to one specific brain structure but rather can arise secondary to damage to a variety of different brain regions. (2) Historically, it was more difficult to measure attention than other cognitive functions, such as memory, visual perception, language, or motor control. (3) There has been a tendency to characterize attention problems based on performance on a single type of task, such as Digit Span, or to assume that tention is intact if the patient is able to sustain their test-taking behavior during testing. (4) Attention problems tend to be dismissed as manifestation of inadequate effort or motivation rather than as an effect of brain dysfunction. (5) Attention complaints and disturbances are so pervasive among people with neurological and other medical conditions that it is easy to overlook them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rao, R., Jackson, S., & Howard, R. (1999). Neuropsychological impairment in stroke, carotid stenosis, and peripheral vascular disease, a comparison with healthy community residents. Stroke, 30(10), 2167–2173.

    PubMed  Google Scholar 

  2. Geschwind, N. (1979). Specializations of the human brain. Scientific American, 241(3), 180–199.

    PubMed  Google Scholar 

  3. Geschwind, N. (1980). Neurological knowledge and complex behaviors. Cognitive Science, 4(2), 185–193.

    Google Scholar 

  4. Ropper, A., & Samuels, M. (2009). Adams and Victor’s principles of neurology (9th ed.). New York, NY: ­McGraw-Hill.

    Google Scholar 

  5. Lezak, M. D., & Lezak, M. D. (2004). Neuropsychological assessment (4th ed.). Oxford: Oxford University Press.

    Google Scholar 

  6. Plum, F., & Posner, G. (2007). Diagnosis of stupor and coma. New York, NY: Oxford University Press.

    Google Scholar 

  7. Goodglass, H., & Kaplan, E. (1979). Assessment of cognitive deficit in the brain-injured patient. In M. Gazaniga (Ed.), Handbook of behavioral neurobiology (Vol. 2). New York, NY: Plenum publishing.

    Google Scholar 

  8. Lashley, K. S. (1929). Brain mechanisms and intelligence: A quantitative study of injuries to the brain. Chicago: Chicago University Press.

    Google Scholar 

  9. Sahakian, B. J., Downes, J. J., Eagger, S., et al. (1990). Sparing of attentional relative to mnemonic function in a subgroup of patients with dementia of the Alzheimer type. Neuropsychologia, 28(11), 1197–1213.

    PubMed  Google Scholar 

  10. Chapman, R. M., Nowlis, G. H., McCrary, J. W., et al. (2007). Brain event-related potentials: diagnosing early-stage Alzheimer’s disease. Neurobiology of Aging, 28(2), 194–201.

    PubMed  Google Scholar 

  11. Reinvang, I., Espeseth, T., & Gjerstad, L. (2005). Cognitive ERPs are related to ApoE allelic variation in mildly cognitively impaired patients. Neuroscience Letters, 382(3), 346–351.

    PubMed  Google Scholar 

  12. Saito, H., Yamazaki, H., Matsuoka, H., et al. (2001). Visual event-related potential in mild dementia of the Alzheimer’s type. Psychiatry and Clinical Neurosciences, 55(4), 365–371.

    PubMed  Google Scholar 

  13. Sumi, N., Nan’no, H., Fujimoto, O., Ohta, Y., & Takeda, M. (2000). Interpeak latency of auditory event-related potentials (P300) in senile depression and dementia of the Alzheimer type. Psychiatry and Clinical Neurosciences, 54(6), 679–684.

    PubMed  Google Scholar 

  14. Kazmerski, V. A., Friedman, D., & Ritter, W. (1997). Mismatch negativity during attend and ignore conditions in Alzheimer’s disease. Biological Psychiatry, 42(5), 382–402.

    PubMed  Google Scholar 

  15. Attias, J., Huberman, M., Cott, E., & Pratt, H. (1995). Improved detection of auditory P3 abnormality in dementia using a variety of stimuli. Acta Neurologica Scandinavica, 92(1), 96–101.

    PubMed  Google Scholar 

  16. Verleger, R., Kompf, D., & Neukater, W. (1992). Event-related EEG potentials in mild dementia of the Alzheimer type. Electroencephalography and Clinical Neurophysiology, 84(4), 332–343.

    PubMed  Google Scholar 

  17. Onofrj, M., Gambi, D., Del Re, M. L., et al. (1991). Mapping of event-related potentials to auditory and visual odd-ball paradigms in patients affected by different forms of dementia. European Neurology, 31(4), 259–269.

    PubMed  Google Scholar 

  18. Polich, J., Ladish, C., & Bloom, F. E. (1990). P300 assessment of early Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology, 77(3), 179–189.

    PubMed  Google Scholar 

  19. Hirata, K., Hozumi, A., Tanaka, H., et al. (2000). Abnormal information processing in dementia of Alzheimer type. A study using the event-related potential’s field. European Archives of Psychiatry and Clinical Neuroscience, 250(3), 152–155.

    PubMed  Google Scholar 

  20. Missonnier, P., Ragot, R., Derouesne, C., Guez, D., & Renault, B. (1999). Automatic attentional shifts induced by a noradrenergic drug in Alzheimer’s disease: Evidence from evoked potentials. International Journal of Psychophysiology, 33(3), 243–251.

    PubMed  Google Scholar 

  21. Cohen, R. A., O’Donnell, B. F., Meadows, M. E., Moonis, M., Stone, W. F., & Drachman, D. A. (1995). ERP indices and neuropsychological performance as predictors of functional outcome in dementia. Journal of Geriatric Psychiatry and Neurology, 8(4), 217–225.

    PubMed  Google Scholar 

  22. Tsiskaridze, A., Shakarishvili, R., Janelidze, M., Vashadze, T., & Chikhladze, M. (1998). Cognitive correlates of leukoaraiosis in the early stages of Alzheimer’s disease. Functional Neurology, 13(1), 17–25.

    PubMed  Google Scholar 

  23. Mendez, M. F., Ottowitz, W., Brown, C. V., Cummings, J. L., Perryman, K. M., & Mandelkern, M. A. (1999). Dementia with leukoaraiosis: Clinical differentiation by temporoparietal hypometabolism on (18)FDG-PET imaging. Dementia and Geriatric Cognitive Disorders, 10(6), 518–525.

    PubMed  Google Scholar 

  24. Freed, D. M., Corkin, S., Growdon, J. H., & Nissen, M. J. (1988). Selective attention in Alzheimer’s disease: CSF correlates of behavioral impairments. Neuropsychologia, 26(6), 895–902.

    PubMed  Google Scholar 

  25. Freed, D. M., Corkin, S., Growdon, J. H., & Nissen, M. J. (1989). Selective attention in Alzheimer’s disease: Characterizing cognitive subgroups of patients. Neuropsychologia, 27(3), 325–339.

    PubMed  Google Scholar 

  26. Hof, P. R., Bouras, C., Constantinidis, J., & Morrison, J. H. (1990). Selective disconnection of specific visual association pathways in cases of Alzheimer’s disease presenting with Balint’s syndrome. Journal of Neuropathology and Experimental Neurology, 49(2), 168–184.

    PubMed  Google Scholar 

  27. Foster, J. K., Behrmann, M., & Stuss, D. T. (1999). Visual attention deficits in Alzheimer’s disease: Simple versus conjoined feature search. Neuropsychology, 13(2), 223–245.

    PubMed  Google Scholar 

  28. Foster, J. K. (2001). Selective attention in Alzheimer’s disease. Frontiers in Bioscience, 6, D135–D153.

    PubMed  Google Scholar 

  29. Parasuraman, R., & Nestor, P. G. (1991). Attention and driving skills in aging and Alzheimer’s disease. Human Factors, 33(5), 539–557.

    PubMed  Google Scholar 

  30. Festa, E. K., Heindel, W. C., & Ott, B. R. (2010). Dual-task conditions modulate the efficiency of selective attention mechanisms in Alzheimer’s disease. Neuropsychologia, 48(11), 3252–3261.

    PubMed  Google Scholar 

  31. Ott, B. R., & Daiello, L. A. (2010). How does dementia affect driving in older patients? Aging Health, 6(1), 77–85.

    PubMed  Google Scholar 

  32. Ott, B. R., Festa, E. K., Amick, M. M., Grace, J., Davis, J. D., & Heindel, W. C. (2008). Computerized maze navigation and on-road performance by drivers with dementia. Journal of Geriatric Psychiatry and Neurology, 21(1), 18–25.

    PubMed  Google Scholar 

  33. Ott, B. R., Anthony, D., Papandonatos, G. D., et al. (2005). Clinician assessment of the driving competence of patients with dementia. Journal of American Geriatrics Society, 53(5), 829–833.

    Google Scholar 

  34. Levy, J. A., Parasuraman, R., Greenwood, P. M., Dukoff, R., & Sunderland, T. (2000). Acetylcholine affects the spatial scale of attention: Evidence from Alzheimer’s disease. Neuropsychology, 14(2), 288–298.

    PubMed  Google Scholar 

  35. Seidl, R., Tiefenthaler, M., Hauser, E., & Lubec, G. (2000). Effects of transdermal nicotine on cognitive performance in Down’s syndrome. Lancet, 356(9239), 1409–1410.

    PubMed  Google Scholar 

  36. Rusted, J. M., Newhouse, P. A., & Levin, E. D. (2000). Nicotinic treatment for degenerative neuropsychiatric disorders such as Alzheimer’s disease and Parkinson’s disease. Behavioural Brain Research, 113(1–2), 121–129.

    PubMed  Google Scholar 

  37. Ruotsalainen, S., Miettinen, R., MacDonald, E., Koivisto, E., & Sirvio, J. (2000). Blockade of muscarinic, rather than nicotinic, receptors impairs attention, but does not interact with serotonin depletion. Psychopharmacology, 148(2), 111–123.

    PubMed  Google Scholar 

  38. Demarin, V., Podobnik, S. S., Storga-Tomic, D., & Kay, G. (2004). Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: A randomized, double-blind study. Drugs under Experimental and Clinical Research, 30(1), 27–33.

    PubMed  Google Scholar 

  39. Alonso, M., & Martinez, A. (2004). GSK-3 inhibitors: Discoveries and developments. Current Medicinal Chemistry, 11(6), 755–763.

    PubMed  Google Scholar 

  40. Rogawski, M. A., & Wenk, G. L. (2003). The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Reviews, 9(3), 275–308.

    PubMed  Google Scholar 

  41. O’Brien, K. K., Saxby, B. K., Ballard, C. G., et al. (2003). Regulation of attention and response to therapy in dementia by butyrylcholinesterase. Pharmacogenetics, 13(4), 231–239.

    PubMed  Google Scholar 

  42. Balducci, C., Nurra, M., Pietropoli, A., Samanin, R., & Carli, M. (2003). Reversal of visual attention dysfunction after AMPA lesions of the nucleus basalis magnocellularis (NBM) by the cholinesterase inhibitor donepezil and by a 5-HT1A receptor antagonist WAY 100635. Psychopharmacology, 167(1), 28–36.

    PubMed  Google Scholar 

  43. Foldi, N. S., White, R. E., & Schaefer, L. A. (2005). Detecting effects of donepezil on visual selective attention using signal detection parameters in Alzheimer’s disease. International Journal of Geriatric Psychiatry, 20(5), 485–488.

    PubMed  Google Scholar 

  44. Rizzo, M., Anderson, S. W., Dawson, J., & Nawrot, M. (2000). Vision and cognition in Alzheimer’s disease. Neuropsychologia, 38(8), 1157–1169.

    PubMed  Google Scholar 

  45. Rizzo, M., Anderson, S. W., Dawson, J., Myers, R., & Ball, K. (2000). Visual attention impairments in Alzheimer’s disease. Neurology, 54(10), 1954–1959.

    PubMed  Google Scholar 

  46. Ko, P. C., Kilduff, P. T., Higgens, J. A., Milberg, W., & McGlinchey, R. (2005). Evidence for intact selective attention in Alzheimer’s disease patients using a location priming task. Neuropsychology, 19(3), 381–389.

    PubMed  Google Scholar 

  47. Andel, R., Gatz, M., Pedersen, N. L., Reynolds, C. A., Johansson, B., & Berg, S. (2001). Deficits in controlled processing may predict dementia: A twin study. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 56(6), P347–P355.

    PubMed  Google Scholar 

  48. Gainotti, G., Marra, C., & Villa, G. (2001). A double dissociation between accuracy and time of execution on attentional tasks in Alzheimer’s disease and multi-infarct dementia. Brain, 124(Pt 4), 731–738.

    PubMed  Google Scholar 

  49. Levinoff, E. J., Li, K. Z., Murtha, S., & Chertkow, H. (2004). Selective attention impairments in Alzheimer’s disease: Evidence for dissociable components. Neuropsychology, 18(3), 580–588.

    PubMed  Google Scholar 

  50. Tales, A., Snowden, R. J., Haworth, J., & Wilcock, G. (2005). Abnormal spatial and non-spatial cueing effects in mild cognitive impairment and Alzheimer’s disease. Neurocase, 11(1), 85–92.

    PubMed  Google Scholar 

  51. Saunders, N. L., & Summers, M. J. (2011). Longitudinal deficits to attention, executive, and working memory in subtypes of mild cognitive impairment. Neuropsychology, 25(2), 237–248.

    PubMed  Google Scholar 

  52. Lukatela, K. A., Cohen, R. A., Kessler, H. A., et al. (2000). Dementia rating scale performance: A comparison of vascular and Alzheimer’s dementia. Journal of Clinical and Experimental Neuropsychology, 22(4), 445–454.

    PubMed  Google Scholar 

  53. Alexander, M. P., & Stuss, D. T. (2000). Disorders of frontal lobe functioning. Seminars in Neurology, 20(4), 427–437.

    PubMed  Google Scholar 

  54. Perry, R. J., & Hodges, J. R. (1999). Attention and executive deficits in Alzheimer’s disease. A critical review. Brain, 122(Pt 3), 383–404.

    PubMed  Google Scholar 

  55. Belleville, S., Bherer, L., Lepage, E., Chertkow, H., & Gauthier, S. (2008). Task switching capacities in persons with Alzheimer’s disease and mild cognitive impairment. Neuropsychologia, 46(8), 2225–2233.

    PubMed  Google Scholar 

  56. Wylie, S. A., Ridderinkhof, K. R., Eckerle, M. K., & Manning, C. A. (2007). Inefficient response inhibition in individuals with mild cognitive impairment. Neuropsychologia, 45(7), 1408–1419.

    PubMed  Google Scholar 

  57. Traykov, L., Raoux, N., Latour, F., et al. (2007). Executive functions deficit in mild cognitive impairment. Cognitive and Behavioral Neurology, 20(4), 219–224.

    PubMed  Google Scholar 

  58. Bullock, R., & Lane, R. (2007). Executive dyscontrol in dementia, with emphasis on subcortical pathology and the role of butyrylcholinesterase. Current Alzheimer Research, 4(3), 277–293.

    PubMed  Google Scholar 

  59. Kramer, J. H., Nelson, A., Johnson, J. K., et al. (2006). Multiple cognitive deficits in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22(4), 306–311.

    PubMed  Google Scholar 

  60. Bradshaw, J. M., Saling, M., Anderson, V., Hopwood, M., & Brodtmann, A. (2006). Higher cortical deficits influence attentional processing in dementia with Lewy bodies, relative to patients with dementia of the Alzheimer’s type and controls. Journal of Neurology, Neurosurgery, and Psychiatry, 77(10), 1129–1135.

    PubMed  Google Scholar 

  61. Baudic, S., Barba, G. D., Thibaudet, M. C., Smagghe, A., Remy, P., & Traykov, L. (2006). Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Archives of Clinical Neuropsychology, 21(1), 15–21.

    PubMed  Google Scholar 

  62. Rapp, M. A., & Reischies, F. M. (2005). Attention and executive control predict Alzheimer disease in late life: Results from the Berlin Aging Study (BASE). The American Journal of Geriatric Psychiatry, 13(2), 134–141.

    PubMed  Google Scholar 

  63. Lam, L. C., Lui, V. W., Chiu, H. F., Chan, S. S., & Tam, C. W. (2005). Executive function impairment in community elderly subjects with questionable dementia. Dementia and Geriatric Cognitive Disorders, 19(2–3), 86–90.

    PubMed  Google Scholar 

  64. Cullen, B., Coen, R. F., Lynch, C. A., et al. (2005). Repetitive behaviour in Alzheimer’s disease: Description, correlates and functions. International Journal of Geriatric Psychiatry, 20(7), 686–693.

    PubMed  Google Scholar 

  65. Bohnen, N. I., Kaufer, D. I., Hendrickson, R., et al. (2005). Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 76(3), 315–319.

    PubMed  Google Scholar 

  66. Swanberg, M. M., Tractenberg, R. E., Mohs, R., Thal, L. J., & Cummings, J. L. (2004). Executive dysfunction in Alzheimer disease. Archives of Neurology, 61(4), 556–560.

    PubMed  Google Scholar 

  67. Graham, N. L., Emery, T., & Hodges, J. R. (2004). Distinctive cognitive profiles in Alzheimer’s disease and subcortical vascular dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 75(1), 61–71.

    PubMed  Google Scholar 

  68. Ott, B. R., Heindel, W. C., Whelihan, W. M., Caron, M. D., Piatt, A. L., & DiCarlo, M. A. (2003). Maze test performance and reported driving ability in early dementia. Journal of Geriatric Psychiatry and Neurology, 16(3), 151–155.

    PubMed  Google Scholar 

  69. Griffith, H. R., Belue, K., Sicola, A., et al. (2003). Impaired financial abilities in mild cognitive impairment: A direct assessment approach. Neurology, 60(3), 449–457.

    PubMed  Google Scholar 

  70. Arnaiz, E., & Almkvist, O. (2003). Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Acta Neurologica Scandinavica. Supplementum, 179, 34–41.

    PubMed  Google Scholar 

  71. Kiosses, D. N., Klimstra, S., Murphy, C., & Alexopoulos, G. S. (2001). Executive dysfunction and disability in elderly patients with major depression. The American Journal of Geriatric Psychiatry, 9(3), 269–274.

    PubMed  Google Scholar 

  72. Perry, R. J., & Hodges, J. R. (2000). Relationship between functional and neuropsychological performance in early Alzheimer disease. Alzheimer Disease and Associated Disorders, 14(1), 1–10.

    PubMed  Google Scholar 

  73. Perry, R. J., & Hodges, J. R. (2000). Differentiating frontal and temporal variant frontotemporal dementia from Alzheimer’s disease. Neurology, 54(12), 2277–2284.

    PubMed  Google Scholar 

  74. Gokalsing, E., Robert, P. H., Lafont, V., et al. (2000). Evaluation of the supervisory system in elderly subjects with and without disinhibition. European Psychiatry, 15(7), 407–415.

    PubMed  Google Scholar 

  75. Duke, L. M., & Kaszniak, A. W. (2000). Executive control functions in degenerative dementias: A comparative review. Neuropsychology Review, 10(2), 75–99.

    PubMed  Google Scholar 

  76. Collette, F., Van der Linden, M., & Salmon, E. (1999). Executive dysfunction in Alzheimer’s disease. Cortex, 35(1), 57–72.

    PubMed  Google Scholar 

  77. Collette, F., Van der Linden, M., Bechet, S., & Salmon, E. (1999). Phonological loop and central executive functioning in Alzheimer’s disease. Neuropsychologia, 37(8), 905–918.

    PubMed  Google Scholar 

  78. Boyle, P. A., & Cahn-Weiner, D. (2004). Assessment and prediction of functional impairment in vascular dementia. Expert Review of Neurotherapeutics, 4(1), 109–114.

    PubMed  Google Scholar 

  79. Boyle, P. A., Paul, R. H., Moser, D. J., & Cohen, R. A. (2004). Executive impairments predict functional declines in vascular dementia. Clinical Neuropsychology, 18(1), 75–82.

    Google Scholar 

  80. Boyle, P. A. (2004). Assessing and predicting functional impairment in Alzheimer’s disease: The emerging role of frontal system dysfunction. Current Psychiatry Reports, 6(1), 20–24.

    PubMed  Google Scholar 

  81. Boyle, P. A., Malloy, P. F., Salloway, S., Cahn-Weiner, D. A., Cohen, R., & Cummings, J. L. (2003). Executive dysfunction and apathy predict functional impairment in Alzheimer disease. The American Journal of Geriatric Psychiatry, 11(2), 214–221.

    PubMed  Google Scholar 

  82. Jefferson, A. L., Cahn-Weiner, D., Boyle, P., et al. (2006). Cognitive predictors of functional decline in vascular dementia. International Journal of Geriatric Psychiatry, 21(8), 752–754.

    PubMed  Google Scholar 

  83. Boyle, P. A., Cohen, R. A., Paul, R., Moser, D., & Gordon, N. (2002). Cognitive and motor impairments predict functional declines in patients with vascular dementia. International Journal of Geriatric Psychiatry, 17(2), 164–169.

    PubMed  Google Scholar 

  84. Wilcock, G. K., Surmon, D. J., Scott, M., et al. (1993). An evaluation of the efficacy and safety of tetrahydroaminoacridine (THA) without lecithin in the treatment of Alzheimer’s disease. Age and Ageing, 22(5), 316–324.

    PubMed  Google Scholar 

  85. Sebastian, M. V., Menor, J., & Elosua, M. R. (2006). Attentional dysfunction of the central executive in AD: Evidence from dual task and perseveration errors. Cortex, 42(7), 1015–1020.

    PubMed  Google Scholar 

  86. Kirk, A., & Kertesz, A. (1991). On drawing impairment in Alzheimer’s disease. Archives of Neurology, 48(1), 73–77.

    PubMed  Google Scholar 

  87. Stern, R. A., Silva, S. G., Chaisson, N., & Evans, D. L. (1996). Influence of cognitive reserve on neuropsychological functioning in asymptomatic human immunodeficiency virus-1 infection. Archives of Neurology, 53(2), 148–153.

    PubMed  Google Scholar 

  88. Nebes, R. D., & Brady, C. B. (1989). Focused and divided attention in Alzheimer’s disease. Cortex, 25(2), 305–315.

    PubMed  Google Scholar 

  89. Nebes, R. D., Brady, C. B., & Huff, F. J. (1989). Automatic and attentional mechanisms of semantic priming in Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 11(2), 219–230.

    PubMed  Google Scholar 

  90. Filoteo, J. V., Delis, D. C., Massman, P. J., Demadura, T., Butters, N., & Salmon, D. P. (1992). Directed and divided attention in Alzheimer’s disease: Impairment in shifting of attention to global and local stimuli. Journal of Clinical and Experimental Neuropsychology, 14(6), 871–883.

    PubMed  Google Scholar 

  91. Levinoff, E. J., Saumier, D., & Chertkow, H. (2005). Focused attention deficits in patients with Alzheimer’s disease and mild cognitive impairment. Brain and Cognition, 57(2), 127–130.

    PubMed  Google Scholar 

  92. Della Sala, S., Foley, J. A., Beschin, N., Allerhand, M., & Logie, R. H. (2010). Assessing dual-task performance using a paper-and-pencil test: Normative data. Archives of Clinical Neuropsychology, 25(5), 410–419.

    PubMed  Google Scholar 

  93. Della Sala, S., Cocchini, G., Logie, R. H., Allerhand, M., & MacPherson, S. E. (2010). Dual task during encoding, maintenance, and retrieval in Alzheimer’s disease. Journal of Alzheimer’s Disease, 19(2), 503–515.

    PubMed  Google Scholar 

  94. Lonie, J. A., Tierney, K. M., Herrmann, L. L., et al. (2009). Dual task performance in early Alzheimer’s disease, amnestic mild cognitive impairment and depression. Psychological Medicine, 39(1), 23–31.

    PubMed  Google Scholar 

  95. Pettersson, A. F., Olsson, E., & Wahlund, L. O. (2007). Effect of divided attention on gait in subjects with and without cognitive impairment. Journal of Geriatric Psychiatry and Neurology, 20(1), 58–62.

    PubMed  Google Scholar 

  96. Nakaaki, S., Murata, Y., Sato, J., et al. (2007). Greater impairment of ability in the divided attention task is seen in Alzheimer’s disease patients with depression than in those without depression. Dementia and Geriatric Cognitive Disorders, 23(4), 231–240.

    PubMed  Google Scholar 

  97. Crossley, M., Hiscock, M., & Foreman, J. B. (2004). Dual-task performance in early stage dementia: Differential effects for automatized and effortful processing. Journal of Clinical and Experimental Neuropsychology, 26(3), 332–346.

    PubMed  Google Scholar 

  98. MacPherson, S. E., Della Sala, S., & Logie, R. H. (2004). Dual-task interference of encoding and retrieval processes in healthy and impaired working memory. Cortex, 40(1), 183–184.

    PubMed  Google Scholar 

  99. Baddeley, A. D., Baddeley, H. A., Bucks, R. S., & Wilcock, G. K. (2001). Attentional control in Alzheimer’s disease. Brain, 124(Pt 8), 1492–1508.

    PubMed  Google Scholar 

  100. Nestor, P. G., Parasuraman, R., Haxby, J. V., & Grady, C. L. (1991). Divided attention and metabolic brain dysfunction in mild dementia of the Alzheimer’s type. Neuropsychologia, 29(5), 379–387.

    PubMed  Google Scholar 

  101. Waters, G. S., & Caplan, D. (1997). Working memory and on-line sentence comprehension in patients with Alzheimer’s disease. Journal of Psycholinguistic Research , 26(4), 377–400.

    PubMed  Google Scholar 

  102. Stopford, C. L., Thompson, J. C., Neary, D., Richardson, A. M., & Snowden, J. S. (2012). Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex, 48, 429–446.

    PubMed  Google Scholar 

  103. Saunders, N. L., & Summers, M. J. (2010). Attention and working memory deficits in mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 32(4), 350–357.

    PubMed  Google Scholar 

  104. Crowell, T. A., Luis, C. A., Cox, D. E., & Mullan, M. (2007). Neuropsychological comparison of Alzheimer’s disease and dementia with lewy bodies. Dementia and Geriatric Cognitive Disorders, 23(2), 120–125.

    PubMed  Google Scholar 

  105. Belleville, S., Chertkow, H., & Gauthier, S. (2007). Working memory and control of attention in persons with Alzheimer’s disease and mild cognitive impairment. Neuropsychology, 21(4), 458–469.

    PubMed  Google Scholar 

  106. Bayles, K. A. (2003). Effects of working memory deficits on the communicative functioning of Alzheimer’s dementia patients. Journal of Communication Disorders, 36(3), 209–219.

    PubMed  Google Scholar 

  107. Waters, G., & Caplan, D. (2002). Working memory and online syntactic processing in Alzheimer’s disease: Studies with auditory moving window presentation. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 57(4), P298–P311.

    PubMed  Google Scholar 

  108. Sanchez, J. L., Rodriguez, M., & Carro, J. (2002). Influence of cognitive reserve on neuropsychologic functioning in Alzheimer’s disease type sporadic in subjects of Spanish nationality. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 15(2), 113–122.

    PubMed  Google Scholar 

  109. Rosen, V. M., Bergeson, J. L., Putnam, K., Harwell, A., & Sunderland, T. (2002). Working memory and apolipoprotein E: What’s the connection? Neuropsychologia, 40(13), 2226–2233.

    PubMed  Google Scholar 

  110. Rombouts, S. A., Barkhof, F., Van Meel, C. S., & Scheltens, P. (2002). Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 73(6), 665–671.

    PubMed  Google Scholar 

  111. Numminen, H., Service, E., Ahonen, T., & Ruoppila, I. (2001). Working memory and everyday cognition in adults with Down’s syndrome. Journal of Intellectual Disability Research, 45(Pt 2), 157–168.

    PubMed  Google Scholar 

  112. Caselli, R. J., Dueck, A. C., Locke, D. E., et al. (2011). Longitudinal modeling of frontal cognition in APOE {varepsilon}4 homozygotes, heterozygotes, and noncarriers. Neurology, 76(16), 1383–1388.

    PubMed  Google Scholar 

  113. Lovera, J. F., Frohman, E., Brown, T. R., et al. (2010). Memantine for cognitive impairment in multiple sclerosis: A randomized placebo-controlled trial. Multiple Sclerosis, 16(6), 715–723.

    PubMed  Google Scholar 

  114. Etnier, J. L., Caselli, R. J., Reiman, E. M., et al. (2007). Cognitive performance in older women relative to ApoE-epsilon4 genotype and aerobic fitness. Medicine and Science in Sports and Exercise, 39(1), 199–207.

    PubMed  Google Scholar 

  115. Missonnier, P., Gold, G., Fazio-Costa, L., et al. (2005). Early event-related potential changes during working memory activation predict rapid decline in mild cognitive impairment. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 60(5), 660–666.

    PubMed  Google Scholar 

  116. Kumari, V., Aasen, I., ffytche, D., Williams, S. C., & Sharma, T. (2006). Neural correlates of adjunctive rivastigmine treatment to antipsychotics in schizophrenia: A randomized, placebo-controlled, double-blind fMRI study. NeuroImage, 29(2), 545–556.

    PubMed  Google Scholar 

  117. Wezenberg, E., Verkes, R. J., Sabbe, B. G., Ruigt, G. S., & Hulstijn, W. (2005). Modulation of memory and visuospatial processes by biperiden and rivastigmine in elderly healthy subjects. Psychopharmacology, 181(3), 582–594.

    PubMed  Google Scholar 

  118. Wefel, J. S., Hoyt, B. D., & Massma, P. J. (1999). Neuropsychological functioning in depressed versus nondepressed participants with Alzheimer’s disease. Clinical Neuropsychology, 13(3), 249–257.

    Google Scholar 

  119. Mahieux, F., Onen, F., Berr, C., et al. (2009). Early detection of patients in the pre demented stage of Alzheimer’s disease: The Pre-Al Study. The Journal of Nutrition, Health & Aging, 13(1), 21–26.

    Google Scholar 

  120. Ogino, A., Kazui, H., Miyoshi, N., et al. (2006). Cognitive impairment in patients with idiopathic normal pressure hydrocephalus. Dementia and Geriatric Cognitive Disorders, 21(2), 113–119.

    PubMed  Google Scholar 

  121. Kadir, A., Almkvist, O., Wall, A., Langstrom, B., & Nordberg, A. (2006). PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology, 188(4), 509–520.

    PubMed  Google Scholar 

  122. Meguro, K., Shimada, M., Yamaguchi, S., et al. (2001). Cognitive function and frontal lobe atrophy in normal elderly adults: Implications for dementia not as aging-related disorders and the reserve hypothesis. Psychiatry and Clinical Neurosciences, 55(6), 565–572.

    PubMed  Google Scholar 

  123. Tierney, M. C., Moineddin, R., & McDowell, I. (2010). Prediction of all-cause dementia using neuropsychological tests within 10 and 5 years of diagnosis in a community-based sample. Journal of Alzheimer’s Disease, 22(4), 1231–1240.

    PubMed  Google Scholar 

  124. van de Pol, L. A., Korf, E. S., van der Flier, W. M., et al. (2007). Magnetic resonance imaging predictors of cognition in mild cognitive impairment. Archives of Neurology, 64(7), 1023–1028.

    PubMed  Google Scholar 

  125. Devanand, D. P., Habeck, C. G., Tabert, M. H., et al. (2006). PET network abnormalities and cognitive decline in patients with mild cognitive impairment. Neuropsychopharmacology, 31(6), 1327–1334.

    PubMed  Google Scholar 

  126. Solfrizzi, V., Panza, F., Torres, F., et al. (2002). Selective attention skills in differentiating between Alzheimer’s disease and normal aging. Journal of Geriatric Psychiatry and Neurology, 15(2), 99–109.

    PubMed  Google Scholar 

  127. Fabrigoule, C., Rouch, I., Taberly, A., et al. (1998). Cognitive process in preclinical phase of dementia. Brain, 121(Pt 1), 135–141.

    PubMed  Google Scholar 

  128. Lindau, M., Almkvist, O., Johansson, S. E., & Wahlund, L. O. (1998). Cognitive and behavioral differentiation of frontal lobe degeneration of the non-Alzheimer type and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 9(4), 205–213.

    PubMed  Google Scholar 

  129. Sano, M., Rosen, W., Stern, Y., Rosen, J., & Mayeux, R. (1995). Simple reaction time as a measure of global attention in Alzheimer’s disease. Journal of the International Neuropsychological Society, 1(1), 56–61.

    PubMed  Google Scholar 

  130. Gordon, B., & Carson, K. (1990). The basis for choice reaction time slowing in Alzheimer’s disease. Brain and Cognition, 13(2), 148–166.

    PubMed  Google Scholar 

  131. Tucker, A. M., Basner, R. C., Stern, Y., & Rakitin, B. C. (2009). The variable response-stimulus interval effect and sleep deprivation: An unexplored aspect of psychomotor vigilance task performance. Sleep, 32(10), 1393–1395.

    PubMed  Google Scholar 

  132. Habeck, C., Hilton, H. J., Zarahn, E., Flynn, J., Moeller, J., & Stern, Y. (2003). Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of nonverbal memory. NeuroImage, 20(3), 1723–1733.

    PubMed  Google Scholar 

  133. Tucker, A. M., & Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8, 354–360.

    PubMed  Google Scholar 

  134. Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(3 Suppl 2), S69–S74.

    PubMed  Google Scholar 

  135. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460.

    PubMed  Google Scholar 

  136. Swearer, J. M., & Kane, K. J. (1996). Behavioral slowing with age: Boundary conditions of the generalized slowing model. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 51(4), P189–P200.

    PubMed  Google Scholar 

  137. Storandt, M., & Beaudreau, S. (2004). Do reaction time measures enhance diagnosis of early-stage dementia of the Alzheimer type. Archives of Clinical Neuropsychology, 19(1), 119–124.

    PubMed  Google Scholar 

  138. Schneider, W., Dumais, S. T., & Shriffrin, R. M. (1984). Automatic and control processing and attention. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 1–27). New York: Academic.

    Google Scholar 

  139. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.

    Google Scholar 

  140. Belleville, S., Sylvain-Roy, S., de Boysson, C., & Menard, M. C. (2008). Characterizing the memory changes in persons with mild cognitive impairment. Progress in Brain Research, 169, 365–375.

    PubMed  Google Scholar 

  141. Castel, A. D., Balota, D. A., & McCabe, D. P. (2009). Memory efficiency and the strategic control of attention at encoding: Impairments of value-directed remembering in Alzheimer’s disease. Neuropsychology, 23(3), 297–306.

    PubMed  Google Scholar 

  142. Ober, B. A., Koss, E., Friedland, R. P., & Delis, D. C. (1985). Processes of verbal memory failure in Alzheimer-type dementia. Brain and Cognition, 4(1), 90–103.

    PubMed  Google Scholar 

  143. Tariot, P. N., Sunderland, T., Weingartner, H., et al. (1987). Cognitive effects of L-deprenyl in Alzheimer’s disease. Psychopharmacology, 91(4), 489–495.

    PubMed  Google Scholar 

  144. Falsaperla, A., Monici Preti, P. A., & Oliani, C. (1990). Selegiline versus oxiracetam in patients with Alzheimer-type dementia. Clinical Therapeutics, 12(5), 376–384.

    PubMed  Google Scholar 

  145. Jones, G. M., Sahakian, B. J., Levy, R., Warburton, D. M., & Gray, J. A. (1992). Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology, 108(4), 485–494.

    PubMed  Google Scholar 

  146. Lawrence, A. D., & Sahakian, B. J. (1995). Alzheimer disease, attention, and the cholinergic system. Alzheimer Disease and Associated Disorders, 9(Suppl 2), 43–49.

    PubMed  Google Scholar 

  147. Broks, P., Preston, G. C., Traub, M., Poppleton, P., Ward, C., & Stahl, S. M. (1988). Modelling dementia: Effects of scopolamine on memory and attention. Neuropsychologia, 26(5), 685–700.

    PubMed  Google Scholar 

  148. Oertel, W., Ross, J. S., Eggert, K., & Adler, G. (2007). Rationale for transdermal drug administration in Alzheimer disease. Neurology, 69(4 Suppl 1), S4–S9.

    PubMed  Google Scholar 

  149. Muller, T. (2007). Rivastigmine in the treatment of patients with Alzheimer’s disease. Neuropsychiatric Disease and Treatment, 3(2), 211–218.

    PubMed  Google Scholar 

  150. Porcel, J., & Montalban, X. (2006). Anticholinesterasics in the treatment of cognitive impairment in multiple sclerosis. Journal of Neurological Sciences, 245(1–2), 177–181.

    Google Scholar 

  151. Ellis, J. R., Ellis, K. A., Bartholomeusz, C. F., et al. (2006). Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. The International Journal of Neuropsychopharmacology, 9(2), 175–189.

    PubMed  Google Scholar 

  152. White, H. K., & Levin, E. D. (2004). Chronic transdermal nicotine patch treatment effects on cognitive performance in age-associated memory impairment. Psychopharmacology, 171(4), 465–471.

    PubMed  Google Scholar 

  153. Riekkinen, M., Laakso, M. P., & Jakala, P. (1999). Clonidine impairs sustained attention and memory in Alzheimer’s disease. Neuroscience, 92(3), 975–982.

    PubMed  Google Scholar 

  154. Romberg, C., Mattson, M. P., Mughal, M. R., Bussey, T. J., & Saksida, L. M. (2011). Impaired attention in the 3xTgAD mouse model of Alzheimer’s disease: Rescue by donepezil (Aricept). Journal of Neuroscience, 31(9), 3500–3507.

    PubMed  Google Scholar 

  155. Driscoll, L. L., Carroll, J. C., Moon, J., Crnic, L. S., Levitsky, D. A., & Strupp, B. J. (2004). Impaired sustained attention and error-induced stereotypy in the aged Ts65Dn mouse: A mouse model of Down syndrome and Alzheimer’s disease. Behavioral Neuroscience, 118(6), 1196–1205.

    PubMed  Google Scholar 

  156. Berardi, A. M., Parasuraman, R., & Haxby, J. V. (2005). Sustained attention in mild Alzheimer’s disease. Developmental Neuropsychology, 28(1), 507–537.

    PubMed  Google Scholar 

  157. Perry, R. J., Watson, P., & Hodges, J. R. (2000). The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer’s disease: Relationship to episodic and semantic memory impairment. Neuropsychologia, 38(3), 252–271.

    PubMed  Google Scholar 

  158. Johannsen, P., Jakobsen, J., Bruhn, P., & Gjedde, A. (1999). Cortical responses to sustained and divided attention in Alzheimer’s disease. NeuroImage, 10(3 Pt 1), 269–281.

    PubMed  Google Scholar 

  159. Yaguez, L., Shaw, K. N., Morris, R., & Matthews, D. (2011). The effects on cognitive functions of a movement-based intervention in patients with Alzheimer’s type dementia: A pilot study. International Journal of Geriatric Psychiatry, 26(2), 173–181.

    PubMed  Google Scholar 

  160. Sofuoglu, M., Waters, A. J., Poling, J., & Carroll, K. M. (2011). Galantamine improves sustained attention in chronic cocaine users. Experimental and Clinical Psychopharmacology, 19(1), 11–19.

    PubMed  Google Scholar 

  161. Young, J. W., Light, G. A., Marston, H. M., Sharp, R., & Geyer, M. A. (2009). The 5-choice continuous performance test: Evidence for a translational test of vigilance for mice. PLoS One, 4(1), e4227.

    PubMed  Google Scholar 

  162. Cummings, J. L. (1994). Vascular subcortical dementias: Clinical aspects. Dementia (Basel, Switzerland), 5(3–4), 177–180.

    Google Scholar 

  163. Cummings, J. L., & Benson, D. F. (1984). Subcortical dementia. Review of an emerging concept. Archives of Neurology, 41(8), 874–879.

    PubMed  Google Scholar 

  164. Mortimer, J. A., Christensen, K. J., & Webster, D. D. (1984). Parkinson dementia. In G. W. Bruyn & H. L. Klawans (Eds.), Handbook of clinical neurology (Neurobehavioral disorders, Vol. 46). Amsterdam: Elsevier.

    Google Scholar 

  165. Hassler, R., Mundinger, F., & Reichert, T. (1979). Stereotaxis in Parkinson syndrome. New York: Springer.

    Google Scholar 

  166. Hassler, R. G., & Christ, J. F. (1984). Parkinson-specific motor and mental disorders: Role of the pallidum: Pathophysiological, biochemical, and therapeutic aspects. New York: Raven.

    Google Scholar 

  167. Pfeffer, R. I., & Van den Noort, S. (1978). Parkinson’s disease: Correlation of clinical and chemical features. In A. A. Buerger & J. S. Tobis (Eds.), Neurophysiologic aspects of rehabilitation medicine (pp. 299–316). Charles C, Thomas: Springfield, MO.

    Google Scholar 

  168. Marsh, G. G., Markham, C. M., & Ansel, R. (1971). Levodopa’s awakening effect on patients with Parkinsonism. Journal of Neurology, Neurosurgery, and Psychiatry, 34, 209–218.

    PubMed  Google Scholar 

  169. Saint-Cyr, J. A., Trepanier, L. L., Kumar, R., Lozano, A. M., & Lang, A. E. (2000). Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain, 123(Pt 10), 2091–2108.

    PubMed  Google Scholar 

  170. Berry, E. L., Nicolson, R. I., Foster, J. K., Behrmann, M., & Sagar, H. J. (1999). Slowing of reaction time in Parkinson’s disease: The involvement of the frontal lobes. Neuropsychologia, 37(7), 787–795.

    PubMed  Google Scholar 

  171. Cooper, J. A., Sagar, H. J., Tidswell, P., & Jordan, N. (1994). Slowed central processing in simple and go/no-go reaction time tasks in Parkinson’s disease. Brain, 117(Pt 3), 517–529.

    PubMed  Google Scholar 

  172. Carter, C. S., Robertson, L. C., & Nordahl, T. E. (1992). Abnormal processing of irrelevant information in chronic schizophrenia: Selective enhancement of Stroop facilitation. Psychiatry Research, 41(2), 137–146.

    PubMed  Google Scholar 

  173. Poewe, W., Berger, W., Benke, T., & Schelosky, L. (1991). High-speed memory scanning in Parkinson’s disease: Adverse effects of levodopa. Annals of Neurology, 29(6), 670–673.

    PubMed  Google Scholar 

  174. Huber, S. J., Shuttleworth, E. C., & Freidenberg, D. L. (1989). Neuropsychological differences between the dementias of Alzheimer’s and Parkinson’s diseases. Archives of Neurology, 46(12), 1287–1291.

    PubMed  Google Scholar 

  175. Rafal, R. D., Posner, M. I., Walker, J. A., & Friedrich, F. J. (1984). Cognition and the basal ganglia. Separating mental and motor components of performance in Parkinson’s disease. Brain, 107(Pt 4), 1083–1094.

    PubMed  Google Scholar 

  176. Brown, V. J., & Robbins, T. W. (1991). Simple and choice reaction time performance following unilateral striatal dopamine depletion in the rat. Impaired motor readiness but preserved response preparation. Brain, 114(Pt 1B), 513–525.

    PubMed  Google Scholar 

  177. Crucian, G. P., Armaghani, S., Armaghani, A., et al. (2010). Visual-spatial disembedding in Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology, 32(2), 190–200.

    PubMed  Google Scholar 

  178. Uc, E. Y., Rizzo, M., Anderson, S. W., Sparks, J. D., Rodnitzky, R. L., & Dawson, J. D. (2007). Impaired navigation in drivers with Parkinson’s disease. Brain, 130(Pt 9), 2433–2440.

    PubMed  Google Scholar 

  179. Dudkin, K. N., Chueva, I. V., & Makarov, F. N. (2005). Interaction of sensory and cognitive processes during visual recognition: The role of the associative areas of the cerebral cortex. Neuroscience and Behavioral Physiology, 35(4), 407–416.

    PubMed  Google Scholar 

  180. Davidsdottir, S., Cronin-Golomb, A., & Lee, A. (2005). Visual and spatial symptoms in Parkinson’s disease. Vision Research, 45(10), 1285–1296.

    PubMed  Google Scholar 

  181. Fern-Pollak, L., Whone, A. L., Brooks, D. J., & Mehta, M. A. (2004). Cognitive and motor effects of dopaminergic medication withdrawal in Parkinson’s disease. Neuropsychologia, 42(14), 1917–1926.

    PubMed  Google Scholar 

  182. Geldmacher, D. S. (2003). Visuospatial dysfunction in the neurodegenerative diseases. Frontiers in Bioscience, 8, e428–e436.

    PubMed  Google Scholar 

  183. Crucian, G. P., & Okun, M. S. (2003). Visual-spatial ability in Parkinson’s disease. Frontiers in Bioscience, 8, s992–s997.

    PubMed  Google Scholar 

  184. Abbruzzese, G., & Berardelli, A. (2003). Sensorimotor integration in movement disorders. Movement Disorders, 18(3), 231–240.

    PubMed  Google Scholar 

  185. Antal, A., Bandini, F., Keri, S., & Bodis-Wollner, I. (1998). Visuo-cognitive dysfunctions in Parkinson’s disease. Clinical Neuroscience (New York, N.Y.), 5(2), 147–152.

    Google Scholar 

  186. Giraudo, M. D., Gayraud, D., & Habib, M. (1997). Visuospatial ability of parkinsonians and elderly adults in location memory tasks. Brain and Cognition, 34(2), 259–273.

    PubMed  Google Scholar 

  187. Montgomery, P., Silverstein, P., Wichmann, R., Fleischaker, K., & Andberg, M. (1993). Spatial updating in Parkinson’s disease. Brain and Cognition, 23(2), 113–126.

    PubMed  Google Scholar 

  188. Raskin, S. A., Borod, J. C., & Tweedy, J. (1990). Neuropsychological aspects of Parkinson’s disease. Neuropsychology Review, 1(3), 185–221.

    PubMed  Google Scholar 

  189. Raskin, S. A., Borod, J. C., Wasserstein, J., Bodis-Wollner, I., Coscia, L., & Yahr, M. D. (1990). Visuospatial orientation in Parkinson’s disease. The International Journal of Neuroscience, 51(1–2), 9–18.

    PubMed  Google Scholar 

  190. Levin, B. E. (1990). Spatial cognition in Parkinson disease. Alzheimer Disease and Associated Disorders, 4(3), 161–170.

    PubMed  Google Scholar 

  191. Stelmach, G. E., Phillips, J. G., & Chau, A. W. (1989). Visuo-spatial processing in parkinsonians. Neuropsychologia, 27(4), 485–493.

    PubMed  Google Scholar 

  192. Ghilardi, M. F., Bodis-Wollner, I., Onofrj, M. C., Marx, M. S., & Glover, A. A. (1988). Spatial frequency-dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain, 111(Pt 1), 131–149.

    PubMed  Google Scholar 

  193. Bodis-Wollner, I., Marx, M. S., Mitra, S., Bobak, P., Mylin, L., & Yahr, M. (1987). Visual dysfunction in Parkinson’s disease. Loss in spatiotemporal contrast sensitivity. Brain, 110(Pt 6), 1675–1698.

    PubMed  Google Scholar 

  194. Bowen, F. P., Hoehn, M. M., & Yahr, M. D. (1972). Parkinsonism: Alterations in spatial orientation as determined by a route-walking test. Neuropsychologia, 10(3), 355–361.

    PubMed  Google Scholar 

  195. Sahakian, B. J., Morris, R. G., Evenden, J. L., et al. (1988). A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s disease. Brain, 111(Pt 3), 695–718.

    PubMed  Google Scholar 

  196. Cummings, J. L. (1988). Intellectual impairment in Parkinson’s disease: Clinical, pathologic, and biochemical correlates. Journal of Geriatric Psychiatry and Neurology, 1(1), 24–36.

    PubMed  Google Scholar 

  197. Freedman, M., & Oscar-Berman, M. (1989). Spatial and visual learning deficits in Alzheimer’s and Parkinson’s disease. Brain and Cognition, 11(1), 114–126.

    PubMed  Google Scholar 

  198. Helkala, E. L., Laulumaa, V., Soininen, H., & Riekkinen, P. J. (1988). Recall and recognition memory in patients with Alzheimer’s and Parkinson’s diseases. Annals of Neurology, 24(2), 214–217.

    PubMed  Google Scholar 

  199. Metzler-Baddeley, C. (2007). A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer’s disease and Parkinson’s disease with dementia. Cortex, 43(5), 583–600.

    PubMed  Google Scholar 

  200. Hansch, E. C., Syndulko, K., Cohen, S. N., Goldberg, Z. I., Potvin, A. R., & Tourtellotte, W. W. (1982). Cognition in Parkinson disease: An event-related potential perspective. Annals of Neurology, 11(6), 599–607.

    PubMed  Google Scholar 

  201. O’Donnell, B. F., Squires, N. K., Martz, M. J., Chen, J. R., & Phay, A. J. (1987). Evoked potential changes and neuropsychological performance in Parkinson’s disease. Biological Psychology, 24, 23–37.

    PubMed  Google Scholar 

  202. Wang, H., Wang, Y., Wang, D., Cui, L., Tian, S., & Zhang, Y. (2002). Cognitive impairment in Parkinson’s disease revealed by event-related potential N270. Journal of the Neurological Sciences, 194(1), 49–53.

    PubMed  Google Scholar 

  203. Antal, A., Dibo, G., Keri, S., et al. (2000). P300 component of visual event-related potentials distinguishes patients with idiopathic parkinson’s disease from patients with essential tremor. Journal of Neural Transmission, 107(7), 787–797.

    PubMed  Google Scholar 

  204. Tanaka, H., Koenig, T., Pascual-Marqui, R. D., Hirata, K., Kochi, K., & Lehmann, D. (2000). Event-related potential and EEG measures in Parkinson’s disease without and with dementia. Dementia and Geriatric Cognitive Disorders, 11(1), 39–45.

    PubMed  Google Scholar 

  205. Green, J., Woodard, J. L., Sirockman, B. E., et al. (1996). Event-related potential P3 change in mild Parkinson’s disease. Movement Disorders, 11(1), 32–42.

    PubMed  Google Scholar 

  206. O’Mahony, D., Rowan, M., Feely, J., O’Neill, D., Walsh, J. B., & Coakley, D. (1993). Parkinson’s dementia and Alzheimer’s dementia: An evoked potential comparison. Gerontology, 39(4), 228–240.

    PubMed  Google Scholar 

  207. Prasher, D., & Findley, L. (1991). Dopaminergic induced changes in cognitive and motor processing in Parkinson’s disease: An electrophysiological investigation. Journal of Neurology, Neurosurgery, and Psychiatry, 54(7), 603–609.

    PubMed  Google Scholar 

  208. Mayeux, R., Stern, Y., Sano, M., Cote, L., & Williams, J. B. (1987). Clinical and biochemical correlates of bradyphrenia in Parkinson’s disease. Neurology, 37(7), 1130–1134.

    PubMed  Google Scholar 

  209. Georgiou, N., Bradshaw, J. L., Iansek, R., Phillips, J. G., Mattingley, J. B., & Bradshaw, J. A. (1994). Reduction in external cues and movement sequencing in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 57(3), 368–370.

    PubMed  Google Scholar 

  210. Carli, M., Evenden, J. L., & Robbins, T. W. (1985). Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention. Nature, 313(6004), 679–682.

    PubMed  Google Scholar 

  211. Downes, J. J., Roberts, A. C., Sahakian, B. J., Evenden, J. L., Morris, R. G., & Robbins, T. W. (1989). Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson’s disease: Evidence for a specific attentional dysfunction. Neuropsychologia, 27(11–12), 1329–1343.

    PubMed  Google Scholar 

  212. Cossa, F. M., Della Sala, S., & Spinnler, H. (1989). Selective visual attention in Alzheimer’s and Parkinson’s patients: Memory- and data-driven control. Neuropsychologia, 27(6), 887–892.

    PubMed  Google Scholar 

  213. Wright, M. J., Burns, R. J., Geffen, G. M., & Geffen, L. B. (1990). Covert orientation of visual attention in Parkinson’s disease: An impairment in the maintenance of attention. Neuropsychologia, 28(2), 151–159.

    PubMed  Google Scholar 

  214. Yamada, T., Izyuuinn, M., Schulzer, M., & Hirayama, K. (1990). Covert orienting attention in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 53(7), 593–596.

    PubMed  Google Scholar 

  215. Brown, R. G., & Marsden, C. D. (1988). Internal versus external cues and the control of attention in Parkinson’s disease. Brain, 111(Pt 2), 323–345.

    PubMed  Google Scholar 

  216. Bennett, K. M., Waterman, C., Scarpa, M., & Castiello, U. (1995). Covert visuospatial attentional mechanisms in Parkinson’s disease. Brain, 118(Pt 1), 153–166.

    PubMed  Google Scholar 

  217. Filoteo, J. V., Williams, B. J., Rilling, L. M., & Roberts, J. V. (1997). Performance of Parkinson’s disease patients on the Visual Search and Attention Test: Impairment in single-feature but not dual-feature visual search. Archives of Clinical Neuropsychology, 12(7), 621–634.

    PubMed  Google Scholar 

  218. Asieh, S., Lee, C. Y., Hwang, W. J., & Tsai, J. J. (1997). Object-based and location-based shifting of attention in Parkinson’s disease. Perceptual and Motor Skills, 85(3 Pt 2), 1315–1325.

    PubMed  Google Scholar 

  219. Lee, S. S., Wild, K., Hollnagel, C., & Grafman, J. (1999). Selective visual attention in patients with frontal lobe lesions or Parkinson’s disease. Neuropsychologia, 37(5), 595–604.

    PubMed  Google Scholar 

  220. Finton, M. J., Lucas, J. A., Graff-Radford, N. R., & Uitti, R. J. (1998). Analysis of visuospatial errors in patients with Alzheimer’s disease or Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology, 20(2), 186–193.

    PubMed  Google Scholar 

  221. Briand, K. A., Hening, W., Poizner, H., & Sereno, A. B. (2001). Automatic orienting of visuospatial attention in Parkinson’s disease. Neuropsychologia, 39(11), 1240–1249.

    PubMed  Google Scholar 

  222. Grande, L. J., Crosson, B., Heilman, K. M., Bauer, R. M., Kilduff, P., & McGlinchey, R. E. (2006). Visual selective attention in Parkinson’s disease: Dissociation of exogenous and endogenous inhibition. Neuropsychology, 20(3), 370–382.

    PubMed  Google Scholar 

  223. Barrett, A. M., Crucian, G. P., Schwartz, R., Nallamshetty, H., & Heilman, K. M. (2001). Seeing trees but not the forest: Limited perception of large configurations in PD. Neurology, 56(6), 724–729.

    PubMed  Google Scholar 

  224. Pollux, P. M., & Robertson, C. (2001). Voluntary and automatic visual spatial shifts of attention in Parkinson’s disease: An analysis of costs and benefits. Journal of Clinical and Experimental Neuropsychology, 23(5), 662–670.

    PubMed  Google Scholar 

  225. Allcock, L. M., Rowan, E. N., Steen, I. N., Wesnes, K., Kenny, R. A., & Burn, D. J. (2009). Impaired attention predicts falling in Parkinson’s disease. Parkinsonism & Related Disorders, 15(2), 110–115.

    Google Scholar 

  226. Stern, Y., Tetrud, J. W., Martin, W. R., Kutner, S. J., & Langston, J. W. (1990). Cognitive change following MPTP exposure. Neurology, 40(2), 261–264.

    PubMed  Google Scholar 

  227. Richards, M., Cote, L. J., & Stern, Y. (1993). Executive function in Parkinson’s disease: Set-shifting or set-maintenance? Journal of Clinical and Experimental Neuropsychology, 15(2), 266–279.

    PubMed  Google Scholar 

  228. Elliott, R., McKenna, P. J., Robbins, T. W., & Sahakian, B. J. (1995). Neuropsychological evidence for frontostriatal dysfunction in schizophrenia. Psychological Medicine, 25(3), 619–630.

    PubMed  Google Scholar 

  229. Hanes, K. R., Andrewes, D. G., & Pantelis, C. (1995). Cognitive flexibility and complex integration in Parkinson’s disease, Huntington’s disease, and schizophrenia. Journal of the International Neuropsychological Society, 1(6), 545–553.

    PubMed  Google Scholar 

  230. Brown, R. G., Soliveri, P., & Jahanshahi, M. (1998). Executive processes in Parkinson’s disease–random number generation and response suppression. Neuropsychologia, 36(12), 1355–1362.

    PubMed  Google Scholar 

  231. Trepanier, L. L., Saint-Cyr, J. A., Lozano, A. M., & Lang, A. E. (1998). Neuropsychological consequences of posteroventral pallidotomy for the treatment of Parkinson’s disease. Neurology, 51(1), 207–215.

    PubMed  Google Scholar 

  232. Scott, R. B., Harrison, J., Boulton, C., et al. (2002). Global attentional-executive sequelae following surgical lesions to globus pallidus interna. Brain, 125(Pt 3), 562–574.

    PubMed  Google Scholar 

  233. Aron, A. R., Watkins, L., Sahakian, B. J., Monsell, S., Barker, R. A., & Robbins, T. W. (2003). Task-set switching deficits in early-stage Huntington’s disease: Implications for basal ganglia function. Journal of Cognitive Neuroscience, 15(5), 629–642.

    PubMed  Google Scholar 

  234. Brown, R. G., Jahanshahi, M., & Marsden, C. D. (1993). Response choice in Parkinson’s disease. The effects of uncertainty and stimulus-response compatibility. Brain, 116(Pt 4), 869–885.

    PubMed  Google Scholar 

  235. Camicioli, R. M., Wieler, M., de Frias, C. M., & Martin, W. R. (2008). Early, untreated Parkinson’s disease patients show reaction time variability. Neuroscience Letters, 441(1), 77–80.

    PubMed  Google Scholar 

  236. Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Current Opinion in Neurobiology, 18(2), 145–152.

    PubMed  Google Scholar 

  237. Koch, G., Costa, A., Brusa, L., et al. (2008). Impaired reproduction of second but not millisecond time intervals in Parkinson’s disease. Neuropsychologia, 46(5), 1305–1313.

    PubMed  Google Scholar 

  238. Hinton, S. C., Paulsen, J. S., Hoffmann, R. G., Reynolds, N. C., Zimbelman, J. L., & Rao, S. M. (2007). Motor timing variability increases in preclinical Huntington’s disease patients as estimated onset of motor symptoms approaches. Journal of the International Neuropsychological Society, 13(3), 539–543.

    PubMed  Google Scholar 

  239. Bonifati, D. M., & Kishore, U. (2007). Role of complement in neurodegeneration and neuroinflammation. Molecular Immunology, 44(5), 999–1010.

    PubMed  Google Scholar 

  240. Pertovaara, A., Haapalinna, A., Sirvio, J., & Virtanen, R. (2005). Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective alpha2-adrenoceptor antagonist. CNS Drug Reviews, 11(3), 273–288.

    PubMed  Google Scholar 

  241. Pope, P. A., Praamstra, P., & Wing, A. M. (2006). Force and time control in the production of rhythmic movement sequences in Parkinson’s disease. European Journal of Neuroscience, 23(6), 1643–1650.

    PubMed  Google Scholar 

  242. Wing, A. M., Keele, S., & Margolin, D. I. (1984). Motor disorder and the timing of repetitive movements. Annals of the New York Academy of Sciences, 423, 183–192.

    PubMed  Google Scholar 

  243. Wing, A. M., & Miller, E. (1984). Basal ganglia lesions and psychological analyses of the control of voluntary movement. Ciba Foundation Symposium, 107, 242–257.

    PubMed  Google Scholar 

  244. Goetz, C. G. (2010). Shaking up the Salpetriere: Jean-Martin Charcot and mercury-induced tremor. Neurology, 74(21), 1739–1742.

    PubMed  Google Scholar 

  245. Salmon, D. P., Galasko, D., Hansen, L. A., et al. (1996). Neuropsychological deficits associated with diffuse Lewy body disease. Brain and Cognition, 31(2), 148–165.

    PubMed  Google Scholar 

  246. Lord, S., Rochester, L., Hetherington, V., Allcock, L. M., & Burn, D. (2010). Executive dysfunction and attention contribute to gait interference in ‘off’ state Parkinson’s Disease. Gait & Posture, 31(2), 169–174.

    Google Scholar 

  247. Collerton, D., Burn, D., McKeith, I., & O’Brien, J. (2003). Systematic review and meta-analysis show that dementia with Lewy bodies is a visual-perceptual and attentional-executive dementia. Dementia and Geriatric Cognitive Disorders, 16(4), 229–237.

    PubMed  Google Scholar 

  248. Moretti, R., Torre, P., Antonello, R. M., et al. (2003). Neuropsychological changes after subthalamic nucleus stimulation: A 12 month follow-up in nine patients with Parkinson’s disease. Parkinsonism & Related Disorders, 10(2), 73–79.

    Google Scholar 

  249. Marsh, L., Biglan, K., Gerstenhaber, M., & Williams, J. R. (2009). Atomoxetine for the treatment of executive dysfunction in Parkinson’s disease: A pilot open-label study. Movement Disorders, 24(2), 277–282.

    PubMed  Google Scholar 

  250. Spatt, J., & Goldenberg, G. (1993). Components of random generation by normal subjects and patients with dysexecutive syndrome. Brain and Cognition, 23(2), 231–242.

    PubMed  Google Scholar 

  251. Barnes, J., & Boubert, L. (2008). Executive functions are impaired in patients with Parkinson’s disease with visual hallucinations. Journal of Neurology, Neurosurgery, and Psychiatry, 79(2), 190–192.

    PubMed  Google Scholar 

  252. Cameron, I. G., Watanabe, M., Pari, G., & Munoz, D. P. (2010). Executive impairment in Parkinson’s disease: Response automaticity and task switching. Neuropsychologia, 48(7), 1948–1957.

    PubMed  Google Scholar 

  253. Campos-Sousa, I. S., Campos-Sousa, R. N., Ataide, L., Jr., Soares, M. M., & Almeida, K. J. (2010). Executive dysfunction and motor symptoms in Parkinson’s disease. Arquivos de Neuro-Psiquiatria, 68(2), 246–251.

    PubMed  Google Scholar 

  254. Naismith, S. L., Shine, J. M., & Lewis, S. J. (2010). The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Movement Disorders, 25(8), 1000–1004.

    PubMed  Google Scholar 

  255. Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London, 362(1481), 917–932.

    PubMed  Google Scholar 

  256. Verleden, S., Vingerhoets, G., & Santens, P. (2007). Heterogeneity of cognitive dysfunction in Parkinson’s disease: A cohort study. European Neurology, 58(1), 34–40.

    PubMed  Google Scholar 

  257. Dujardin, K., Degreef, J. F., Rogelet, P., Defebvre, L., & Destee, A. (1999). Impairment of the supervisory attentional system in early untreated patients with Parkinson’s disease. Journal of Neurology, 246(9), 783–788.

    PubMed  Google Scholar 

  258. Baker, K., Rochester, L., & Nieuwboer, A. (2007). The immediate effect of attentional, auditory, and a combined cue strategy on gait during single and dual tasks in Parkinson’s disease. Archives of Physical Medicine and Rehabilitation, 88(12), 1593–1600.

    PubMed  Google Scholar 

  259. Wu, T., & Hallett, M. (2008). Neural correlates of dual task performance in patients with Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 79(7), 760–766.

    PubMed  Google Scholar 

  260. Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E. S., & Hausdorff, J. M. (2005). Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? The European Journal of Neuroscience, 22(5), 1248–1256.

    PubMed  Google Scholar 

  261. Armstrong, I. T., Chan, F., Riopelle, R. J., & Munoz, D. P. (2002). Control of saccades in Parkinson’s disease. Brain and Cognition, 49(2), 198–201.

    PubMed  Google Scholar 

  262. Ho, A. K., Iansek, R., & Bradshaw, J. L. (2002). The effect of a concurrent task on Parkinsonian speech. Journal of Clinical and Experimental Neuropsychology, 24(1), 36–47.

    PubMed  Google Scholar 

  263. Rochester, L., Hetherington, V., Jones, D., et al. (2004). Attending to the task: Interference effects of functional tasks on walking in Parkinson’s disease and the roles of cognition, depression, fatigue, and balance. Archives of Physical Medicine and Rehabilitation, 85(10), 1578–1585.

    PubMed  Google Scholar 

  264. Bradley, V. A., Welch, J. L., & Dick, D. J. (1989). Visuospatial working memory in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 52(11), 1228–1235.

    PubMed  Google Scholar 

  265. Graceffa, A. M., Carlesimo, G. A., Peppe, A., & Caltagirone, C. (1999). Verbal working memory deficit in Parkinson’s disease subjects. European Neurology, 42(2), 90–94.

    PubMed  Google Scholar 

  266. Morris, R. G., Downes, J. J., Sahakian, B. J., Evenden, J. L., Heald, A., & Robbins, T. W. (1988). Planning and spatial working memory in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 51(6), 757–766.

    PubMed  Google Scholar 

  267. Riekkinen, M., Jakala, P., Kejonen, K., & Riekkinen, P., Jr. (1999). The alpha2 agonist, clonidine, improves spatial working performance in Parkinson’s disease. Neuroscience, 92(3), 983–989.

    PubMed  Google Scholar 

  268. Fournet, N., Moreaud, O., Roulin, J. L., Naegele, B., & Pellat, J. (2000). Working memory functioning in medicated Parkinson’s disease patients and the effect of withdrawal of dopaminergic medication. Neuropsychology, 14(2), 247–253.

    PubMed  Google Scholar 

  269. Tamura, I., Kikuchi, S., Otsuki, M., Kitagawa, M., & Tashiro, K. (2003). Deficits of working memory during mental calculation in patients with Parkinson’s disease. Journal of the Neurological Sciences, 209(1–2), 19–23.

    PubMed  Google Scholar 

  270. Hanagasi, H. A., Gurvit, H., Unsalan, P., et al. (2011). The effects of rasagiline on cognitive deficits in Parkinson’s disease patients without dementia: A randomized, double-blind, placebo-controlled, multicenter study. Movement Disorders, 26, 1851–1858.

    PubMed  Google Scholar 

  271. Sharpe, M. H. (1992). Auditory attention in early Parkinson’s disease: An impairment in focused attention. Neuropsychologia, 30(1), 101–106.

    PubMed  Google Scholar 

  272. Grossman, M. (1999). Sentence processing in Parkinson’s disease. Brain and Cognition, 40(2), 387–413.

    PubMed  Google Scholar 

  273. Roland, K. P., Jenkins, M. E., & Johnson, A. M. (2010). An exploration of the burden experienced by spousal caregivers of individuals with Parkinson’s disease. Movement Disorders, 25(2), 189–193.

    PubMed  Google Scholar 

  274. Taylor, J. P., Rowan, E. N., Lett, D., O’Brien, J. T., McKeith, I. G., & Burn, D. J. (2008). Poor attentional function predicts cognitive decline in patients with non-demented Parkinson’s disease independent of motor phenotype. Journal of Neurology, Neurosurgery, and Psychiatry, 79(12), 1318–1323.

    PubMed  Google Scholar 

  275. Bronnick, K., Ehrt, U., Emre, M., et al. (2006). Attentional deficits affect activities of daily living in dementia-associated with Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 77(10), 1136–1142.

    PubMed  Google Scholar 

  276. Sieroff, E., & Piquard, A. (2004). [Attention and aging]. Psychologie & Neuropsychiatrie du Vieillissement, 2(4), 257–269.

    Google Scholar 

  277. Ballard, C. G., Aarsland, D., McKeith, I., et al. (2002). Fluctuations in attention: PD dementia vs DLB with parkinsonism. Neurology, 59(11), 1714–1720.

    PubMed  Google Scholar 

  278. Hart, R. P., Wade, J. B., Calabrese, V. P., & Colenda, C. C. (1998). Vigilance performance in Parkinson’s disease and depression. Journal of Clinical and Experimental Neuropsychology, 20(1), 111–117.

    PubMed  Google Scholar 

  279. Morris, M. E., Iansek, R., Matyas, T. A., & Summers, J. J. (1996). Stride length regulation in Parkinson’s disease. Normalization strategies and underlying mechanisms. Brain, 119(Pt 2), 551–568.

    PubMed  Google Scholar 

  280. Mohlman, J., Reel, D. H., Chazin, D., et al. (2010). A novel approach to treating anxiety and enhancing executive skills in an older adult with Parkinson’s disease. Clinical Case Studies, 9(1), 74–90.

    PubMed  Google Scholar 

  281. Bruck, A., Kurki, T., Kaasinen, V., Vahlberg, T., & Rinne, J. O. (2004). Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment. Journal of Neurology, Neurosurgery, and Psychiatry, 75(10), 1467–1469.

    PubMed  Google Scholar 

  282. Wascher, E., Verleger, R., Vieregge, P., Jaskowski, P., Koch, S., & Kompf, D. (1997). Responses to cued signals in Parkinson’s disease. Distinguishing between disorders of cognition and of activation. Brain, 120(Pt 8), 1355–1375.

    PubMed  Google Scholar 

  283. Muslimovic, D., Post, B., Speelman, J. D., De Haan, R. J., & Schmand, B. (2009). Cognitive decline in Parkinson’s disease: A prospective longitudinal study. Journal of the International Neuropsychological Society, 15(3), 426–437.

    PubMed  Google Scholar 

  284. Massicotte-Marquez, J., Decary, A., Gagnon, J. F., et al. (2008). Executive dysfunction and memory impairment in idiopathic REM sleep behavior disorder. Neurology, 70(15), 1250–1257.

    PubMed  Google Scholar 

  285. Piovezan, M. R., Teive, H. A., Piovesan, E. J., Mader, M. J., & Werneck, L. C. (2007). Cognitive function assessment in idiopathic Parkinson’s disease. Arquivos de Neuro-Psiquiatria, 65(4A), 942–946.

    PubMed  Google Scholar 

  286. Cadden, I. S., Partovi, N., & Yoshida, E. M. (2007). Review article: Possible beneficial effects of coffee on liver disease and function. Alimentary Pharmacology and Therapeutics, 26(1), 1–8.

    PubMed  Google Scholar 

  287. Walker, F. O. (2007). Huntington’s disease. Lancet, 369(9557), 218–228.

    PubMed  Google Scholar 

  288. Stout, J. C., Paulsen, J. S., Queller, S., et al. (2011). Neurocognitive signs in prodromal Huntington disease. Neuropsychology, 25(1), 1–14.

    PubMed  Google Scholar 

  289. Horn, S. C., Lalowski, M., Goehler, H., Droge, A., Wanker, E. E., & Stelzl, U. (2006). Huntingtin interacts with the receptor sorting family protein GASP2. Journal of Neural Transmission, 113(8), 1081–1090.

    PubMed  Google Scholar 

  290. Goehler, H., Lalowski, M., Stelzl, U., et al. (2004). A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Molecular Cell, 15(6), 853–865.

    PubMed  Google Scholar 

  291. Ho, A. K., Manly, T., Nestor, P. J., et al. (2003). A case of unilateral neglect in Huntington’s disease. Neurocase, 9(3), 261–273.

    PubMed  Google Scholar 

  292. Redondo Verge, L., Brown, R. G., & Chacon, J. (2001). [Executive dysfunction in Huntington’s disease]. Revista de Neurologia, 32(10), 923–929.

    PubMed  Google Scholar 

  293. Hasselbalch, S. G., Oberg, G., Sorensen, S. A., et al. (1992). Reduced regional cerebral blood flow in Huntington’s disease studied by SPECT. Journal of Neurology, Neurosurgery, and Psychiatry, 55(11), 1018–1023.

    PubMed  Google Scholar 

  294. Hahn-Barma, V., Deweer, B., Durr, A., et al. (1998). Are cognitive changes the first symptoms of Huntington’s disease? A study of gene carriers. Journal of Neurology, Neurosurgery, and Psychiatry, 64(2), 172–177.

    PubMed  Google Scholar 

  295. Paulsen, J. S., Salmon, D. P., Monsch, A. U., Butters, N., Swenson, M. R., & Bondi, M. W. (1995). Discrimination of cortical from subcortical dementias on the basis of memory and problem-solving tests. Journal of Clinical Psychology, 51(1), 48–58.

    PubMed  Google Scholar 

  296. Lange, K. W., Sahakian, B. J., Quinn, N. P., Marsden, C. D., & Robbins, T. W. (1995). Comparison of executive and visuospatial memory function in Huntington’s disease and dementia of Alzheimer type matched for degree of dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 58(5), 598–606.

    PubMed  Google Scholar 

  297. Lawrence, A. D., Sahakian, B. J., Hodges, J. R., Rosser, A. E., Lange, K. W., & Robbins, T. W. (1996). Executive and mnemonic functions in early Huntington’s disease. Brain, 119(Pt 5), 1633–1645.

    PubMed  Google Scholar 

  298. Ho, A. K., Sahakian, B. J., Brown, R. G., et al. (2003). Profile of cognitive progression in early Huntington’s disease. Neurology, 61(12), 1702–1706.

    PubMed  Google Scholar 

  299. Lemiere, J., Decruyenaere, M., Evers-Kiebooms, G., Vandenbussche, E., & Dom, R. (2004). Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation–a longitudinal follow-up study. Journal of Neurology, 251(8), 935–942.

    PubMed  Google Scholar 

  300. Baudic, S., Maison, P., Dolbeau, G., et al. (2006). Cognitive impairment related to apathy in early Huntington’s disease. Dementia and Geriatric Cognitive Disorders, 21(5–6), 316–321.

    PubMed  Google Scholar 

  301. Deckel, A. W., Cohen, D., & Duckrow, R. (1998). Cerebral blood flow velocity decreases during cognitive stimulation in Huntington’s disease. Neurology, 51(6), 1576–1583.

    PubMed  Google Scholar 

  302. Backman, L., Robins-Wahlin, T. B., Lundin, A., Ginovart, N., & Farde, L. (1997). Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain, 120(Pt 12), 2207–2217.

    PubMed  Google Scholar 

  303. Lepron, E., Peran, P., Cardebat, D., & Demonet, J. F. (2009). A PET study of word generation in Huntington’s disease: Effects of lexical competition and verb/noun category. Brain and Language, 110(2), 49–60.

    PubMed  Google Scholar 

  304. Reedeker, N., Van Der Mast, R. C., Giltay, E. J., Van Duijn, E., & Roos, R. A. (2010). Hypokinesia in Huntington’s disease co-occurs with cognitive and global dysfunctioning. Movement Disorders, 25(11), 1612–1618.

    PubMed  Google Scholar 

  305. Brown, R. G., Redondo-Verge, L., Chacon, J. R., Lucas, M. L., & Channon, S. (2001). Dissociation between intentional and incidental sequence learning in Huntington’s disease. Brain, 124(Pt 11), 2188–2202.

    PubMed  Google Scholar 

  306. Watkins, L. H., Rogers, R. D., Lawrence, A. D., Sahakian, B. J., Rosser, A. E., & Robbins, T. W. (2000). Impaired planning but intact decision making in early Huntington’s disease: Implications for specific fronto-striatal pathology. Neuropsychologia, 38(8), 1112–1125.

    PubMed  Google Scholar 

  307. Beste, C., Willemssen, R., Saft, C., & Falkenstein, M. (2009). Error processing in normal aging and in basal ganglia disorders. Neuroscience, 159(1), 143–149.

    PubMed  Google Scholar 

  308. Teichmann, M., Dupoux, E., Kouider, S., et al. (2005). The role of the striatum in rule application: The model of Huntington’s disease at early stage. Brain, 128(Pt 5), 1155–1167.

    PubMed  Google Scholar 

  309. Delval, A., Krystkowiak, P., Delliaux, M., et al. (2008). Role of attentional resources on gait performance in Huntington’s disease. Movement Disorders, 23(5), 684–689.

    PubMed  Google Scholar 

  310. Beste, C., Saft, C., Andrich, J., Gold, R., & Falkenstein, M. (2008). Response inhibition in Huntington’s disease-a study using ERPs and sLORETA. Neuropsychologia, 46(5), 1290–1297.

    PubMed  Google Scholar 

  311. Peinemann, A., Schuller, S., Pohl, C., Jahn, T., Weindl, A., & Kassubek, J. (2005). Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: A neuropsychological and voxel-based morphometric study. Journal of Neurological Sciences, 239(1), 11–19.

    Google Scholar 

  312. Claus, J. J., & Mohr, E. (1996). Attentional deficits in Alzheimer’s, Parkinson’s, and Huntington’s diseases. Acta Neurologica Scandinavica, 93(5), 346–351.

    PubMed  Google Scholar 

  313. Finke, K., Bublak, P., Dose, M., Muller, H. J., & Schneider, W. X. (2006). Parameter-based assessment of spatial and non-spatial attentional deficits in Huntington’s disease. Brain, 129(Pt 5), 1137–1151.

    PubMed  Google Scholar 

  314. Stout, J. C., Wylie, S. A., Simone, P. M., & Siemers, E. R. (2001). Influence of competing distractors on response selection in Huntington’s disease and Parkinson’s disease. Cognitive Neuropsychology, 18(7), 643–653.

    PubMed  Google Scholar 

  315. Tsai, T. T., Lasker, A., & Zee, D. S. (1995). Visual attention in Huntington’s disease: The effect of cueing on saccade latencies and manual reaction times. Neuropsychologia, 33(12), 1617–1626.

    PubMed  Google Scholar 

  316. Farrow, M., Churchyard, A., Chua, P., Bradshaw, J. L., Chiu, E., & Georgiou-Karistianis, N. (2007). Attention, inhibition, and proximity to clinical onset in preclinical mutation carriers for Huntington’s disease. Journal of Clinical and Experimental Neuropsychology, 29(3), 235–246.

    PubMed  Google Scholar 

  317. Roman, M. J., Delis, D. C., Filoteo, J. V., et al. (1998). Is there a “subcortical” profile of attentional dysfunction? A comparison of patients with Huntington’s and Parkinson’s diseases on a global-local focused attention task. Journal of Clinical and Experimental Neuropsychology, 20(6), 873–884.

    PubMed  Google Scholar 

  318. Finke, K., Schneider, W. X., Redel, P., et al. (2007). The capacity of attention and simultaneous perception of objects: A group study of Huntington’s disease patients. Neuropsychologia, 45(14), 3272–3284.

    PubMed  Google Scholar 

  319. De Diego-Balaguer, R., Couette, M., Dolbeau, G., Durr, A., Youssov, K., & Bachoud-Levi, A. C. (2008). Striatal degeneration impairs language learning: Evidence from Huntington’s disease. Brain, 131(Pt 11), 2870–2881.

    PubMed  Google Scholar 

  320. Georgiou, N., Phillips, J. G., Bradshaw, J. L., Cunnington, R., & Chiu, E. (1997). Impairments of movement kinematics in patients with Huntington’s disease: A comparison with and without a concurrent task. Movement Disorders, 12(3), 386–396.

    PubMed  Google Scholar 

  321. Lawrence, A. D., Sahakian, B. J., Rogers, R. D., Hodge, J. R., & Robbins, T. W. (1999). Discrimination, reversal, and shift learning in Huntington’s disease: Mechanisms of impaired response selection. Neuropsychologia, 37(12), 1359–1374.

    PubMed  Google Scholar 

  322. Thompson, J. C., Poliakoff, E., Sollom, A. C., Howard, E., Craufurd, D., & Snowden, J. S. (2010). Automaticity and attention in Huntington’s disease: When two hands are not better than one. Neuropsychologia, 48(1), 171–178.

    PubMed  Google Scholar 

  323. Larsson, M. U., Almkvist, O., Luszcz, M. A., & Wahlin, T. B. (2008). Phonemic fluency deficits in asymptomatic gene carriers for Huntington’s disease. Neuropsychology, 22(5), 596–605.

    PubMed  Google Scholar 

  324. Wolf, R. C., Sambataro, F., Vasic, N., Schonfeldt-Lecuona, C., Ecker, D., & Landwehrmeyer, B. (2008). Altered frontostriatal coupling in pre-manifest Huntington’s disease: Effects of increasing cognitive load. European Journal of Neurology, 15(11), 1180–1190.

    PubMed  Google Scholar 

  325. Wolf, R. C., Sambataro, F., Vasic, N., Schonfeldt-Lecuona, C., Ecker, D., & Landwehrmeyer, B. (2008). Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington’s disease. Experimental Neurology, 213(1), 137–144.

    PubMed  Google Scholar 

  326. Wolf, R. C., Vasic, N., Schonfeldt-Lecuona, C., Ecker, D., & Landwehrmeyer, G. B. (2009). Cortical dysfunction in patients with Huntington’s disease during working memory performance. Human Brain Mapping, 30(1), 327–339.

    PubMed  Google Scholar 

  327. Hobbs, N. Z., Pedrick, A. V., Say, M. J., et al. (2011). The structural involvement of the cingulate cortex in premanifest and early Huntington’s disease. Movement Disorders, 26, 1684–1690.

    PubMed  Google Scholar 

  328. Dallerac, G. M., Vatsavayai, S. C., Cummings, D. M., et al. (2011). Impaired long-term potentiation in the prefrontal cortex of Huntington’s disease mouse models: Rescue by D(1) dopamine receptor activation. Neurodegenerative Diseases, 8(4), 230–239.

    PubMed  Google Scholar 

  329. Sprengelmeyer, R., Lange, H., & Homberg, V. (1995). The pattern of attentional deficits in Huntington’s disease. Brain, 118(Pt 1), 145–152.

    PubMed  Google Scholar 

  330. Campodonico, J. R., Codori, A. M., & Brandt, J. (1996). Neuropsychological stability over two years in asymptomatic carriers of the Huntington’s disease mutation. Journal of Neurology, Neurosurgery, and Psychiatry, 61(6), 621–624.

    PubMed  Google Scholar 

  331. Painold, A., Anderer, P., Holl, A. K., et al. (2010). Comparative EEG mapping studies in Huntington’s disease patients and controls. Journal of Neural Transmission, 117(11), 1307–1318.

    PubMed  Google Scholar 

  332. Painold, A., Anderer, P., Holl, A. K., et al. (2011). EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. Journal of Neurology, 258(5), 840–854.

    PubMed  Google Scholar 

  333. Michell, A. W., Goodman, A. O., Silva, A. H., Lazic, S. E., Morton, A. J., & Barker, R. A. (2008). Hand tapping: A simple, reproducible, objective marker of motor dysfunction in Huntington’s disease. Journal of Neurology, 255(8), 1145–1152.

    PubMed  Google Scholar 

  334. Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 1502–1517.

    PubMed  Google Scholar 

  335. Rosati, G. (2001). The prevalence of multiple sclerosis in the world: An update. Neurological Science, 22(2), 117–139.

    Google Scholar 

  336. Dutta, R., & Trapp, B. D. (2011). Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Progress in Neurobiology, 93(1), 1–12.

    PubMed  Google Scholar 

  337. Weir, B. (2010). Multiple sclerosis—A vascular etiology? Canadian Journal of Neurological Sciences, 37(6), 745–757.

    PubMed  Google Scholar 

  338. Sawcer, S., Ban, M., Wason, J., & Dudbridge, F. (2010). What role for genetics in the prediction of multiple sclerosis? Annals of Neurology, 67(1), 3–10.

    PubMed  Google Scholar 

  339. Ji, Q., Perchellet, A., & Goverman, J. M. (2010). Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nature Immunology, 11(7), 628–634.

    PubMed  Google Scholar 

  340. Kantarci, O. H. (2008). Genetics and natural history of multiple sclerosis. Seminars in Neurology, 28(1), 7–16.

    PubMed  Google Scholar 

  341. Khalili, K., & White, M. K. (2006). Human demyelinating disease and the polyomavirus JCV. Multiple Sclerosis, 12(2), 133–142.

    PubMed  Google Scholar 

  342. Ercolini, A. M., & Miller, S. D. (2006). Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. Journal of Immunology, 176(6), 3293–3298.

    Google Scholar 

  343. Christodoulou, C., MacAllister, W. S., McLinskey, N. A., & Krupp, L. B. (2008). Treatment of cognitive impairment in multiple sclerosis: Is the use of acetylcholinesterase inhibitors a viable option? CNS Drugs, 22(2), 87–97.

    PubMed  Google Scholar 

  344. Kapoor, R. (2006). Neuroprotection in multiple sclerosis: Therapeutic strategies and clinical trial design. Current Opinion in Neurology, 19(3), 255–259.

    PubMed  Google Scholar 

  345. Ahmed, S. S., & Tan, F. K. (2003). Identification of novel targets in scleroderma: Update on population studies, cDNA arrays, SNP analysis, and mutations. Current Opinion in Rheumatology, 15(6), 766–771.

    PubMed  Google Scholar 

  346. Brandes, D. W., Callender, T., Lathi, E., & O’Leary, S. (2009). A review of disease-modifying therapies for MS: Maximizing adherence and minimizing adverse events. Current Medical Research and Opinion, 25(1), 77–92.

    PubMed  Google Scholar 

  347. Boggild, M., Palace, J., Barton, P., et al. (2009). Multiple sclerosis risk sharing scheme: Two year results of clinical cohort study with historical comparator. BMJ, 339, b4677.

    PubMed  Google Scholar 

  348. Amato, M. P., Ponziani, G., Pracucci, G., Bracco, L., Siracusa, G., & Amaducci, L. (1995). Cognitive impairment in early-onset multiple sclerosis. Pattern, predictors, and impact on everyday life in a 4-year follow-up. Archives of Neurology, 52(2), 168–172.

    PubMed  Google Scholar 

  349. Maurelli, M., Marchioni, E., Cerretano, R., et al. (1992). Neuropsychological assessment in MS: Clinical, neurophysiological and neuroradiological relationships. Acta Neurologica Scandinavica, 86(2), 124–128.

    PubMed  Google Scholar 

  350. Rao, S. M., Leo, G. J., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology, 41(5), 685–691.

    PubMed  Google Scholar 

  351. Beatty, W. W., Goodkin, D. E., Monson, N., & Beatty, P. A. (1989). Cognitive disturbances in patients with relapsing remitting multiple sclerosis. Archives of Neurology, 46(10), 1113–1119.

    PubMed  Google Scholar 

  352. Chiaravalloti, N. D., & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7(12), 1139–1151.

    PubMed  Google Scholar 

  353. DeLuca, J., Johnson, S. K., & Natelson, B. H. (1993). Information processing efficiency in chronic fatigue syndrome and multiple sclerosis. Archives of Neurology, 50(3), 301–304.

    PubMed  Google Scholar 

  354. Rao, S. M. (1990). Neurobehavioral aspects of multiple sclerosis. New York, NY: Oxford University Press.

    Google Scholar 

  355. Staff, N. P., Lucchinetti, C. F., & Keegan, B. M. (2009). Multiple sclerosis with predominant, severe cognitive impairment. Archives of Neurology, 66(9), 1139–1143.

    PubMed  Google Scholar 

  356. Nocentini, U., Pasqualetti, P., Bonavita, S., et al. (2006). Cognitive dysfunction in patients with relapsing-remitting multiple sclerosis. Multiple Sclerosis, 12(1), 77–87.

    PubMed  Google Scholar 

  357. McIntosh-Michaelis, S. A., Roberts, M. H., Wilkinson, S. M., et al. (1991). The prevalence of cognitive impairment in a community survey of multiple sclerosis. British Journal of Clinical Psychology, 30(Pt 4), 333–348.

    PubMed  Google Scholar 

  358. Gold, S. M., Schulz, H., Monch, A., Schulz, K. H., & Heesen, C. (2003). Cognitive impairment in multiple sclerosis does not affect reliability and validity of self-report health measures. Multiple Sclerosis, 9(4), 404–410.

    PubMed  Google Scholar 

  359. Potagas, C., Giogkaraki, E., Koutsis, G., et al. (2008). Cognitive impairment in different MS subtypes and clinically isolated syndromes. Journal of Neurological Sciences, 267(1–2), 100–106.

    Google Scholar 

  360. Smestad, C., Sandvik, L., Landro, N. I., & Celius, E. G. (2010). Cognitive impairment after three decades of multiple sclerosis. European Journal of Neurology, 17(3), 499–505.

    PubMed  Google Scholar 

  361. Julian, L. J. (2011). Cognitive functioning in multiple sclerosis. Neurologic Clinics, 29(2), 507–525.

    PubMed  Google Scholar 

  362. Beatty, W. W., Goodkin, D. E., Hertsgaard, D., & Monson, N. (1990). Clinical and demographic predictors of cognitive performance in multiple sclerosis. Do diagnostic type, disease duration, and disability matter? Archives of Neurology, 47(3), 305–308.

    PubMed  Google Scholar 

  363. Benedict, R. H., & Bobholz, J. H. (2007). Multiple sclerosis. Seminars in Neurology, 27(1), 78–85.

    PubMed  Google Scholar 

  364. Filley, C. M., Heaton, R. K., Nelson, L. M., Burks, J. S., & Franklin, G. M. (1989). A comparison of dementia in Alzheimer’s disease and multiple sclerosis. Archives of Neurology, 46(2), 157–161.

    PubMed  Google Scholar 

  365. Grant, I., McDonald, W. I., Trimble, M. R., Smith, E., & Reed, R. (1984). Deficient learning and memory in early and middle phases of multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 47(3), 250–255.

    PubMed  Google Scholar 

  366. Heaton, R. K., Nelson, L. M., Thompson, D. S., Burks, J. S., & Franklin, G. M. (1985). Neuropsychological findings in relapsing/remitting and chronic/progressive multiple sclerosis. Journal of Consulting and Clinical Psychology, 53, 103–110.

    PubMed  Google Scholar 

  367. Franklin, G. M., Nelson, L. M., Filley, C. M., & Heaton, R. K. (1989). Cognitive loss in multiple sclerosis. Case reports and review of the literature. Archives of Neurology, 46(2), 162–167.

    PubMed  Google Scholar 

  368. Cohen, R. A., & Fisher, M. (1988). Neuropsychological correlates of fatigue associated with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 10(1), 48.

    Google Scholar 

  369. Cohen, R. A., & Fisher, M. (1989). Amantadine treatment of fatigue associated with multiple sclerosis. Archives of Neurology, 46(6), 676–680.

    PubMed  Google Scholar 

  370. Cohen, R. A., Kessler, H. R., & Fischer, M. (1993). The Extended Disability Status Scale (EDSS) as a predictor of impairments of functional activities of daily living in multiple sclerosis. Journal of the Neurological Sciences, 115(2), 132–135.

    PubMed  Google Scholar 

  371. Denney, D. R., Gallagher, K. S., & Lynch, S. G. (2011). Deficits in processing speed in patients with multiple sclerosis: Evidence from explicit and covert measures. Archives of Clinical Neuropsychology, 26(2), 110–119.

    PubMed  Google Scholar 

  372. Bodling, A. M., Denney, D. R., & Lynch, S. G. (2009). Cognitive aging in patients with multiple sclerosis: A cross-sectional analysis of speeded processing. Archives of Clinical Neuropsychology, 24(8), 761–767.

    PubMed  Google Scholar 

  373. Lazeron, R. H., de Sonneville, L. M., Scheltens, P., Polman, C. H., & Barkhof, F. (2006). Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction. Multiple Sclerosis (Houndmills, Basingstoke, England), 12(6), 760–768.

    Google Scholar 

  374. Denney, D. R., Sworowski, L. A., & Lynch, S. G. (2005). Cognitive impairment in three subtypes of multiple sclerosis. Archives of Clinical Neuropsychology, 20(8), 967–981.

    PubMed  Google Scholar 

  375. Denney, D. R., Lynch, S. G., Parmenter, B. A., & Horne, N. (2004). Cognitive impairment in relapsing and primary progressive multiple sclerosis: Mostly a matter of speed. Journal of the International Neuropsychological Society, 10(7), 948–956.

    PubMed  Google Scholar 

  376. De Sonneville, L. M., Boringa, J. B., Reuling, I. E., Lazeron, R. H., Ader, H. J., & Polman, C. H. (2002). Information processing characteristics in subtypes of multiple sclerosis. Neuropsychologia, 40(11), 1751–1765.

    PubMed  Google Scholar 

  377. Rao, S. M., St Aubin-Faubert, P., & Leo, G. J. (1989). Information processing speed in patients with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 11(4), 471–477.

    PubMed  Google Scholar 

  378. Freal, J. E., Kraft, G. H., & Coryell, J. K. (1984). Symptomatic fatigue in multiple sclerosis. Archives of Physical Medicine and Rehabilitation, 65, 135–138.

    PubMed  Google Scholar 

  379. Adams, R. D., & Victor, M. (1981). Principles of neurology (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  380. Paul, R. H., Cohen, R. A., & Gilchrist, J. M. (2002). Ratings of subjective mental fatigue relate to cognitive performance in patients with myasthenia gravis. Journal of Clinical Neuroscience, 9(3), 243–246.

    PubMed  Google Scholar 

  381. Paul, R. H., Cohen, R. A., Gilchrist, J. M., Aloia, M. S., & Goldstein, J. M. (2000). Cognitive dysfunction in individuals with myasthenia gravis. Journal of Neurological Sciences, 179(S1–2), 59–64.

    Google Scholar 

  382. Paul, R. H., Cohen, R. A., Goldstein, J. M., & Gilchrist, J. M. (2000). Fatigue and its impact on patients with myasthenia gravis. Muscle & Nerve, 23(9), 1402–1406.

    Google Scholar 

  383. Brau, H., & Ulrich, G. (1990). Electroencephalographic vigilance dynamics in multiple sclerosis during an acute episode and after remission. European Archives of Psychiatry and Neurological Sciences, 239(5), 320–324.

    PubMed  Google Scholar 

  384. Edgar, C., Jongen, P. J., Sanders, E., et al. (2011). Cognitive performance in relapsing remitting multiple sclerosis: A longitudinal study in daily practice using a brief computerized cognitive battery. BMC Neurology, 11, 68.

    PubMed  Google Scholar 

  385. Oken, B. S., Flegal, K., Zajdel, D., et al. (2006). Cognition and fatigue in multiple sclerosis: Potential effects of medications with central nervous system activity. Journal of Rehabilitation Research and Development, 43(1), 83–90.

    PubMed  Google Scholar 

  386. Schwid, S. R., Tyler, C. M., Scheid, E. A., Weinstein, A., Goodman, A. D., & McDermott, M. P. (2003). Cognitive fatigue during a test requiring sustained attention: A pilot study. Multiple Sclerosis (Houndmills, Basingstoke, England), 9(5), 503–508.

    Google Scholar 

  387. Schwid, S. R., Covington, M., Segal, B. M., & Goodman, A. D. (2002). Fatigue in multiple sclerosis: Current understanding and future directions. Journal of Rehabilitation Research and Development, 39(2), 211–224.

    PubMed  Google Scholar 

  388. Sperling, R. A., Guttmann, C. R., Hohol, M. J., et al. (2001). Regional magnetic resonance imaging lesion burden and cognitive function in multiple sclerosis: A longitudinal study. Archives of Neurology, 58(1), 115–121.

    PubMed  Google Scholar 

  389. Fischer, J. S., Priore, R. L., Jacobs, L. D., et al. (2000). Neuropsychological effects of interferon beta-1a in relapsing multiple sclerosis. Multiple Sclerosis Collaborative Research Group. Annals of Neurology, 48(6), 885–892.

    PubMed  Google Scholar 

  390. Dujardin, K., Donze, A. C., & Hautecoeur, P. (1998). Attention impairment in recently diagnosed multiple sclerosis. European Journal of Neurology, 5(1), 61–66.

    PubMed  Google Scholar 

  391. Kujala, P., Portin, R., Revonsuo, A., & Ruutiainen, J. (1995). Attention related performance in two cognitively different subgroups of patients with multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 59(1), 77–82.

    PubMed  Google Scholar 

  392. Paul, R. H., Beatty, W. W., Schneider, R., Blanco, C., & Hames, K. (1998). Impairments of attention in individuals with multiple sclerosis. Multiple Sclerosis, 4(5), 433–439.

    PubMed  Google Scholar 

  393. McCarthy, M., Beaumont, J. G., Thompson, R., & Peacock, S. (2005). Modality-specific aspects of sustained and divided attentional performance in multiple sclerosis. Archives of Clinical Neuropsychology, 20(6), 705–718.

    PubMed  Google Scholar 

  394. Staffen, W., Mair, A., Zauner, H., et al. (2002). Cognitive function and fMRI in patients with multiple sclerosis: Evidence for compensatory cortical activation during an attention task. Brain, 125(Pt 6), 1275–1282.

    PubMed  Google Scholar 

  395. Barak, Y., Lavie, M., & Achiron, A. (2002). Screening for early cognitive impairment in multiple sclerosis patients using the clock drawing test. Journal of Clinical Neuroscience, 9(6), 629–632.

    PubMed  Google Scholar 

  396. Loitfelder, M., Fazekas, F., Petrovic, K., et al. (2011). Reorganization in cognitive networks with progression of multiple sclerosis: Insights from fMRI. Neurology, 76(6), 526–533.

    PubMed  Google Scholar 

  397. Mainero, C., Caramia, F., Pozzilli, C., et al. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. NeuroImage, 21(3), 858–867.

    PubMed  Google Scholar 

  398. Grabner, R., Popotnig, F., Ropele, S., et al. (2008). Brain activation patterns elicited by the ‘Faces Symbol Test’—A pilot fMRI study. Multiple Sclerosis, 14(3), 354–363.

    PubMed  Google Scholar 

  399. Paskavitz, J. F., Sweet, L. H., Wellen, J., Helmer, K. G., Rao, S. M., & Cohen, R. A. (2010). Recruitment and stabilization of brain activation within a working memory task; an FMRI study. Brain Imaging and Behavior, 4(1), 5–21.

    PubMed  Google Scholar 

  400. Amann, M., Dossegger, L. S., Penner, I. K., et al. (2011). Altered functional adaptation to attention and working memory tasks with increasing complexity in relapsing-remitting multiple sclerosis patients. Human Brain Mapping, 32, 1704–1719.

    PubMed  Google Scholar 

  401. Defer, G. (2001). [Neuropsychological evaluation and psychopathology of multiple sclerosis]. Revue Neurologique, 157(8–9 Pt 2), 1128–1134.

    PubMed  Google Scholar 

  402. Denney, D. R., Lynch, S. G., & Parmenter, B. A. (2008). A 3-year longitudinal study of cognitive impairment in patients with primary progressive multiple sclerosis: Speed matters. Journal of the Neurological Sciences, 267(1–2), 129–136.

    PubMed  Google Scholar 

  403. Goretti, B., Portaccio, E., Zipoli, V., et al. (2010). Impact of cognitive impairment on coping strategies in multiple sclerosis. Clinical Neurology and Neurosurgery, 112(2), 127–130.

    PubMed  Google Scholar 

  404. Rao, S. M. (1995). Neuropsychology of multiple sclerosis. Current Opinion in Neurology, 8(3), 216–220.

    PubMed  Google Scholar 

  405. Foong, J., Rozewicz, L., Davie, C. A., Thompson, A. J., Miller, D. H., & Ron, M. A. (1999). Correlates of executive function in multiple sclerosis: The use of magnetic resonance spectroscopy as an index of focal pathology. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(1), 45–50.

    PubMed  Google Scholar 

  406. Canellopoulou, M., & Richardson, J. T. (1998). The role of executive function in imagery mnemonics: Evidence from multiple sclerosis. Neuropsychologia, 36(11), 1181–1188.

    PubMed  Google Scholar 

  407. Arnett, P. A., Rao, S. M., Grafman, J., et al. (1997). Executive functions in multiple sclerosis: An analysis of temporal ordering, semantic encoding, and planning abilities. Neuropsychology, 11(4), 535–544.

    PubMed  Google Scholar 

  408. Foong, J., Rozewicz, L., Quaghebeur, G., et al. (1997). Executive function in multiple sclerosis. The role of frontal lobe pathology. Brain, 120(Pt 1), 15–26.

    PubMed  Google Scholar 

  409. Amato, M. P., Portaccio, E., Goretti, B., et al. (2010). Cognitive impairment in early stages of multiple sclerosis. Neurological Science, 31(Suppl 2), S211–S214.

    Google Scholar 

  410. Macniven, J. A., Davis, C., Ho, M. Y., Bradshaw, C. M., Szabadi, E., & Constantinescu, C. S. (2008). Stroop performance in multiple sclerosis: Information processing, selective attention, or executive functioning? Journal of the International Neuropsychological Society, 14(5), 805–814.

    PubMed  Google Scholar 

  411. Feuillet, L., Reuter, F., Audoin, B., et al. (2007). Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 13(1), 124–127.

    Google Scholar 

  412. Wachowius, U., Talley, M., Silver, N., Heinze, H. J., & Sailer, M. (2005). Cognitive impairment in primary and secondary progressive multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 27(1), 65–77.

    PubMed  Google Scholar 

  413. Parmenter, B. A., Zivadinov, R., Kerenyi, L., et al. (2007). Validity of the Wisconsin Card Sorting and Delis-Kaplan Executive Function System (DKEFS) Sorting tests in multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 29(2), 215–223.

    PubMed  Google Scholar 

  414. Sweet, L. H., Rao, S. M., Primeau, M., Mayer, A. R., & Cohen, R. A. (2004). Functional magnetic resonance imaging of working memory among multiple sclerosis patients. Journal of Neuroimaging, 14(2), 150–157.

    PubMed  Google Scholar 

  415. Helekar, S. A., Shin, J. C., Mattson, B. J., et al. (2010). Functional brain network changes associated with maintenance of cognitive function in multiple sclerosis. Frontiers in Human Neuroscience, 4, 219.

    PubMed  Google Scholar 

  416. Benedict, R. H., Bruce, J., Dwyer, M. G., et al. (2007). Diffusion-weighted imaging predicts cognitive impairment in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 13(6), 722–730.

    Google Scholar 

  417. Audoin, B., Guye, M., Reuter, F., et al. (2007). Structure of WM bundles constituting the working memory system in early multiple sclerosis: A quantitative DTI tractography study. NeuroImage, 36(4), 1324–1330.

    PubMed  Google Scholar 

  418. Hacke, W. (1985). [Visual evoked potentials from the viewpoint of test theory]. EEG-EMG Zeitschrift für Elektroenzephalographie, Elektromyographie und Verwandte Gebiete, 16(3), 158–161.

    PubMed  Google Scholar 

  419. Vazquez-Marrufo, M., Gonzalez-Rosa, J. J., Vaquero, E., et al. (2008). Abnormal ERPs and high frequency bands power in multiple sclerosis. International Journal of Neuroscience, 118(1), 27–38.

    PubMed  Google Scholar 

  420. Whelan, R., Lonergan, R., Kiiski, H., et al. (2010). Impaired information processing speed and attention allocation in multiple sclerosis patients versus controls: A high-density EEG study. Journal of Neurological Sciences, 293(1–2), 45–50.

    Google Scholar 

  421. Ellger, T., Bethke, F., Frese, A., et al. (2002). Event-related potentials in different subtypes of multiple sclerosis–A cross-sectional study. Journal of the Neurological Sciences, 205(1), 35–40.

    PubMed  Google Scholar 

  422. Aminoff, J. C., & Goodin, D. S. (2001). Long-latency cerebral event-related potentials in multiple sclerosis. Journal of Clinical Neurophysiology, 18(4), 372–377.

    PubMed  Google Scholar 

  423. Triantafyllou, N. I., Voumvourakis, K., Zalonis, I., et al. (1992). Cognition in relapsing-remitting multiple sclerosis: A multichannel event-related potential (P300) study. Acta Neurologica Scandinavica, 85(1), 10–13.

    PubMed  Google Scholar 

  424. van Dijk, J. G., Jennekens-Schinkel, A., Caekebeke, J. F., & Zwinderman, A. H. (1992). Are event-related potentials in multiple sclerosis indicative of cognitive impairment? Evoked and event-related potentials, psychometric testing and response speed: A controlled study. Journal of Neurological Sciences, 109(1), 18–24.

    Google Scholar 

  425. Urbanek, C., Weinges-Evers, N., Bellmann-Strobl, J., et al. (2010). Attention Network Test reveals alerting network dysfunction in multiple sclerosis. Multiple Sclerosis, 16(1), 93–99.

    PubMed  Google Scholar 

  426. Prakash, R. S., Erickson, K. I., Snook, E. M., Colcombe, S. J., Motl, R. W., & Kramer, A. F. (2008). Cortical recruitment during selective attention in multiple sclerosis: An fMRI investigation of individual differences. Neuropsychologia, 46(12), 2888–2895.

    PubMed  Google Scholar 

  427. Santa Maria, M. P., Benedict, R. H., Bakshi, R., et al. (2004). Functional imaging during covert auditory attention in multiple sclerosis. Journal of the Neurological Sciences, 218(1–2), 9–15.

    PubMed  Google Scholar 

  428. Schroder, A., Klotz, P., Lee, D. H., Gold, R., & Linker, R. A. (2011). Stability of cognitive functions under mitoxantrone therapy in patients with progressive multiple sclerosis: A pilot analysis. Clinical Neurology and Neurosurgery, 113(7), 527–530.

    PubMed  Google Scholar 

  429. Mattioli, F., Stampatori, C., & Capra, R. (2011). The effect of natalizumab on cognitive function in patients with relapsing-remitting multiple sclerosis: Preliminary results of a 1-year follow-up study. Neurological Science, 32(1), 83–88.

    Google Scholar 

  430. Velikonja, O., Curic, K., Ozura, A., & Jazbec, S. S. (2010). Influence of sports climbing and yoga on spasticity, cognitive function, mood and fatigue in patients with multiple sclerosis. Clinical Neurology and Neurosurgery, 112(7), 597–601.

    PubMed  Google Scholar 

  431. Portaccio, E., Goretti, B., Zipoli, V., et al. (2010). Cognitive rehabilitation in children and adolescents with multiple sclerosis. Neurological Science, 31(Suppl 2), S275–S278.

    Google Scholar 

  432. Mattioli, F., Stampatori, C., Bellomi, F., Capra, R., Rocca, M., & Filippi, M. (2010). Neuropsychological rehabilitation in adult multiple sclerosis. Neurological Science, 31(Suppl 2), S271–S274.

    Google Scholar 

  433. Chiaravalloti, N. D., DeLuca, J., Moore, N. B., & Ricker, J. H. (2005). Treating learning impairments improves memory performance in multiple sclerosis: A randomized clinical trial. Multiple Sclerosis, 11(1), 58–68.

    PubMed  Google Scholar 

  434. Chiaravalloti, N. D., & Deluca, J. (2002). Self-generation as a means of maximizing learning in multiple sclerosis: An application of the generation effect. Archives of Physical Medicine and Rehabilitation, 83(8), 1070–1079.

    PubMed  Google Scholar 

  435. Jennett, B., & Teasdale, G. (1981). Management of head injuries. Philadelphia: F.A. Davis.

    Google Scholar 

  436. Teasdale, G., & Mendelow, D. (1984). Pathophysiology of head injuries. In N. Brooks (Ed.), Closed head injury: Psychological, social and family consequences (pp. 4–36). New York: Oxford University Press.

    Google Scholar 

  437. Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet., 2(7872), 81–84.

    PubMed  Google Scholar 

  438. Sugiura, K., Muraoka, K., Chishiki, T., & Baba, M. (1983). The Edinburgh-2 coma scale: A new scale for assessing impaired consciousness. Neurosurgery, 12(4), 411–415.

    PubMed  Google Scholar 

  439. Jennett, B., & Teasdale, G. (1977). Aspects of coma after severe head injury. Lancet, 1(8017), 878–881.

    PubMed  Google Scholar 

  440. Jennett, B., Teasdale, G., Braakman, R., Minderhoud, J., & Knill-Jones, R. (1976). Predicting outcome in individual patients after severe head injury. Lancet, 1(7968), 1031–1034.

    PubMed  Google Scholar 

  441. Anderson, C. V., & Bigler, E. D. (1995). Ventricular dilation, cortical atrophy, and neuropsychological outcome following traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 7(1), 42–48.

    PubMed  Google Scholar 

  442. Bigler, E. D., Kurth, S., Blatter, D., & Abildskov, T. (1993). Day-of-injury CT as an index to pre-injury brain morphology: Degree of post-injury degenerative changes identified by CT and MR neuroimaging. Brain Injury, 7(2), 125–134.

    PubMed  Google Scholar 

  443. Bigler, E. D., Kurth, S. M., Blatter, D., & Abildskov, T. J. (1992). Degenerative changes in traumatic brain injury: Post-injury magnetic resonance identified ventricular expansion compared to pre-injury levels. Brain Research Bulletin, 28(4), 651–653.

    PubMed  Google Scholar 

  444. Whitlock, J. A., Jr., & Hamilton, B. B. (1995). Functional outcome after rehabilitation for severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 76(12), 1103–1112.

    PubMed  Google Scholar 

  445. Andrews, B. T., & Pitts, L. H. (1991). Functional recovery after traumatic transtentorial herniation. Neurosurgery, 29(2), 227–231.

    PubMed  Google Scholar 

  446. Annoni, J. M., Beer, S., & Kesselring, J. (1992). Severe traumatic brain injury–epidemiology and outcome after 3 years. Disability and Rehabilitation, 14(1), 23–26.

    PubMed  Google Scholar 

  447. Brown, D. S., & Nell, V. (1992). Recovery from diffuse traumatic brain injury in Johannesburg: A concurrent prospective study. Archives of Physical Medicine and Rehabilitation, 73(8), 758–770.

    PubMed  Google Scholar 

  448. Koc, R. K., Akdemir, H., Oktem, I. S., Meral, M., & Menku, A. (1997). Acute subdural hematoma: Outcome and outcome prediction. Neurosurgical Review, 20(4), 239–244.

    PubMed  Google Scholar 

  449. Harrison-Felix, C., Zafonte, R., Mann, N., Dijkers, M., Englander, J., & Kreutzer, J. (1998). Brain injury as a result of violence: Preliminary findings from the traumatic brain injury model systems. Archives of Physical Medicine and Rehabilitation, 79(7), 730–737.

    PubMed  Google Scholar 

  450. Lannoo, E., Van Rietvelde, F., Colardyn, F., et al. (2000). Early predictors of mortality and morbidity after severe closed head injury. Journal of Neurotrauma, 17(5), 403–414.

    PubMed  Google Scholar 

  451. Hammond, F. M., Grattan, K. D., Sasser, H., Corrigan, J. D., Bushnik, T., & Zafonte, R. D. (2001). Long-term recovery course after traumatic brain injury: A comparison of the functional independence measure and disability rating scale. The Journal of Head Trauma Rehabilitation, 16(4), 318–329.

    PubMed  Google Scholar 

  452. Baldo, V., Marcolongo, A., Floreani, A., et al. (2003). Epidemiological aspect of traumatic brain injury in Northeast Italy. European Journal of Epidemiology, 18(11), 1059–1063.

    PubMed  Google Scholar 

  453. Thompson, H. J., McCormick, W. C., & Kagan, S. H. (2006). Traumatic brain injury in older adults: Epidemiology, outcomes, and future implications. Journal of American Geriatrics Society, 54(10), 1590–1595.

    Google Scholar 

  454. Jagannathan, J., Okonkwo, D. O., Yeoh, H. K., et al. (2008). Long-term outcomes and prognostic factors in pediatric patients with severe traumatic brain injury and elevated intracranial pressure. Journal of Neurosurgery. Pediatrics, 2(4), 240–249.

    PubMed  Google Scholar 

  455. Brooks, D. N., Aughton, M. E., Bond, M. R., Jones, P., & Rizvi, S. (1980). Cognitive sequelae in relationship to early indices of severity of brain damage after severe blunt head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 43(6), 529–534.

    PubMed  Google Scholar 

  456. Massagli, T. L., Michaud, L. J., & Rivara, F. P. (1996). Association between injury indices and outcome after severe traumatic brain injury in children. Archives of Physical Medicine and Rehabilitation, 77(2), 125–132.

    PubMed  Google Scholar 

  457. Ozbudak-Demir, S., Akyuz, M., Guler-Uysal, F., & Orkun, S. (1999). Postacute predictors of functional and cognitive progress in traumatic brain injury: Somatosensory evoked potentials. Archives of Physical Medicine and Rehabilitation, 80(3), 252–257.

    PubMed  Google Scholar 

  458. Azouvi, P. (2000). Neuroimaging correlates of cognitive and functional outcome after traumatic brain injury. Current Opinion in Neurology, 13(6), 665–669.

    PubMed  Google Scholar 

  459. Groswasser, Z., & Sazbon, L. (1990). Outcome in 134 patients with prolonged posttraumatic unawareness. Part 2: Functional outcome of 72 patients recovering consciousness. Journal of Neurosurgery, 72(1), 81–84.

    PubMed  Google Scholar 

  460. Tate, R. L., Perdices, M., Pfaff, A., & Jurjevic, L. (2001). Predicting duration of posttraumatic amnesia (PTA) from early PTA measurements. The Journal of Head Trauma Rehabilitation, 16(6), 525–542.

    PubMed  Google Scholar 

  461. Rimel, R. W., Giordani, B., Barth, J. T., Boll, T. J., & Jane, J. A. (1981). Disability caused by minor head injury. Neurosurgery, 9(3), 221–228.

    PubMed  Google Scholar 

  462. Dimken, S. S., Temkin, N., & Armsden, G. (1989). Neuropsychological recovery: Relationship to psychosocial functioning and postconcussional complaints. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Mild head injury (pp. 229–241). New York: Oxford University Press.

    Google Scholar 

  463. Stuss, D. (1987). Contribution of frontal lobe injury to cognitive impairment after closed head injury: Methods of assessment and recent findings. In H. S. Levin, J. Grafamn, & H. M. Eisenberg (Eds.), Neurobehavioral recovery from head injury (pp. 166–177). New York: Oxford University Press.

    Google Scholar 

  464. Stuss, D. T., Ely, P., Hugenholtz, H., et al. (1985). Subtle neuropsychological deficits in patients with good recovery after closed head injury. Neurosurgery, 17(1), 41–47.

    PubMed  Google Scholar 

  465. Tate, D. F., Khedraki, R., Neeley, E. S., Ryser, D. K., & Bigler, E. D. (2011). Cerebral volume loss, cognitive deficit, and neuropsychological performance: Comparative measures of brain atrophy: II. Traumatic brain injury. Journal of the International Neuropsychological Society, 17(2), 308–316.

    PubMed  Google Scholar 

  466. Tate, D. F., & Bigler, E. D. (2000). Fornix and hippocampal atrophy in traumatic brain injury. Learning & Memory (Cold Spring Harbor, N.Y.), 7(6), 442–446.

    Google Scholar 

  467. Christidi, F., Bigler, E. D., McCauley, S. R., et al. (2011). Diffusion tensor imaging of the perforant pathway zone and its relation to memory function in patients with severe traumatic brain injury. Journal of Neurotrauma, 28(5), 711–725.

    PubMed  Google Scholar 

  468. Bigler, E. D., & Maxwell, W. L. (2011). Neuroimaging and neuropathology of TBI. NeuroRehabilitation, 28(2), 63–74.

    PubMed  Google Scholar 

  469. Wilde, E. A., McCauley, S. R., Hunter, J. V., et al. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology, 70(12), 948–955.

    PubMed  Google Scholar 

  470. Merkley, T. L., Bigler, E. D., Wilde, E. A., McCauley, S. R., Hunter, J. V., & Levin, H. S. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Journal of Neurotrauma, 25(11), 1343–1345.

    PubMed  Google Scholar 

  471. Fearing, M. A., Bigler, E. D., Wilde, E. A., et al. (2008). Morphometric MRI findings in the thalamus and brainstem in children after moderate to severe traumatic brain injury. Journal of Child Neurology, 23(7), 729–737.

    PubMed  Google Scholar 

  472. Allen, M. D., Bigler, E. D., Larsen, J., Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2007). Functional neuroimaging evidence for high cognitive effort on the Word Memory Test in the absence of external incentives. Brain Injury, 21(13–14), 1425–1428.

    PubMed  Google Scholar 

  473. Wilde, E. A., Chu, Z., Bigler, E. D., et al. (2006). Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. Journal of Neurotrauma, 23(10), 1412–1426.

    PubMed  Google Scholar 

  474. Conkey, R. C. (1938). Psychological changes associated with head injuries. Archives of Psychology, 232, 1–62.

    Google Scholar 

  475. Levin, H. S., Eisenberg, H. M., & Benton, A. L. (1989). Mild head injury. New York: Oxford University Press.

    Google Scholar 

  476. Levin, H. S., Grafman, J., & Eisenberg, H. M. (1987). Neurobehavioral recovery from head injury. New York: Oxford University Press.

    Google Scholar 

  477. Brooks, N. (Ed.). (1984). Closed head injury: Psychological, social, and family consequences. London: Oxford University Press.

    Google Scholar 

  478. Levin, H. S., Benton, A. L., & Grossman, R. G. (1982). Neurobehavioral consequences of closed head injury. New York: Oxford University Press.

    Google Scholar 

  479. Boake, C., & Diller, L. (2005). History of rehabilitation for traumatic brain injury. In W. M. High, A. M. Sander, M. A. Struchen, & K. A. Hart (Eds.), Rehabilitation for traumatic brain injury. Oxford, UK: Oxford University Press.

    Google Scholar 

  480. Gross, C. (1999). Brain, vision, memory: Tales in the history of neuroscience. Cambridge, MA: MIT Press.

    Google Scholar 

  481. Gronwall, D. (1987). Advances in the assessment of attention and information processing after head injury. In H. S. Levin, J. Grafman, & H. M. Eisenberg (Eds.), Neurobehavioral recovery from head injury (pp. 355–371). New York: Oxford University Press.

    Google Scholar 

  482. Gronwall, D. M. A., & Sampson, H. D. (1974). The psychological effects of concussion. Auckland: Auckland University Press/Oxford University Press.

    Google Scholar 

  483. van Zomeren, A. H., & van den Burg, W. (1985). Residual complaints of patients two years after severe head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 48(1), 21–28.

    PubMed  Google Scholar 

  484. Van Zomeren, A. H., Brouwer, W. H., & Deelman, B. G. (1984). Attentional deficits: The riddles of selectivity, speed and alertness. In N. Brooks (Ed.), Closed head injury: Psychological, social, and family consequences. Oxford, UK: Oxford University Press.

    Google Scholar 

  485. van Zomeren, A. H., Brouwer, W. H., & Minderhoud, J. M. (1987). Acquired brain damage and driving: A review. Archives of Physical Medicine and Rehabilitation, 68(10), 697–705.

    PubMed  Google Scholar 

  486. van Zomeren, A. H., Brouwer, W. H., Rothengatter, J. A., & Snoek, J. W. (1988). Fitness to drive a car after recovery from severe head injury. Archives of Physical Medicine and Rehabilitation, 69(2), 90–96.

    PubMed  Google Scholar 

  487. van Zomeren, A. H., & Deelman, B. G. (1976). Differential effects of simple and choice reaction after closed head injury. Clinical Neurology and Neurosurgery, 79(2), 81–90.

    PubMed  Google Scholar 

  488. Stuss, D. T., Stethem, L. L., Hugenholtz, H., Picton, T., Pivik, J., & Richard, M. T. (1989). Reaction time after head injury: Fatigue, divided and focused attention, and consistency of performance. Journal of Neurology, Neurosurgery, and Psychiatry, 52(6), 742–748.

    PubMed  Google Scholar 

  489. Stuss, D. T., Stethem, L. L., Picton, T. W., Leech, E. E., & Pelchat, G. (1989). Traumatic brain injury, aging and reaction time. The Canadian Journal of Neurological Sciences, 16(2), 161–167.

    PubMed  Google Scholar 

  490. Gentilini, M., Nichelli, P., & Schoenhuber, R. (1989). Neuropsychological recovery: Relationship to psychosocial functioning and postconcussional complaints. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Mild head injury (pp. 163–175). New York: Oxford University Press.

    Google Scholar 

  491. Willmott, C., Ponsford, J., Hocking, C., & Schonberger, M. (2009). Factors contributing to attentional impairments after traumatic brain injury. Neuropsychology, 23(4), 424–432.

    PubMed  Google Scholar 

  492. Mathias, J. L., Bigler, E. D., Jones, N. R., et al. (2004). Neuropsychological and information processing performance and its relationship to white matter changes following moderate and severe traumatic brain injury: A preliminary study. Applied Neuropsychology, 11(3), 134–152.

    PubMed  Google Scholar 

  493. Incoccia, C., Formisano, R., Muscato, P., Reali, G., & Zoccolotti, P. (2004). Reaction and movement times in individuals with chronic traumatic brain injury with good motor recovery. Cortex, 40(1), 111–115.

    PubMed  Google Scholar 

  494. Lavoie, M. E., Dupuis, F., Johnston, K. M., Leclerc, S., & Lassonde, M. (2004). Visual p300 effects beyond symptoms in concussed college athletes. Journal of Clinical and Experimental Neuropsychology, 26(1), 55–73.

    PubMed  Google Scholar 

  495. Rios, M., Perianez, J. A., & Munoz-Cespedes, J. M. (2004). Attentional control and slowness of information processing after severe traumatic brain injury. Brain Injury, 18(3), 257–272.

    PubMed  Google Scholar 

  496. Segalowitz, S. J., Dywan, J., & Unsal, A. (1997). Attentional factors in response time variability after traumatic brain injury: An ERP study. Journal of the International Neuropsychological Society, 3(2), 95–107.

    PubMed  Google Scholar 

  497. Turkstra, L. S. (1995). Electrodermal response and outcome from severe brain injury. Brain Injury, 9(1), 61–80.

    PubMed  Google Scholar 

  498. Serebro-Sorek, K., Shakhar, G. B., & Hoofien, D. (2007). Orienting responses and habituation among persons with traumatic brain injury: Distinctive aspects of apathetic and disinhibited behaviours. Brain Injury, 21(6), 583–591.

    PubMed  Google Scholar 

  499. McDonald, S., Rushby, J., Li, S., et al. (2011). The influence of attention and arousal on emotion perception in adults with severe traumatic brain injury. International Journal of Psychophysiology, 82, 124–131.

    PubMed  Google Scholar 

  500. Soussignan, R., Ehrle, N., Henry, A., Schaal, B., & Bakchine, S. (2005). Dissociation of emotional processes in response to visual and olfactory stimuli following frontotemporal damage. Neurocase, 11(2), 114–128.

    PubMed  Google Scholar 

  501. Curry, S. H. (1981). Event related potentials as indicants of structural and functional damage in closed head injury. Progress in Brain Research, 54, 507–515.

    Google Scholar 

  502. Onofrj, M., Curatola, L., Malatesta, G., Bazzano, S., Colamartino, P., & Fulgente, T. (1991). Reduction of P3 latency during outcome from post-traumatic amnesia. Acta Neurologica Scandinavica, 83(5), 273–279.

    PubMed  Google Scholar 

  503. Papanicolaou, A. C. (1987). Electrophysiological methods for the study of attentional deficits in head injury. In H. S. Levin, J. Grafman, & H. M. Eisenberg (Eds.), Neurobehavioral recovery from head injury (pp. 379–397). New York: Oxford University Press.

    Google Scholar 

  504. De Beaumont, L., Brisson, B., Lassonde, M., & Jolicoeur, P. (2007). Long-term electrophysiological changes in athletes with a history of multiple concussions. Brain Injury, 21(6), 631–644.

    PubMed  Google Scholar 

  505. Sarno, S., Erasmus, L. P., Frey, M., Lippert, G., & Lipp, B. (2006). Electrophysiological correlates of active and passive attentional states after severe traumatic brain injury. Functional Neurology, 21(1), 21–29.

    PubMed  Google Scholar 

  506. Stanford, M. S., Vasterling, J. J., Mathias, C. W., Constans, J. I., & Houston, R. J. (2001). Impact of threat relevance on P3 event-related potentials in combat-related post-traumatic stress disorder. Psychiatry Research, 102(2), 125–137.

    PubMed  Google Scholar 

  507. Gaetz, M., Goodman, D., & Weinberg, H. (2000). Electrophysiological evidence for the cumulative effects of concussion. Brain Injury, 14(12), 1077–1088.

    PubMed  Google Scholar 

  508. Cremona-Meteyard, S. L., & Geffen, G. M. (1994). Event-related potential indices of visual attention following moderate to severe closed head injury. Brain Injury, 8(6), 541–558.

    PubMed  Google Scholar 

  509. Heinze, H. J., Munte, T. F., Gobiet, W., Niemann, H., & Ruff, R. M. (1992). Parallel and serial visual search after closed head injury: Electrophysiological evidence for perceptual dysfunctions. Neuropsychologia, 30(6), 495–514.

    PubMed  Google Scholar 

  510. Harris, D. P., & Hall, J. W., III. (1990). Feasibility of auditory event-related potential measurement in brain injury rehabilitation. Ear and Hearing, 11(5), 340–350.

    PubMed  Google Scholar 

  511. Campbell, K. B., Suffield, J. B., & Deacon, D. L. (1990). Electrophysiological assessment of cognitive disorder in closed head-injured outpatients. Electroencephalography and Clinical Neurophysiology. Supplement, 41, 202–215.

    PubMed  Google Scholar 

  512. Di Russo, F., & Spinelli, D. (2010). Sport is not always healthy: Executive brain dysfunction in professional boxers. Psychophysiology, 47(3), 425–434.

    PubMed  Google Scholar 

  513. De Beaumont, L., Theoret, H., Mongeon, D., et al. (2009). Brain function decline in healthy retired athletes who sustained their last sports concussion in early adulthood. Brain, 132(Pt 3), 695–708.

    PubMed  Google Scholar 

  514. Gaetz, M., & Bernstein, D. M. (2001). The current status of electrophysiologic procedures for the assessment of mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 16(4), 386–405.

    PubMed  Google Scholar 

  515. Diesch, E., Preissl, H., Haerle, M., Schaller, H. E., & Birbaumer, N. (2001). Multiple frequency steady-state evoked magnetic field mapping of digit representation in primary somatosensory cortex. Somatosensory & Motor Research, 18(1), 10–18.

    Google Scholar 

  516. Lewine, J. D., Davis, J. T., Sloan, J. H., Kodituwakku, P. W., & Orrison, W. W., Jr. (1999). Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. American Journal of Neuroradiology, 20(5), 857–866.

    PubMed  Google Scholar 

  517. Tepley, N., Bowyer, S., Clifton, Y., & Saligram, U. (1996). A technique for sequential measurements of DC neuromagnetic fields. Electroencephalography and Clinical Neurophysiology, 99(1), 16–18.

    PubMed  Google Scholar 

  518. Nakasato, N., Seki, K., Kawamura, T., et al. (1996). Functional brain mapping using an MRI-linked whole head magnetoencephalography (MEG) system. Electroencephalography and Clinical Neurophysiology. Supplement, 46, 119–126.

    PubMed  Google Scholar 

  519. Lezak, M. D. (1978). Subtle sequelae of brain damage: Perplexity, distractibility and fatigue. American Journal of Physical Medicine, 57, 9–15.

    PubMed  Google Scholar 

  520. Bate, A. J., Mathias, J. L., & Crawford, J. R. (2001). Performance on the Test of Everyday Attention and standard tests of attention following severe traumatic brain injury. The Clinical Neuropsychologist, 15(3), 405–422.

    PubMed  Google Scholar 

  521. Belmont, A., Agar, N., & Azouvi, P. (2009). Subjective fatigue, mental effort, and attention deficits after severe traumatic brain injury. Neurorehabilitation and Neural Repair, 23(9), 939–944.

    PubMed  Google Scholar 

  522. Catale, C., Marique, P., Closset, A., & Meulemans, T. (2009). Attentional and executive functioning following mild traumatic brain injury in children using the Test for Attentional Performance (TAP) battery. Journal of Clinical and Experimental Neuropsychology, 31(3), 331–338.

    PubMed  Google Scholar 

  523. Willmott, C., & Ponsford, J. (2009). Efficacy of methylphenidate in the rehabilitation of attention following traumatic brain injury: A randomised, crossover, double blind, placebo controlled inpatient trial. Journal of Neurology, Neurosurgery, and Psychiatry, 80(5), 552–557.

    PubMed  Google Scholar 

  524. Gil-Gomez de Liano, B., Umilta, C., Stablum, F., Tebaldi, F., & Cantagallo, A. (2010). Attentional distractor interference may be diminished by concurrent working memory load in normal participants and traumatic brain injury patients. Brain and Cognition, 74(3), 298–305.

    PubMed  Google Scholar 

  525. Ben-David, B. M., Nguyen, L. L., & van Lieshout, P. H. (2011). Stroop effects in persons with traumatic brain injury: Selective attention, speed of processing, or color-naming? A meta-analysis. Journal of the International Neuropsychological Society, 17(2), 354–363.

    PubMed  Google Scholar 

  526. Mathias, J. L., & Wheaton, P. (2007). Changes in attention and information-processing speed following severe traumatic brain injury: A meta-analytic review. Neuropsychology, 21(2), 212–223.

    PubMed  Google Scholar 

  527. McDowell, S., Whyte, J., & D’Esposito, M. (1997). Working memory impairments in traumatic brain injury: Evidence from a dual-task paradigm. Neuropsychologia, 35(10), 1341–1353.

    PubMed  Google Scholar 

  528. Gutentag, S. S., Naglieri, J. A., & Yeates, K. O. (1998). Performance of children with traumatic brain injury on the Cognitive Assessment System. Assessment, 5(3), 263–272.

    PubMed  Google Scholar 

  529. Fontaine, A., Azouvi, P., Remy, P., Bussel, B., & Samson, Y. (1999). Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology, 53(9), 1963–1968.

    PubMed  Google Scholar 

  530. Mathias, J. L., & Coats, J. L. (1999). Emotional and cognitive sequelae to mild traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 21(2), 200–215.

    PubMed  Google Scholar 

  531. Andersson, S., & Bergedalen, A. M. (2002). Cognitive correlates of apathy in traumatic brain injury. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 15(3), 184–191.

    PubMed  Google Scholar 

  532. Arciniegas, D. B., Held, K., & Wagner, P. (2002). Cognitive impairment following traumatic brain injury. Current Treatment Options in Neurology, 4(1), 43–57.

    PubMed  Google Scholar 

  533. Chan, R. C., & Manly, T. (2002). The application of “dysexecutive syndrome” measures across cultures: Performance and checklist assessment in neurologically healthy and traumatically brain-injured Hong Kong Chinese volunteers. Journal of the International Neuropsychological Society, 8(6), 771–780.

    PubMed  Google Scholar 

  534. Gioia, G. A., Isquith, P. K., Kenworthy, L., & Barton, R. M. (2002). Profiles of everyday executive function in acquired and developmental disorders. Child Neuropsychology, 8(2), 121–137.

    PubMed  Google Scholar 

  535. McDonald, B. C., Flashman, L. A., & Saykin, A. J. (2002). Executive dysfunction following traumatic brain injury: Neural substrates and treatment strategies. NeuroRehabilitation, 17(4), 333–344.

    PubMed  Google Scholar 

  536. Macqueen, B. D., Pachalska, M., Sniegocki, M., Lukowicz, M., & Pufal, A. (2003). An evaluation of executive functions in sportsmen after traumatic brain injury. Ortopedia, Traumatologia, Rehabilitacja, 5(6), 767–780.

    PubMed  Google Scholar 

  537. Ewing-Cobbs, L., Prasad, M. R., Landry, S. H., Kramer, L., & DeLeon, R. (2004). Executive functions following traumatic brain injury in young children: A preliminary analysis. Developmental Neuropsychology, 26(1), 487–512.

    PubMed  Google Scholar 

  538. Kliegel, M., Eschen, A., & Thone-Otto, A. I. (2004). Planning and realization of complex intentions in traumatic brain injury and normal aging. Brain and Cognition, 56(1), 43–54.

    PubMed  Google Scholar 

  539. Rath, J. F., Langenbahn, D. M., Simon, D., Sherr, R. L., Fletcher, J., & Diller, L. (2004). The construct of problem solving in higher level neuropsychological assessment and rehabilitation. Archives of Clinical Neuropsychology, 19(5), 613–635.

    PubMed  Google Scholar 

  540. Fork, M., Bartels, C., Ebert, A. D., Grubich, C., Synowitz, H., & Wallesch, C. W. (2005). Neuropsychological sequelae of diffuse traumatic brain injury. Brain Injury, 19(2), 101–108.

    PubMed  Google Scholar 

  541. Kim, J., Whyte, J., Hart, T., Vaccaro, M., Polansky, M., & Coslett, H. B. (2005). Executive function as a predictor of inattentive behavior after traumatic brain injury. Journal of the International Neuropsychological Society, 11(4), 434–445.

    PubMed  Google Scholar 

  542. Slomine, B. S., Salorio, C. F., Grados, M. A., Vasa, R. A., Christensen, J. R., & Gerring, J. P. (2005). Differences in attention, executive functioning, and memory in children with and without ADHD after severe traumatic brain injury. Journal of the International Neuropsychological Society, 11(5), 645–653.

    PubMed  Google Scholar 

  543. Ciaramelli, E., Serino, A., Di Santantonio, A., & Ladavas, E. (2006). Central executive system impairment in traumatic brain injury. Brain and Cognition, 60(2), 198–199.

    PubMed  Google Scholar 

  544. Serino, A., Ciaramelli, E., Di Santantonio, A., Malagu, S., Servadei, F., & Ladavas, E. (2006). Central executive system impairment in traumatic brain injury. Brain Injury, 20(1), 23–32.

    PubMed  Google Scholar 

  545. van Heugten, C. M., Hendriksen, J., Rasquin, S., Dijcks, B., Jaeken, D., & Vles, J. H. (2006). Long-term neuropsychological performance in a cohort of children and adolescents after severe paediatric traumatic brain injury. Brain Injury, 20(9), 895–903.

    PubMed  Google Scholar 

  546. Wood, R. L., & Williams, C. (2007). Neuropsychological correlates of organic alexithymia. Journal of the International Neuropsychological Society, 13(3), 471–479.

    PubMed  Google Scholar 

  547. Bivona, U., Ciurli, P., Barba, C., et al. (2008). Executive function and metacognitive self-awareness after severe traumatic brain injury. Journal of the International Neuropsychological Society, 14(5), 862–868.

    PubMed  Google Scholar 

  548. Draper, K., & Ponsford, J. (2008). Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology, 22(5), 618–625.

    PubMed  Google Scholar 

  549. Ponsford, J., Draper, K., & Schonberger, M. (2008). Functional outcome 10 years after traumatic brain injury: Its relationship with demographic, injury severity, and cognitive and emotional status. Journal of the International Neuropsychological Society, 14(2), 233–242.

    PubMed  Google Scholar 

  550. Azouvi, P., Vallat-Azouvi, C., & Belmont, A. (2009). Cognitive deficits after traumatic coma. Progress in Brain Research, 177, 89–110.

    PubMed  Google Scholar 

  551. Hoskison, M. M., Moore, A. N., Hu, B., Orsi, S., Kobori, N., & Dash, P. K. (2009). Persistent working memory dysfunction following traumatic brain injury: Evidence for a time-dependent mechanism. Neuroscience, 159(2), 483–491.

    PubMed  Google Scholar 

  552. Levin, H. S., Hanten, G., & Li, X. (2009). The relation of cognitive control to social outcome after paediatric TBI: Implications for intervention. Developmental Neurorehabilitation, 12(5), 320–329.

    PubMed  Google Scholar 

  553. Scheibel, R. S., Newsome, M. R., Troyanskaya, M., et al. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. Journal of Neurotrauma, 26(9), 1447–1461.

    PubMed  Google Scholar 

  554. Slawik, H., Salmond, C. H., Taylor-Tavares, J. V., Williams, G. B., Sahakian, B. J., & Tasker, R. C. (2009). Frontal cerebral vulnerability and executive deficits from raised intracranial pressure in child traumatic brain injury. Journal of Neurotrauma, 26(11), 1891–1903.

    PubMed  Google Scholar 

  555. Krawczyk, D. C., Hanten, G., Wilde, E. A., et al. (2010). Deficits in analogical reasoning in adolescents with traumatic brain injury. Frontiers in Human Neuroscience, 4, 62.

    PubMed  Google Scholar 

  556. Little, D. M., Kraus, M. F., Joseph, J., et al. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558–564.

    PubMed  Google Scholar 

  557. Levine, B., Schweizer, T. A., O’Connor, C., et al. (2011). Rehabilitation of executive functioning in patients with frontal lobe brain damage with goal management training. Frontiers in Human Neuroscience, 5, 9.

    PubMed  Google Scholar 

  558. Green, R. E., Colella, B., Christensen, B., et al. (2008). Examining moderators of cognitive recovery trajectories after moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl), S16–S24.

    PubMed  Google Scholar 

  559. DePrince, A. P., Weinzierl, K. M., & Combs, M. D. (2009). Executive function performance and trauma exposure in a community sample of children. Child Abuse & Neglect, 33(6), 353–361.

    Google Scholar 

  560. Miotto, E. C., Cinalli, F. Z., Serrao, V. T., Benute, G. G., Lucia, M. C., & Scaff, M. (2010). Cognitive deficits in patients with mild to moderate traumatic brain injury. Arquivos de Neuro-Psiquiatria, 68(6), 862–868.

    PubMed  Google Scholar 

  561. Senathi-Raja, D., Ponsford, J., & Schonberger, M. (2010). Impact of age on long-term cognitive function after traumatic brain injury. Neuropsychology, 24(3), 336–344.

    PubMed  Google Scholar 

  562. Molenberghs, P., Gillebert, C. R., Schoofs, H., Dupont, P., Peeters, R., & Vandenberghe, R. (2009). Lesion neuroanatomy of the Sustained Attention to Response task. Neuropsychologia, 47(13), 2866–2875.

    PubMed  Google Scholar 

  563. Scheid, R., Walther, K., Guthke, T., Preul, C., & von Cramon, D. Y. (2006). Cognitive sequelae of diffuse axonal injury. Archives of Neurology, 63(3), 418–424.

    PubMed  Google Scholar 

  564. Yeo, R. A., Gasparovic, C., Merideth, F., Ruhl, D., Doezema, D., & Mayer, A. R. (2011). A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. Journal of Neurotrauma, 28(1), 1–11.

    PubMed  Google Scholar 

  565. Dimoska-Di Marco, A., McDonald, S., Kelly, M., Tate, R., & Johnstone, S. (2011). A meta-analysis of response inhibition and Stroop interference control deficits in adults with traumatic brain injury (TBI). Journal of Clinical and Experimental Neuropsychology, 33(4), 471–485.

    PubMed  Google Scholar 

  566. Cicerone, K. D. (2002). Remediation of “working attention” in mild traumatic brain injury. Brain Injury, 16(3), 185–195.

    PubMed  Google Scholar 

  567. Bittner, R. M., & Crowe, S. F. (2007). The relationship between working memory, processing speed, verbal comprehension and FAS performance following traumatic brain injury. Brain Injury, 21(7), 709–719.

    PubMed  Google Scholar 

  568. Conklin, H. M., Salorio, C. F., & Slomine, B. S. (2008). Working memory performance following paediatric traumatic brain injury. Brain Injury, 22(11), 847–857.

    PubMed  Google Scholar 

  569. Niemann, H., Ruff, R. M., & Kramer, J. H. (1996). An attempt towards differentiating attentional deficits in traumatic brain injury. Neuropsychology Review, 6(1), 11–46.

    PubMed  Google Scholar 

  570. Stulemeijer, M., Andriessen, T. M., Brauer, J. M., Vos, P. E., & Van Der Werf, S. (2007). Cognitive performance after mild traumatic brain injury: The impact of poor effort on test results and its relation to distress, personality and litigation. Brain Injury, 21(3), 309–318.

    PubMed  Google Scholar 

  571. Rasmussen, I. A., Xu, J., Antonsen, I. K., et al. (2008). Simple dual tasking recruits prefrontal cortices in chronic severe traumatic brain injury patients, but not in controls. Journal of Neurotrauma, 25(9), 1057–1070.

    PubMed  Google Scholar 

  572. Leclercq, M., Couillet, J., Azouvi, P., et al. (2000). Dual task performance after severe diffuse traumatic brain injury or vascular prefrontal damage. Journal of Clinical and Experimental Neuropsychology, 22(3), 339–350.

    PubMed  Google Scholar 

  573. Bate, A. J., Mathias, J. L., & Crawford, J. R. (2001). The covert orienting of visual attention following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 23(3), 386–398.

    PubMed  Google Scholar 

  574. Cantin, J. F., McFadyen, B. J., Doyon, J., Swaine, B., Dumas, D., & Vallee, M. (2007). Can measures of cognitive function predict locomotor behaviour in complex environments following a traumatic brain injury? Brain Injury, 21(3), 327–334.

    PubMed  Google Scholar 

  575. Anderson, T. M., & Knight, R. G. (2010). The long-term effects of traumatic brain injury on the coordinative function of the central executive. Journal of Clinical and Experimental Neuropsychology, 32(10), 1074–1082.

    PubMed  Google Scholar 

  576. Foley, J. A., Cantagallo, A., Della Sala, S., & Logie, R. H. (2010). Dual task performance and post traumatic brain injury. Brain Injury, 24(6), 851–858.

    PubMed  Google Scholar 

  577. Whyte, J., Polansky, M., Fleming, M., Coslett, H. B., & Cavallucci, C. (1995). Sustained arousal and attention after traumatic brain injury. Neuropsychologia, 33(7), 797–813.

    PubMed  Google Scholar 

  578. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758.

    PubMed  Google Scholar 

  579. Fisher, R. S., van Emde, B. W., Blume, W., et al. (2005). Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia, 46(4), 470–472.

    PubMed  Google Scholar 

  580. Vijayaraghavan, L., Natarajan, S., & Krishnamoorthy, E. S. (2011). Peri-ictal and ictal cognitive dysfunction in epilepsy. Behavioural Neurology, 24(1), 27–34.

    PubMed  Google Scholar 

  581. Monaco, F., Mula, M., & Cavanna, A. E. (2005). Consciousness, epilepsy, and emotional qualia. Epilepsy & Behavior, 7(2), 150–160.

    Google Scholar 

  582. Aldenkamp, A. P., Arends, J., Overweg-Plandsoen, T. C., et al. (2001). Acute cognitive effects of nonconvulsive difficult-to-detect epileptic seizures and epileptiform electroencephalographic discharges. Journal of Child Neurology, 16(2), 119–123.

    PubMed  Google Scholar 

  583. Gloor, P. (1986). Consciousness as a neurological concept in epileptology: A critical review. Epilepsia, 27(Suppl 2), S14–S26.

    PubMed  Google Scholar 

  584. Aldenkamp, A. P., Overweg, J., Gutter, T., Beun, A. M., Diepman, L., & Mulder, O. G. (1996). Effect of epilepsy, seizures and epileptiform EEG discharges on cognitive function. Acta Neurologica Scandinavica, 93(4), 253–259.

    PubMed  Google Scholar 

  585. Boyle, C. A., & Kirk, A. (1996). Ictal radial and horizontal neglect. Neurology, 47(1), 299–300.

    PubMed  Google Scholar 

  586. Marks, W. J., Jr., & Laxer, K. D. (1998). Semiology of temporal lobe seizures: Value in lateralizing the seizure focus. Epilepsia, 39(7), 721–726.

    PubMed  Google Scholar 

  587. Bear, D., & Fedio, F. (1977). Quantitative analysis of interictal behavior in temporal lobe epilepsy. Archives of Neurology, 34, 454–467.

    PubMed  Google Scholar 

  588. Deutsch, C. P. (1953). Differences among epileptics and between epileptics and non-epileptics in terms of some learning and memory variables. Archives of Neurology and Psychiatry, 70, 474–482.

    PubMed  Google Scholar 

  589. Loiseau, P., Stube, E., Broustet, D., Batteleochi, S., Gomeni, C., & Morselli, P. D. (1980). Evaluation of memory function in a population of epileptic patients and matched controls. Acta Neurologica Scandinavica, 62(80), 58–61.

    Google Scholar 

  590. Rausch, R., Fedio, P., Ary, C. M., Engel, J., Jr., & Crandall, P. H. (1984). Resumption of behavior following intracarotid sodium amobarbital injection. Annals of Neurology, 15(1), 31–35.

    PubMed  Google Scholar 

  591. Milner, B. (1965). Visually-guided maze learnign in man: Effects of bilateral hippocampal, bilateral frontal and unilateral cerebral lesions. Neuropsychologia, 3, 317–338.

    Google Scholar 

  592. Milner, B. (1975). Psychological aspects of focal epilepsy and its neurosurgical management. Advances in Neurology, 8, 299–321.

    PubMed  Google Scholar 

  593. Fedio, P., & Mirsky, A. F. (1969). Selective intellectual deficits in children with temporal lobe or centrecephalic epilepsy. Neuropsychologia, 7, 287–300.

    Google Scholar 

  594. Trimble, M., & Thompson, P. J. (1986). Neuropsychological aspects of epilepsy. New York: Oxford University Press.

    Google Scholar 

  595. Campanelli, P. A. (1970). Sustained attention in brain damaged children. Exceptional Children, 36(5), 317–323.

    PubMed  Google Scholar 

  596. Hara, H., & Fukuyama, Y. (1989). Sustained attention during the interictal period of mentally normal children with epilepsy or febrile convulsions, and the influence of anticonvulsants and seizures on attention. The Japanese Journal of Psychiatry and Neurology, 43(3), 411–416.

    PubMed  Google Scholar 

  597. Kalviainen, R., Aikia, M., Helkala, E. L., Mervaala, E., & Riekkinen, P. J. (1992). Memory and attention in newly diagnosed epileptic seizure disorder. Seizure, 1(4), 255–262.

    PubMed  Google Scholar 

  598. Semrud-Clikeman, M., & Wical, B. (1999). Components of attention in children with complex partial seizures with and without ADHD. Epilepsia, 40(2), 211–215.

    PubMed  Google Scholar 

  599. Sanchez-Carpintero, R., & Neville, B. G. (2003). Attentional ability in children with epilepsy. Epilepsia, 44(10), 1340–1349.

    PubMed  Google Scholar 

  600. Duncan, C. C., Mirsky, A. F., Lovelace, C. T., & Theodore, W. H. (2009). Assessment of the attention impairment in absence epilepsy: Comparison of visual and auditory P300. International Journal of Psychophysiology, 73(2), 118–122.

    PubMed  Google Scholar 

  601. Glowinski, H. (1973). Cognitive deficits in temporal lobe epilepsy. An investigation of memory functioning. The Journal of Nervous and Mental Disease, 157(2), 129–137.

    PubMed  Google Scholar 

  602. Arena, R., Menchetti, G., Tassinari, G., & Tognetti M. (1979). Simple and complex reaction time to lateralised visual stimuli in groups of epileptic patients. In 11th Epilepsy international symposium, Florence, Italy.

    Google Scholar 

  603. Bruhn, P., & Parsons, O. A. (1977). Reaction time variability in epileptic and brain-damaged patients. Cortex, 13(4), 373–384.

    PubMed  Google Scholar 

  604. Riva, D., Saletti, V., Nichelli, F., & Bulgheroni, S. (2002). Neuropsychologic effects of frontal lobe epilepsy in children. Journal of Child Neurology, 17(9), 661–667.

    PubMed  Google Scholar 

  605. Ay, Y., Gokben, S., Serdaroglu, G., et al. (2009). Neuropsychologic impairment in children with rolandic epilepsy. Pediatric Neurology, 41(5), 359–363.

    PubMed  Google Scholar 

  606. Everts, R., Pavlovic, J., Kaufmann, F., et al. (2008). Cognitive functioning, behavior, and quality of life after stroke in childhood. Child Neuropsychology, 14(4), 323–338.

    PubMed  Google Scholar 

  607. Aldenkamp, A. P., Alpherts, W. C., Diepman, L., van’t Slot, B., Overweg, J., & Vermeulen, J. (1994). Cognitive side-effects of phenytoin compared with carbamazepine in patients with localization-related epilepsy. Epilepsy Research, 19(1), 37–43.

    PubMed  Google Scholar 

  608. Smith, K. R., Jr., Goulding, P. M., Wilderman, D., Goldfader, P. R., Holterman-Hommes, P., & Wei, F. (1994). Neurobehavioral effects of phenytoin and carbamazepine in patients recovering from brain trauma: A comparative study. Archives of Neurology, 51(7), 653–660.

    PubMed  Google Scholar 

  609. Matthews, C. G., & Harley, J. P. (1975). Cognitive and motor-sensory performances in toxic and nontoxic epileptic subjects. Neurology, 25(2), 184–188.

    PubMed  Google Scholar 

  610. Zaret, B. S., & Cohen, R. A. (1986). Reversible valproic acid-induced dementia: A case report. Epilepsia, 27(3), 234–240.

    PubMed  Google Scholar 

  611. Lockard, J. S., & Wyler, A. R. (1979). The influence of attending on seizure activity in epileptic monkeys. Epilepsia, 20(2), 157–168.

    PubMed  Google Scholar 

  612. Fenwick, P. (1991). Evocation and inhibition of seizures. Behavioral treatment. Advances in Neurology, 55, 163–183.

    PubMed  Google Scholar 

  613. Fowler, P. C., Richards, H. C., Berent, S., & Boll, T. J. (1987). Epilepsy, neuropsychological deficits, and EEG lateralization. Archives of Clinical Neuropsychology, 2(1), 81–92.

    PubMed  Google Scholar 

  614. Pinton, F., Ducot, B., Motte, J., et al. (2006). Cognitive functions in children with benign childhood epilepsy with centrotemporal spikes (BECTS). Epileptic Disorders, 8(1), 11–23.

    PubMed  Google Scholar 

  615. Hermann, B. P., Seidenberg, M., Schoenfeld, J., & Davies, K. (1997). Neuropsychological characteristics of the syndrome of mesial temporal lobe epilepsy. Archives of Neurology, 54(4), 369–376.

    PubMed  Google Scholar 

  616. Williams, J., Griebel, M. L., & Dykman, R. A. (1998). Neuropsychological patterns in pediatric epilepsy. Seizure, 7(3), 223–228.

    PubMed  Google Scholar 

  617. Gulgonen, S., Demirbilek, V., Korkmaz, B., Dervent, A., & Townes, B. D. (2000). Neuropsychological functions in idiopathic occipital lobe epilepsy. Epilepsia, 41(4), 405–411.

    PubMed  Google Scholar 

  618. Culhane-Shelburne, K., Chapieski, L., Hiscock, M., & Glaze, D. (2002). Executive functions in children with frontal and temporal lobe epilepsy. Journal of the International Neuropsychological Society, 8(5), 623–632.

    PubMed  Google Scholar 

  619. Buhl, R., Huang, H., Gottwald, B., Mihajlovic, Z., & Mehdorn, H. M. (2005). Neuropsychological findings in patients with intraventricular tumors. Surgical Neurology, 64(6), 500–503.

    PubMed  Google Scholar 

  620. Risse, G. L. (2006). Cognitive outcomes in patients with frontal lobe epilepsy. Epilepsia, 47(Suppl 2), 87–89.

    PubMed  Google Scholar 

  621. Neargarder, S. A., Murtagh, M. P., Wong, B., & Hill, E. K. (2007). The neuropsychologic deficits of MELAS: Evidence of global impairment. Cognitive and Behavioral Neurology, 20(2), 83–92.

    PubMed  Google Scholar 

  622. Treitz, F. H., Daum, I., Faustmann, P. M., & Haase, C. G. (2009). Executive deficits in generalized and extrafrontal partial epilepsy: Long versus short seizure-free periods. Epilepsy & Behavior, 14(1), 66–70.

    Google Scholar 

  623. Luton, L. M., Burns, T. G., & DeFilippis, N. (2010). Frontal lobe epilepsy in children and adolescents: A preliminary neuropsychological assessment of executive function. Archives of Clinical Neuropsychology, 25(8), 762–770.

    PubMed  Google Scholar 

  624. Piccinelli, P., Beghi, E., Borgatti, R., et al. (2010). Neuropsychological and behavioural aspects in children and adolescents with idiopathic epilepsy at diagnosis and after 12 months of treatment. Seizure, 19(9), 540–546.

    PubMed  Google Scholar 

  625. Parrish, J., Geary, E., Jones, J., Seth, R., Hermann, B., & Seidenberg, M. (2007). Executive functioning in childhood epilepsy: Parent-report and cognitive assessment. Developmental Medicine and Child Neurology, 49(6), 412–416.

    PubMed  Google Scholar 

  626. Riva, D., Avanzini, G., Franceschetti, S., et al. (2005). Unilateral frontal lobe epilepsy affects executive functions in children. Neurological Science, 26(4), 263–270.

    Google Scholar 

  627. Boxer, A. L., Kramer, J. H., Johnston, K., Goldman, J., Finley, R., & Miller, B. L. (2005). Executive dysfunction in hyperhomocystinemia responds to homocysteine-lowering treatment. Neurology, 64(8), 1431–1434.

    PubMed  Google Scholar 

  628. Thompson, P. J., & Duncan, J. S. (2005). Cognitive decline in severe intractable epilepsy. Epilepsia, 46(11), 1780–1787.

    PubMed  Google Scholar 

  629. Schacher, M., Winkler, R., Grunwald, T., et al. (2006). Mesial temporal lobe epilepsy impairs advanced social cognition. Epilepsia, 47(12), 2141–2146.

    PubMed  Google Scholar 

  630. Black, L. C., Schefft, B. K., Howe, S. R., Szaflarski, J. P., Yeh, H. S., & Privitera, M. D. (2010). The effect of seizures on working memory and executive functioning performance. Epilepsy & Behavior, 17(3), 412–419.

    Google Scholar 

  631. Braakman, H. M., Vaessen, M. J., Hofman, P. A., et al. (2011). Cognitive and behavioral complications of frontal lobe epilepsy in children: A review of the literature. Epilepsia, 52(5), 849–856.

    PubMed  Google Scholar 

  632. Ott, B. R., Cohen, R. A., Gongvatana, A., et al. (2010). Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer’s disease. Journal of Alzheimer’s Disease, 20(2), 647–657.

    PubMed  Google Scholar 

  633. Benson, D. F. (1975). The hydrocephalic dementias. In F. Benson & D. Blumer (Eds.), Psychiatric aspects of neurologic disease. New York: Grune & Stratton.

    Google Scholar 

  634. Hakim, S., & Adams, R. D. (1965). The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. Journal of Neurological Sciences, 2(4), 307–327.

    Google Scholar 

  635. Tew, B., & Laurence, K. M. (1975). The effects of hydrocephalus on intelligence, visual perception and school attainment. Developmental Medicine and Child Neurology. Supplement, 35, 129–134.

    PubMed  Google Scholar 

  636. Anderson, E. M. (1976). The disabled child at school: Specilal needs and special provision. Birth Defects Original Article Series, 12(4), 47–62.

    PubMed  Google Scholar 

  637. Anderson, E. M., & Plewis, I. (1977). Impairment of a motor skill in children with spina bifida cystica and hydrocephalus: An exploratory study. British Journal of Psychology, 68(1), 61–70.

    PubMed  Google Scholar 

  638. Billard, C., Santini, J. J., Gillet, P., Nargeot, M. C., & Adrien, J. L. (1985). Long-term intellectual prognosis of hydrocephalus with reference to 77 children. Pediatric Neuroscience, 12(4–5), 219–225.

    PubMed  Google Scholar 

  639. Riva, D., Pantaleoni, C., Milani, N., & Fossati Belani, F. (1989). Impairment of neuropsychological functions in children with medulloblastomas and astrocytomas in the posterior fossa. Child’s Nervous System, 5(2), 107–110.

    PubMed  Google Scholar 

  640. Iddon, J. L., Morgan, D. J., Loveday, C., Sahakian, B. J., & Pickard, J. D. (2004). Neuropsychological profile of young adults with spina bifida with or without hydrocephalus. Journal of Neurology, Neurosurgery, and Psychiatry, 75(8), 1112–1118.

    PubMed  Google Scholar 

  641. Lying-Tunell, U., & Marions, O. (1975). A triad of airencephalographic findings in patients with mental impairment: A controlled prospective study. Neuroradiology, 9(5), 251–265.

    PubMed  Google Scholar 

  642. Brewer, V. R., Fletcher, J. M., Hiscock, M., & Davidson, K. C. (2001). Attention processes in children with shunted hydrocephalus versus attention deficit-hyperactivity disorder. Neuropsychology, 15(2), 185–198.

    PubMed  Google Scholar 

  643. Aarsen, F. K., Van Dongen, H. R., Paquier, P. F., Van Mourik, M., & Catsman-Berrevoets, C. E. (2004). Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology, 62(8), 1311–1316.

    PubMed  Google Scholar 

  644. Matson, M. A., Mahone, E. M., & Zabel, T. A. (2005). Serial neuropsychological assessment and evidence of shunt malfunction in spina bifida: A longitudinal case study. Child Neuropsychology, 11(4), 315–332.

    PubMed  Google Scholar 

  645. Swartwout, M. D., Cirino, P. T., Hampson, A. W., Fletcher, J. M., Brandt, M. E., & Dennis, M. (2008). Sustained attention in children with two etiologies of early hydrocephalus. Neuropsychology, 22(6), 765–775.

    PubMed  Google Scholar 

  646. Aarsen, F. K., Paquier, P. F., Arts, W. F., et al. (2009). Cognitive deficits and predictors 3 years after diagnosis of a pilocytic astrocytoma in childhood. Journal of Clinical Oncology, 27(21), 3526–3532.

    PubMed  Google Scholar 

  647. Swain, M. A., Joy, P., Bakker, K., Shores, E. A., & West, C. (2009). Object-based visual processing in children with spina bifida and hydrocephalus: A cognitive neuropsychological analysis. Journal of Neuropsychology, 3(Pt 2), 229–244.

    PubMed  Google Scholar 

  648. Vinck, A., Mullaart, R., Rotteveel, J., & Maassen, B. (2009). Neuropsychological assessment of attention in children with spina bifida. Cerebrospinal Fluid Research, 6, 6.

    PubMed  Google Scholar 

  649. Katzen, H., Ravdin, L. D., Assuras, S., et al. (2011). Postshunt cognitive and functional improvement in idiopathic normal pressure hydrocephalus. Neurosurgery, 68(2), 416–419.

    PubMed  Google Scholar 

  650. Davis, E. E., Pitchford, N. J., Jaspan, T., McArthur, D. C., & Walker, D. A. (2011). Effects of hydrocephalus after cerebellar tumor: A case-by-case approach. Pediatric Neurology, 44(3), 193–201.

    PubMed  Google Scholar 

  651. Hellstrom, P., Edsbagge, M., Archer, T., Tisell, M., Tullberg, M., & Wikkelso, C. (2007). The neuropsychology of patients with clinically diagnosed idiopathic normal pressure hydrocephalus. Neurosurgery, 61(6), 1219–1226; discussion 1227–1218.

    PubMed  Google Scholar 

  652. Riddle, R., Morton, A., Sampson, J. D., Vachha, B., & Adams, R. (2005). Performance on the NEPSY among children with spina bifida. Archives of Clinical Neuropsychology, 20(2), 243–248.

    PubMed  Google Scholar 

  653. Tromp, C. N., Staal, M. J., & Kalma, L. E. (1989). Effects of ventricular shunt treatment of normal pressure hydrocephalus on psychological functions. Zeitschrift für Kinderchirurgie, 44(Suppl 1), 41–43.

    PubMed  Google Scholar 

  654. Palm, W. M., Saczynski, J. S., van der Grond, J., et al. (2009). Ventricular dilation: Association with gait and cognition. Annals of Neurology, 66(4), 485–493.

    PubMed  Google Scholar 

  655. Rose, B. M., & Holmbeck, G. N. (2007). Attention and executive functions in adolescents with spina bifida. Journal of Pediatric Psychology, 32(8), 983–994.

    PubMed  Google Scholar 

  656. Donnet, A., Schmitt, A., Dufour, H., Giorgi, R., & Grisoli, F. (2004). Differential patterns of cognitive impairment in patients with aqueductal stenosis and normal pressure hydrocephalus. Acta Neurochirurgica, 146(12), 1301–1308; discussion 1308.

    PubMed  Google Scholar 

  657. Devito, E. E., Pickard, J. D., Salmond, C. H., Iddon, J. L., Loveday, C., & Sahakian, B. J. (2005). The neuropsychology of normal pressure hydrocephalus (NPH). British Journal of Neurosurgery, 19(3), 217–224.

    PubMed  Google Scholar 

  658. Keenan, S., Mavaddat, N., Iddon, J., Pickard, J. D., & Sahakian, B. J. (2005). Effects of methylphenidate on cognition and apathy in normal pressure hydrocephalus: A case study and review. British Journal of Neurosurgery, 19(1), 46–50.

    PubMed  Google Scholar 

  659. Iddon, J. L., Pickard, J. D., Cross, J. J., Griffiths, P. D., Czosnyka, M., & Sahakian, B. J. (1999). Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer’s disease: A pilot study. Journal of Neurology, Neurosurgery, and Psychiatry, 67(6), 723–732.

    PubMed  Google Scholar 

  660. Iddon, J. L., Morgan, D. J., & Sahakian, B. J. (1996). Cognitive dysfunction in patients with congenital hydrocephalus and spina bifida: Evidence for a dysexecutive syndrome? European Journal of Pediatric Surgery, 6(Suppl 1), 41.

    PubMed  Google Scholar 

  661. Gleichgerrcht, E., Cervio, A., Salvat, J., et al. (2009). Executive function improvement in normal pressure hydrocephalus following shunt surgery. Behavioural Neurology, 21(3), 181–185.

    PubMed  Google Scholar 

  662. Fisher, C. M. (1977). The clinical picture in occult hydrocephalus. Clinical Neurosurgery, 24, 270–284.

    PubMed  Google Scholar 

  663. Recht, L. D., McCarthy, K., O’Donnell, B. F., Cohen, R., & Drachman, D. A. (1989). Tumor-associated aphasia in left hemisphere primary brain tumors: The importance of age and tumor grade. Neurology, 39(1), 48–50.

    PubMed  Google Scholar 

  664. Chang, E. L., Wefel, J. S., Maor, M. H., et al. (2007). A pilot study of neurocognitive function in patients with one to three new brain metastases initially treated with stereotactic radiosurgery alone. Neurosurgery, 60(2), 277–283; discussion 283–284.

    PubMed  Google Scholar 

  665. Alexander, M. P., Stuss, D. T., Shallice, T., Picton, T. W., & Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65(4), 572–579.

    PubMed  Google Scholar 

  666. Belyi, B. I. (1987). Mental impairment in unilateral frontal tumours: Role of the laterality of the lesion. International Journal of Neuroscience, 32(3–4), 799–810.

    PubMed  Google Scholar 

  667. Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.

    PubMed  Google Scholar 

  668. Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.

    PubMed  Google Scholar 

  669. Correa, D. D., DeAngelis, L. M., Shi, W., Thaler, H., Glass, A., & Abrey, L. E. (2004). Cognitive functions in survivors of primary central nervous system lymphoma. Neurology, 62(4), 548–555.

    PubMed  Google Scholar 

  670. Correa, D. D., Maron, L., Harder, H., et al. (2007). Cognitive functions in primary central nervous system lymphoma: Literature review and assessment guidelines. Annals of Oncology, 18(7), 1145–1151.

    PubMed  Google Scholar 

  671. Archibald, Y. M., Lunn, D., Ruttan, L. A., et al. (1994). Cognitive functioning in long-term survivors of high-grade glioma. Journal of Neurosurgery, 80(2), 247–253.

    PubMed  Google Scholar 

  672. Jain, N., Brouwers, P., Okcu, M. F., Cirino, P. T., & Krull, K. R. (2009). Sex-specific attention problems in long-term survivors of pediatric acute lymphoblastic leukemia. Cancer, 115(18), 4238–4245.

    PubMed  Google Scholar 

  673. Kiehna, E. N., Mulhern, R. K., Li, C., Xiong, X., & Merchant, T. E. (2006). Changes in attentional performance of children and young adults with localized primary brain tumors after conformal radiation therapy. Journal of Clinical Oncology, 24(33), 5283–5290.

    PubMed  Google Scholar 

  674. Weddell, R. A. (2004). Subcortical modulation of spatial attention including evidence that the Sprague effect extends to man. Brain and Cognition, 55(3), 497–506.

    PubMed  Google Scholar 

  675. Armstrong, C., Mollman, J., Corn, B. W., Alavi, J., & Grossman, M. (1993). Effects of radiation therapy on adult brain behavior: Evidence for a rebound phenomenon in a phase 1 trial. Neurology, 43(10), 1961–1965.

    PubMed  Google Scholar 

  676. Byrne, T. N. (2005). Cognitive sequelae of brain tumor treatment. Current Opinion in Neurology, 18(6), 662–666.

    PubMed  Google Scholar 

  677. Dickinson, M. D., Barr, C. D., Hiscock, M., & Meyers, C. A. (2009). Cognitive effects of pegylated interferon in individuals with primary brain tumors. Journal of Neuro-Oncology, 95(2), 231–237.

    PubMed  Google Scholar 

  678. Glosser, G., McManus, P., Munzenrider, J., et al. (1997). Neuropsychological function in adults after high dose fractionated radiation therapy of skull base tumors. International Journal of Radiation Oncology, Biology, and Physics, 38(2), 231–239.

    Google Scholar 

  679. McCabe, M. A., Getson, P., Brasseux, C., & Johnson, D. L. (1995). Survivors of medulloblastoma: Implications for program planning. Cancer Practice, 3(1), 47–53.

    PubMed  Google Scholar 

  680. Merchant, T. E., Kiehna, E. N., Miles, M. A., Zhu, J., Xiong, X., & Mulhern, R. K. (2002). Acute effects of irradiation on cognition: Changes in attention on a computerized continuous performance test during radiotherapy in pediatric patients with localized primary brain tumors. International Journal of Radiation Oncology, Biology, and Physics, 53(5), 1271–1278.

    Google Scholar 

  681. Minniti, G., Muni, R., Lanzetta, G., Marchetti, P., & Enrici, R. M. (2009). Chemotherapy for glioblastoma: Current treatment and future perspectives for cytotoxic and targeted agents. Anticancer Research, 29(12), 5171–5184.

    PubMed  Google Scholar 

  682. Roman, D. D., & Sperduto, P. W. (1995). Neuropsychological effects of cranial radiation: Current knowledge and future directions. International Journal of Radiation Oncology, Biology, and Physics, 31(4), 983–998.

    Google Scholar 

  683. Sughrue, M. E., Rutkowski, M. J., Shangari, G., Parsa, A. T., Berger, M. S., & McDermott, M. W. (2011). Results with judicious modern neurosurgical management of parasagittal and falcine meningiomas. Clinical article. Journal of Neurosurgery, 114(3), 731–737.

    PubMed  Google Scholar 

  684. Torres, I. J., Mundt, A. J., Sweeney, P. J., et al. (2003). A longitudinal neuropsychological study of partial brain radiation in adults with brain tumors. Neurology, 60(7), 1113–1118.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Attention Disturbances Associated with Neurological Disease. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics