Skip to main content

Metabolic Myopathies

  • Chapter
Primer on the Rheumatic Diseases
  • 104k Accesses

The metabolic myopathies are a heterogeneous group of diseases characterized by impaired skeletal muscle energy production. Primary metabolic myopathies are associated with genetically determined defects in glycogen and lipid metabolism and in mitochondrial oxidative phosphorylation. These include the muscle glycogenoses and the lipid and mitochondrial myopathies. Other metabolic myopathies arise from endocrine or electrolyte abnormalities and therapy with specific drugs. A classification of the primary metabolic myopathies is presented in Table 19-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vladutiu GD. The molecular diagnosis of metabolic myopathies. Neurol Clin 2000;18:53–104.

    Article  CAS  PubMed  Google Scholar 

  2. DiMauro S, Lamperti C. Muscle glycogenoses. Muscle Nerve 2001;24:984–999.

    Article  CAS  PubMed  Google Scholar 

  3. Vissing J, Haller RG. The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med 2003;349:2503–2509.

    Article  CAS  PubMed  Google Scholar 

  4. Livingstone C, Chinnery PF, Turnbull DM. The ischaemic lactate-ammonia test. Ann Clin Biochem 2001;38:304–310.

    Article  CAS  PubMed  Google Scholar 

  5. Wortmann RL, DiMauro S. Differentiating idiopathic inflammatory myopathies from metabolic myopathies. Rheum Dis Clin North Am 2002;28:759–778.

    Article  PubMed  Google Scholar 

  6. Greenberg SA, Walsh RJ. Molecular diagnosis of inher-itable neuromuscular disorders. Part II: application of genetic testing in neuromuscular disease. Muscle Nerve 2005;31:431–451.

    Article  CAS  PubMed  Google Scholar 

  7. Kiechl S, Kohlendorfer U, Thaler C, et al. Different clinical aspects of debrancher deficiency myopathy. J Neurol Neurosurg Psychiatry 1999;67:364–368.

    Article  CAS  PubMed  Google Scholar 

  8. Amato AA. Acid maltase deficiency and related myopathies. Neurol Clin 2000;18:151–165.

    Article  CAS  PubMed  Google Scholar 

  9. Winkel LP, Hagemans ML, van Doorn PA, et al. The natural course of non-classic Pompe’s disease; a review of 225 published cases. J Neurol 2005;252:875–884.

    Article  PubMed  Google Scholar 

  10. Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med 1991;324:364–369.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Ye J, Ganapathy V, Longo N. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci USA 1999;96:2356–2360.

    Article  CAS  PubMed  Google Scholar 

  12. Cwik VA. Disorders of lipid metabolism in skeletal muscle. Neurol Clin 2000;18:167–184.

    Article  CAS  PubMed  Google Scholar 

  13. Deschauer M, Wieser T, Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol 2005;62:37–41.

    Article  PubMed  Google Scholar 

  14. Olpin SE. Fatty acid oxidation defects as a cause of neuromyopathic disease in infants and adults. Clin Lab 2005;51:289–306.

    CAS  PubMed  Google Scholar 

  15. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003;348:2656–2668.

    Article  CAS  PubMed  Google Scholar 

  16. Nardin RA, Johns DR. Mitochondrial dysfunction and neuromuscular disease. Muscle Nerve 2001;24:170–191.

    Article  CAS  PubMed  Google Scholar 

  17. Taivassalo T, Jensen TD, Kennaway N, DiMauro S, Vissing J, Haller RG. The spectrum of exercise tolerance in mitochondrial myopathies: a study of 40 patients. Brain 2003;126:413–423.

    Article  PubMed  Google Scholar 

  18. Tarnopolsky MA, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2005;37:2086–2093.

    Article  CAS  PubMed  Google Scholar 

  19. Taylor RW, Schaefer AM, Barron MJ, McFarland R, Turnbull DM. The diagnosis of mitochondrial muscle disease. Neuromuscul Disord 2004;14:237–245.

    Article  PubMed  Google Scholar 

  20. Tarnopolsky MA, Parise G, Gibala MJ, Graham TE, Rush JW. Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans. J Physiol 2001;533:881–889.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baer, A.N. (2008). Metabolic Myopathies. In: Klippel, J.H., Stone, J.H., Crofford, L.J., White, P.H. (eds) Primer on the Rheumatic Diseases. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68566-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68566-3_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-35664-8

  • Online ISBN: 978-0-387-68566-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics