Skip to main content

There are at least two main reasons why auditory processing models are constructed: to represent the results from a variety of experiments within one framework and to explain the functioning of the system. Specifically, processing models help generate hypotheses that can be explicitly stated and quantitatively tested for complex systems. The models can also help determine how a deficit in one or more components affects the overall operation of the system. The development of auditory models has been hampered by the complexity of the individual auditory processing stages and their interactions. This resulted in a multiplicity of auditory models described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacon SP, Grantham DW (1989) Modulation masking: effects of modulation frequency, depth, and phase. J Acoust Soc Am 85, 2575–2580.

    ADS  Google Scholar 

  • Blauert J (1997) Spatial Hearing: The Psychophysics of Human Sound Localization (MIT, Cambridge, MA).

    Google Scholar 

  • Brandenburg K, Stoll G (1994) ISO-MPEG-1 audio: a generic standard for coding of high-quality digital audio. J Audio Eng Soc 42, 780–792.

    Google Scholar 

  • Breebaart J, van de Par S, Kohlrausch A (2001a) Binaural processing model based on contralateral inhibition. I. Model structure. J Acoust Soc Am 110, 1074–1088.

    ADS  Google Scholar 

  • Breebaart J, van de Par S, Kohlrausch A (2001b) Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters. J Acoust Soc Am 110, 1089–1104.

    ADS  Google Scholar 

  • Breebaart J, van de Par S, Kohlrausch A (2001c) Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters. J Acoust Soc Am 110, 1105–1117.

    ADS  Google Scholar 

  • Brown JC, Puckette MS (1989) Calculation of a “narrowed” autocorrelation function. J Acoust Soc Am 85, 1595–1601.

    ADS  Google Scholar 

  • Buchholz JM, Mourjoloulus J (2004a) A computational auditory masking model based on signal dependent compression. I. Model description and performance analysis. Acust Acta Acust 5, 873–886.

    Google Scholar 

  • Buchholz JM, Mourjoloulus J (2004b) A computational auditory masking model based on signal dependent compression. II. Model simulations and analytical approximations. Acust Acta Acust 5, 887–900.

    Google Scholar 

  • Calhoun BM, Schreiner CE (1998) Spectral envelope coding in cat primary auditory cortex: linear and non-linear effects of stimulus characteristics. Eur J Neurosci 10, 926–940.

    Google Scholar 

  • Carlyon RP, Shamma S (2003) An account of monaural phase sensitivity. J Acoust Soc Am 114, 333–348.

    ADS  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93, 401–417.

    ADS  Google Scholar 

  • Chi T, Gao Y, Guyton MC, Ru P, Shamma S (1999) Spectro-temporal modulation transfer functions and speech intelligibility. J Acoust Soc Am 106, 2719–2732.

    ADS  Google Scholar 

  • Cohen MA, Grossberg S, Wysell LL (1995) A spectral network model of pitch perception. J Acoust Soc Am 98, 862–879.

    ADS  Google Scholar 

  • Colburn HS (1996) Computational models of binaural processing. In Auditory Computation, edited by HL Hawkins, TA McMullen, AN Popper and RR Fay (Springer, New York), pp 332–400.

    Google Scholar 

  • Colburn HS, Durlach NI (1978) Models of binaural interaction. In Handbook of Perception, edited by E Carterette and M Friedman (Academic, New York), Vol. IV, pp. 467–518.

    Google Scholar 

  • Colburn HS, Moss PJ (1981) Binaural interaction models and mechanisms. In Neuronal Mechanisms of Hearing, edited by J Syka and L Aitkin (Plenum Press, New York), pp. 283–288.

    Google Scholar 

  • Colburn HS, Han YA, Culotta CP (1990) Coincidence model of MSO responses. Hear Res 49, 335–346.

    Google Scholar 

  • Colburn HS, Carney LH, Heinz MG (2003) Quantifying the information in auditory-nerve responses for level discrimination. J Assoc Res Otolaryngol 4, 294–311.

    Google Scholar 

  • Dau T (2003) The importance of cochlear processing for the formation of auditory brainstem and frequency following responses. J Acoust Soc Am 113, 936–950.

    ADS  Google Scholar 

  • Dau T, Püschel D, Kohlrausch A (1996a) A quantitative model of the “effective” signal processing in the auditory system. I. Model structure. J Acoust Soc Am 99, 3615–3622.

    ADS  Google Scholar 

  • Dau T, Püschel D, Kohlrausch A (1996b) A quantitative model of the “effective” signal processing in the auditory system. II. Simulations and measurements. J Acoust Soc Am 99, 3623–3631.

    Google Scholar 

  • Dau T, Kollmeier B, Kohlrausch A (1997a) Modeling auditory processing of amplitude modulation. I. Modulation detection and masking with narrowband carriers. J Acoust Soc Am 102, 2892–2905.

    ADS  Google Scholar 

  • Dau T, Kollmeier B, Kohlrausch A (1997b) Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration in modulation detection. J Acoust Soc Am 102, 2906–2919.

    ADS  Google Scholar 

  • de Boer E (1980) Auditory physics. Physical principles in hearing theory. I. Phys Rep 62, 88–174.

    Google Scholar 

  • de Boer E (1984) Auditory physics. Physical principles in hearing theory. II. Phys Rep 105, 142–226.

    Google Scholar 

  • de Boer E (1991) Auditory physics. Physical principles in hearing theory. III. Phys Rep 203, 125–231.

    ADS  Google Scholar 

  • de Boer E (1995) The inverse problem solved for a three-dimensional model of the cochlea. I. Analysis. J Acoust Soc Am 98, 896–903.

    ADS  Google Scholar 

  • de Charms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280(5368), 1439–1443.

    ADS  Google Scholar 

  • de Cheveigné A (1998) Cancellation model of pitch perception. J Acoust Soc Am 103, 1261–1271.

    ADS  Google Scholar 

  • de Cheveigné A (2005) Pitch perception models. In Pitch: Neural Coding and Perception, edited by C Plack, AJ Oxenham, AN Popper and RR Fay (Springer, New York).

    Google Scholar 

  • Delgutte B (1990) Physiological mechanisms of psychophysical masking: observations from auditory-nerve fibers. J Acoust Soc Am 87, 791–809.

    ADS  Google Scholar 

  • Delgutte B (1996) Physiological models for basic auditory percepts. In Auditory Computation, edited by HL Hawkins, TA McMullen, AN Popper and RR Fay (Springer, New York), pp. 157–220.

    Google Scholar 

  • Derleth RP, Dau T (2000) On the role of envelope fluctuation processing in spectral masking. J Acoust Soc Am 108, 285–296.

    ADS  Google Scholar 

  • Derleth RP, Dau T, Kollmeier B (2001) Modeling temporal and compressive properties of the normal and impaired auditory system. Hear Res 159, 132–149.

    Google Scholar 

  • Duifhuis H (1976) Cochlear nonlinearity and second filter: possible mechanism and implications. J Acoust Soc Am 59, 408–423.

    ADS  Google Scholar 

  • Durlach NI (1963) Equalization and cancellation theory of binaural masking-level differences. J Acoust Soc Am 35, 1206–1218.

    ADS  Google Scholar 

  • Durlach NI (1972) Binaural signal detection: equalization and cancellation theory. In Foundations of Modern Auditory Theory, edited by J Tobias (Academic, New York), pp. 369–462.

    Google Scholar 

  • Elhilali M, Chi T, Shamma S (2003) A spectro-temporal modulation index (stmi) for assessment of speech intelligibility. Speech Commun 41, 331–348.

    Google Scholar 

  • Ewert SD, Dau T (2000) Characterizing frequency selectivity for envelope fluctuations. J Acoust Soc Am 108, 1181–1196.

    ADS  Google Scholar 

  • Ewert SD, Verhey JL, Dau T (2002) Spectro-temporal processing in the envelope-frequency domain. J Acoust Soc Am 112, 2921–2931.

    ADS  Google Scholar 

  • Fastl H (1993) Loudness evaluation by subjects and by a loudness meter. In Sensory Research – Multimodal Perspectives, edited by RT Verrillo (Erlbaum, Hillsdale, NJ), pp. 199–210.

    Google Scholar 

  • Fletcher H, Munson WA (1937) Relation between loudness and masking. J Acoust Soc Am 9, 82–108.

    Google Scholar 

  • Gaik W (1993) Combined evaluation of interaural time and intensity differences: psychoacoustic results and computer modeling. J Acoust Soc Am 94, 98–110.

    ADS  Google Scholar 

  • Gardner MB, Hawley MS (1972) Network representations of the external ear. J Acoust Soc Am 52, 1620–1628.

    ADS  Google Scholar 

  • Geisler CD (1990) Evidence for expansive power functions in the generation of the discharges of ‘low- and medium-spontaneous’ auditory-nerve fibers. Hear Res 44, 1–12.

    ADS  Google Scholar 

  • Giguére C, Woodland PC (1994) A computational model of the auditory periphery for speech and hearing research. I. Ascending path. J Acoust Soc Am 95, 331–342.

    ADS  Google Scholar 

  • Gilchrist N, Grewin C (1996) Collected Papers on Digital Audio Bit Rate Reduction (Audio Engineering Society, New York).

    Google Scholar 

  • Glasberg BR, Moore BCJ (2002) A model of loudness applicable to time-varying sounds. J Audio Eng Soc 50, 331–341.

    Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32, 613–636.

    Google Scholar 

  • Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 54, 1496–1516.

    ADS  Google Scholar 

  • Goldstein JL (1990) Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering. Hear Res 49, 39–60.

    Google Scholar 

  • Goldstein JL (1995) Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: data and MBPNL model. Hear Res 89, 52–68.

    Google Scholar 

  • Hansen M, Kollmeier B (1999) Continuous assessment of time-varying speech quality. J Acoust Soc Am 106, 2888–2899.

    ADS  Google Scholar 

  • Heinz MG, Zhang X, Bruce IC, Carney LH (2001a) Auditory-nerve model for predicting performance limits of normal and impaired listeners. ARLO 5(3), 91–96.

    Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001b) Evaluating auditory performance limits: I. One-parameter discrimination using a computational model for the auditory nerve. Neural Comput 13, 2273–2316.

    MATH  Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001c) Evaluating auditory performance limits: II. One-parameter discrimination with random-level variation. Neural Comput 13, 2317–2338.

    MATH  Google Scholar 

  • Hermansky H, Morgan N (1994) Rasta processing of speech. IEEE Trans Speech Audio Process 2, 578–589.

    Google Scholar 

  • Hewitt MJ, Meddis R (1991) An evaluation of eight computer models of mammalian inner hair-cell function. J Acoust Soc Am 90, 904–917.

    ADS  Google Scholar 

  • Hewitt MJ, Meddis R (1994) A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus. J Acoust Soc Am 95, 2145–2159.

    ADS  Google Scholar 

  • Houtgast T (1989) Frequency selectivity in amplitude-modulation detection. J Acoust Soc Am 85, 1676–1680.

    ADS  Google Scholar 

  • Hubbard AE, Mountain DC (1996) Analysis and synthesis of cochlear mechanical function using models. In Auditory Computation, edited by HL Hawkins, TA McMullen, AN Popper and RR Fay (Springer, New York), pp. 62–120.

    Google Scholar 

  • Irino T, Patterson RD (1997) A time-domain, level-dependent auditory filter: the gammachirp. J Acoust Soc Am 101, 412–419.

    ADS  Google Scholar 

  • Irino T, Patterson RD (2000) A gammachirp perspective of cochlear mechanics that can also explain human auditory masking quantitatively. In Recent Developments in Auditory Mechanics, edited by H Wada, T Takasaka, K Ikeda, K Ohyama and T Koike (World Scientific, Singapore), pp. 230–236.

    Google Scholar 

  • Irino T, Patterson RD (2001) A compressive gammachirp auditory filter for both physiological and psychophysical data. J Acoust Soc Am 109, 2008–2022.

    Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41, 35–39.

    Google Scholar 

  • Jepsen ML, Ewert SD, Dau T (2008) A computational model of human auditory signal processing and perception. J Acoust Soc AM in press, expected in issue 124(1) July 2008.

    Google Scholar 

  • Jesteadt W, Bacon SP, Lehman JR (1982) Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 71, 950–962.

    ADS  Google Scholar 

  • Joris PX, Yin TCT (1995) Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. J Neurophysiol 73, 1043–1062.

    Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84, 541–577.

    Google Scholar 

  • Killion MC, Clemis JD (1981) An engineering view of middle ear surgery. J Acoust Soc Am 69 (Suppl 1), S44.

    ADS  Google Scholar 

  • Kim DO (1986) Active and nonlinear biomechanics and the role of the outer-hair-cell subsystem in the mammalian auditory system. Hear Res 22, 105–114.

    Google Scholar 

  • Kleinschmidt M, Tchorz J, Kollmeier B (2001) Combining speech enhancement and auditory feature extraction for robust speech recognition. Speech Commun 32, 75–91.

    Google Scholar 

  • Kollmeier B, Hohmann V (1995) Loudness estimation and compensation employing a categorical scale. In Advances in Hearing Research, edited by GA Manley, GM Klump, C Köppl, H Fastl and H Öckinghaus (World Scientific, Singapore).

    Google Scholar 

  • Kuwada S, Yin TC, Syka J, Buunen TJ, Wickesberg RE (1984) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. J Neurophysiol 51, 1306–1325.

    Google Scholar 

  • Langner G (1981) Neuronal mechanisms for pitch analysis in the time domain. Exp Brain Res 44, 450–454.

    Google Scholar 

  • Langner G (1997) Neural processing and representation of periodicity pitch. Acta Otolaryngol Suppl 532, 68–76.

    Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol 60, 1799–1822.

    Google Scholar 

  • Langner G, Sams M, Heil P, Schulze H (1997) Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. J Comp Physiol 181, 665–676.

    Google Scholar 

  • Launer S, Moore BCJ (2002) Use of a loudness model for hearing aid fitting. V. On-line gain control in a digital hearing aid. Int J Audiol 42, 262–273.

    Article  Google Scholar 

  • Licklider JC (1951) A duplex theory of pitch perception. Experientia 7, 128–134.

    Google Scholar 

  • Lindemann W (1986) Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. J Acoust Soc Am 80, 1608–1622.

    ADS  Google Scholar 

  • Lopez-Poveda EA, Meddis R (2001) A human nonlinear cochlear filterbank. J Acoust Soc Am 110, 3107–3118.

    ADS  Google Scholar 

  • Lorenzi C, Micheyl C, Berthommier F (1995) Neuronal correlates of perceptual amplitude-modulation detection. Hear Res 90, 219–227.

    Google Scholar 

  • Lutman ME, Martin AM (1979) Development of an electroacoustic analogue model of the middle ear and acoustic reflex. J Sound Vibr 64, 133–157.

    ADS  Google Scholar 

  • Lyon R, Shamma S (1996) Auditory representations of timbre and pitch. In Auditory Computation, edited by HL Hawkins, TA McMullen, AN Popper and RR Fay (Springer, New York), pp. 221–270.

    Google Scholar 

  • McAlpine D, Jiang D, Shackleton TM, Palmer AR (1998) Convergent input from brainstem coincidence detectors onto delay-sensitive neurons in the inferior colliculus. J Neurosci 18, 6026–6039.

    Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79, 702–711.

    ADS  Google Scholar 

  • Meddis R (1988) Simulation of auditory-neural transduction: further studies. J Acoust Soc Am 83, 1056–1063.

    ADS  Google Scholar 

  • Meddis R, Hewitt MJ (1992) Modeling the identification of concurrent vowels with different fundamental frequencies. J Acoust Soc Am 91, 233–245.

    ADS  Google Scholar 

  • Meddis R, O’Mard L (1997) A unitary model of pitch perception. J Acoust Soc Am 102, 1811–1820.

    ADS  Google Scholar 

  • Meddis R, O’Mard LP, Lopez-Poveda EA (2001) A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am 109, 2852–2861.

    Google Scholar 

  • Middlebrooks JC (1992) Narrow-band sound localization related to external ear acoustics. J Acoust Soc Am 92, 2607–2624.

    ADS  Google Scholar 

  • Møller AR (1976) Dynamic properties of excitation and two-tone inhibition in the cochlear nucleus studied using amplitude-modulated tones. Exp Brain Res 25, 307–321.

    Google Scholar 

  • Moore BCJ (2003) An Introduction to the Psychology of Hearing, 5th Ed. (Academic, Amsterdam).

    Google Scholar 

  • Moore BCJ, Glasberg BR, Plack CJ, Biswas AK (1988) The shape of the ear’s temporal window. J Acoust Soc Am 83, 1102–1116.

    ADS  Google Scholar 

  • Moore BCJ, Glasberg BR, Baer T (1997) A model for the prediction of thresholds, loudness, and partial loudness. J Audio Eng Soc 45, 224–240.

    Google Scholar 

  • Neely ST (1983) The cochlear amplifier. In Mechanics of Hearing, edited by E de Boer and MA Viergever (Martinus Nijhoff, The Hague), pp. 111–118.

    Google Scholar 

  • Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116, 2173–2186.

    Google Scholar 

  • Nelson DA, Swain AC (1996) Temporal resolution within the upper accessory excitation of a masker. Acust Acta Acust 82, 328–334.

    Google Scholar 

  • Olson ES (1999) Direct measurement of intracochlear pressure waves. Nature (London) 402, 526–529.

    ADS  Google Scholar 

  • Oxenham AJ (2001) Forward masking: adaptation or integration? J Acoust Soc Am 109, 732–741.

    ADS  Google Scholar 

  • Oxenham AJ, Moore BCJ (1994) Modeling the additivity of nonsimultaneous masking. Hear Res 80, 105–118.

    Google Scholar 

  • Oxenham AJ, Moore BCJ (1997) Modeling the effects of peripheral nonlinearity in listeners with normal and impaired hearing. In Modeling Sensorineural Hearing Loss, edited by W Jesteadt (Erlbaum, Hillsdale, NJ).

    Google Scholar 

  • Oxenham AJ, Bernstein JG, Penagos H (2004) Correct tonotopic representation is necessary for complex pitch perception. Proc Natl Acad Sci 101, 1421–1425.

    Google Scholar 

  • Palmer AR (1995) Neural signal processing. In Hearing, edited by BCJ Moore (Academic, San Diego).

    Google Scholar 

  • Palmer AR, McAlpine D, Jiang D (1997) Processing of interaural delay in the inferior colliculus. In Acoustical Signal Processing in the Central Auditory System, edited by J Syka (Plenum, New York), pp. 353–364.

    Google Scholar 

  • Patterson RP, Nimmo-Smith I, Holdsworth J, Rice P (1987) An efficient auditory filterbank based on the gammatone function. In a paper presented at a meeting of the IOC Speech Group on Auditory Modeling at RSRE.

    Google Scholar 

  • Patterson RD, Robinson K, Holdsworth J, McKeown D, Zhang C, Allerhand M (1992) Complex sounds and auditory images. In Auditory Physiology and Perception, Proceedings of the 9th International Symposium on Hearing, edited by Y Cazals, L Demany and K Horner (Pergamon, Oxford), pp. 429–446.

    Google Scholar 

  • Patterson RD, Allerhand MH, Giguére C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98, 1890–1894.

    ADS  Google Scholar 

  • Pfeiffer RR (1970) A model for two-tone inhibition of single cochlear-nerve fibers. J Acoust Soc Am 48, 1373–1378.

    ADS  Google Scholar 

  • Plack CJ, Oxenham AJ (1998) Basilar-membrane nonlinearity and the growth of forward masking. J Acoust Soc Am 103, 1598–1608.

    ADS  Google Scholar 

  • Rees A, Møller AR (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hear Res 10, 301–330.

    Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49, 1218–1231.

    ADS  Google Scholar 

  • Rhode WS, Oertel D, Smith PH (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat ventral cochlear nucleus. J Comp Neurol 213, 448–463.

    Google Scholar 

  • Ru P, Shamma S (2003) Presentation of musical timbre in the auditory cortex. J New Music Res 26, 154–169.

    Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11, 1057–1067.

    Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory nerve fibers in cats: tone burst stimuli. J Acoust Soc Am 81, 680–691.

    Google Scholar 

  • Schoonhoven R, Prijs VF, Frijns JH (1997) Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres. Hear Res 113, 247–260.

    Google Scholar 

  • Searle CL, Braida LD, Davis MF, Colburn HS (1976) Model for auditory localization. J Acoust Soc Am 60, 1164–1175.

    ADS  Google Scholar 

  • Shamma S, Klein D (2000) The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J Acoust Soc Am 107, 2631–2644.

    ADS  Google Scholar 

  • Shamma SA (2004) Topographic organization is essential for pitch perception. Proc Natl Acad Sci 101, 1114–1115.

    ADS  Google Scholar 

  • Shamma SA, Shen NM, Gopalaswamy P (1989) Stereausis: binaural processing without neural delays. J Acoust Soc Am 86, 989–1006.

    ADS  Google Scholar 

  • Shaw EAG (1980) The acoustics of the external ear. In Acoustical Factors Affecting Hearing Aid Performance, edited by GA Studebaker and IH Hochberg (University Park, Baltimore), pp. 109–125.

    Google Scholar 

  • Shekhter I, Carney LH (1997) A nonlinear auditory nerve model for CF-dependent shift in tuning with sound level. Assoc Res Otolaryngol Abs 20, 670.

    Google Scholar 

  • Shera CA (2001) Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. J Acoust Soc Am 109, 2023–2034.

    ADS  Google Scholar 

  • Siebert WM (1965) Some implications of the stochastic behavior of primary auditory neurons. Kybernetik 2, 206–215.

    Google Scholar 

  • Siebert WM (1970) Frequency discrimination in the auditory system: place or periodicity mechanism. Proc IEEE 58, 723–730.

    Google Scholar 

  • Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282, 595–616.

    Google Scholar 

  • Stone MA, Moore BCJ, Glasberg BR (1997) A real-time DSP-based loudness meter. In Contributions to Psychological Acoustics, edited by A Schick and M Klatte (BIS Universität, Oldenburg), pp. 587–601.

    Google Scholar 

  • Summer CJ, O’Mard LP, Lopez-Poveda EA, Meddis R (2003) A nonlinear filter-bank model of the guinea-pig cochlear nerve: Rate responses. J Acoust Soc Am 113, 3264–3274.

    ADS  Google Scholar 

  • Tchorz J, Kollmeier B (1999) A model of auditory perception as front end for automatic speech recognition. J Acoust Soc Am 106, 2040–2050.

    ADS  Google Scholar 

  • Terhardt E (1979) Calculating virtual pitch. Hear Res 1, 155–182.

    Google Scholar 

  • Verhey JL (2002) Modeling the influence of inherent envelope fluctuations in simultaneous masking experiments. J Acoust Soc Am 111, 1018–1025.

    ADS  Google Scholar 

  • Verhey JL, Dau T, Kollmeier B (1999) Within-channel cues in comodulation masking release (CMR): experiments and model predictions using a modulation-filterbank model. J Acoust Soc Am 106, 2733–2745.

    ADS  Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66, 1364–1380.

    ADS  Google Scholar 

  • Wightman FL (1973) The pattern-transformation model of pitch. J Acoust Soc Am 54, 407–416.

    ADS  Google Scholar 

  • Zacksenhouse M, Johnson DH, Tsuchitani C (1992) Excitatory/inhibitory interaction in the LSO revealed by point process modeling. Hear Res 62, 105–123.

    Google Scholar 

  • Zhang XD, Heinz MG, Bruce IC, Carney LH (2001) A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression. J Acoust Soc Am 109, 648–670.

    Google Scholar 

  • Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89, 1229–1254.

    ADS  Google Scholar 

  • Zwicker E (1965) Temporal effects in simultaneous masking and loudness. J Acoust Soc Am 38, 132–141.

    ADS  Google Scholar 

  • Zwicker E (1977) Procedure for calculating loudness of temporally variable sounds. J Acoust Soc Am 62, 675–682.

    ADS  Google Scholar 

  • Zwicker E, Fastl H (1999) Psychoacoustics – Facts and Models, 2nd Ed. (Springer, Berlin).

    Google Scholar 

  • Zwicker E, Scharf B (1965) A model of loudness summation. Psychol Rev 72, 3–26.

    Google Scholar 

  • Zwislocki JJ (1962) Analysis of the middle-ear function. Part I: input impedance. J Acoust Soc Am 34, 1514–1523.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dau, T. (2008). Auditory Processing Models. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_12

Download citation

Publish with us

Policies and ethics