Skip to main content

Cross-Sectional Imaging of Dysphagia

  • Chapter
Normal and Abnormal Swallowing

Abstract

For the past 30 years, videopharyngography has been successfully utilized for evaluation of patients with a variety of swallowing abnormalities. However, this radiological examination has two major limitations. First, although the videopharyngogram is a sensitive physiological technique that provides valuable functional information, it is limited in its ability to assess structure and detailed anatomy. Small pathological lesions may easily elude detection by this technique. In addition, owing to limited resolution, poor soft tissue contrast, and the inability to visualize extraluminal extension of tumors, only gross anatomical localization of larger lesions is possible. Second, the functional abnormalities identified with videopharynography are often nonspecific. Many conditions can produce the same symptoms and the same abnormalities on videopharyngography. Therefore, these patients often require additional imaging techniques (i.e., CT or MR) to demonstrate the precise neuroanatomical cause of the physiological swallowing abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht T, Blomley MY. Spiral computed tomography: principles and clinical use. Hosp Med 1998; 59: 120–125.

    PubMed  CAS  Google Scholar 

  2. Brink JA. Technical aspects of helical (spiral) CT. Radiol Clin North Am 1995; 33: 825–841.

    PubMed  CAS  Google Scholar 

  3. Brink JA, McFarland EG, Heiken JP. Helical/ spiral computed body tomography. Clin Radiol 1997; 52: 489–503.

    Article  PubMed  CAS  Google Scholar 

  4. Johnson PT, Fishman EK, Duckwall JR, Calhoun PS, Heath DG. Interactive three-dimensional volume rendering PF spiral CT data: current applications in the thorax. RadioGraphics 1998; 18: 165–187.

    PubMed  CAS  Google Scholar 

  5. Zeman RK, Silverman PM, Vieco PT, Costello P. CT angiography. AJR Am J Roentgenol 1995; 165: 1079–1088.

    PubMed  CAS  Google Scholar 

  6. Becker CR, Schoepf UJ, Bruning R, et al. First experiences with multislice CT Somatom Plus 4 Volume Zoom: thoracic combination scan for comprehensive diagnosis of the mediastinum, the thoracic vessels and the lung parenchyma. Electromedia 1999; 67: 47–49.

    Google Scholar 

  7. Berland LL, Smith JK. Multidetector-array CT: once again, technology creates new opportunities. Radiology 1998; 209: 327–329.

    PubMed  CAS  Google Scholar 

  8. Hu H, Foley WD, Fox SH. Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 2000; 215: 55–62.

    PubMed  CAS  Google Scholar 

  9. Horton KM, Fishman EK. 3D CT angiography of the celiac and superior mesenteric arteries with multidetector CT data sets: preliminary observations. Abdom Imaging 2000; 25: 523–525.

    Article  PubMed  CAS  Google Scholar 

  10. Kassel E, Keller A, Kuchorczyk W. MRI of the floor of the mouth, tongue and orohypopharynx. Radiol Clin North Am 1989; 27: 331–351.

    PubMed  CAS  Google Scholar 

  11. Vogl T, Dresel S, Bilaniuk L, et al. Tumors of the nasopharynx and adjacent areas: MR imaging with GD-DTPA. Am J Neuroradiol 1990; 154: 187–194.

    Google Scholar 

  12. Mancuso A, Hanafee W. Computed Tomography and Magnetic Resonance Imaging of the Head and Neck. Baltimore: Williams and Wilkins; 1985.

    Google Scholar 

  13. Hasso A, Tang T. Magnetic resonance imaging of the pharynx and larynx. Top Magn Reson Imaging 1994; 6: 224–240.

    PubMed  CAS  Google Scholar 

  14. Lewine JD, Orrison WW Jr. Magnetic source imaging: basic principles and applications in neuroradiology. Acad Radiol 1995; 2: 436–440.

    Article  PubMed  CAS  Google Scholar 

  15. Vogler J III, Murphy W. Bone marrow imaging. Radiology 1988: 679–693.

    Google Scholar 

  16. Yousem DM, Chalian AA. Oral cavity and pharynx. Radiol Clin North Am 1998; 36: 967–981.

    Article  PubMed  CAS  Google Scholar 

  17. Mukherji SK, Castillo M. Normal cross-sectional anatomy of the nasopharynx, oropharynx, and oral cavity. Neuroimaging Clin N Am 1998; 8: 211–218.

    PubMed  CAS  Google Scholar 

  18. Christianson R, Lufkin R, Vinuela R, et al. Normal magnetic resonance imaging anatomy of the tongue, oropharynx, hypopharynx, and larynx. Dysphagia 1987: 119–127.

    Google Scholar 

  19. Lufkin R, Wortham D, Dietrich R, et al. Tongue and oropharynx findings on MRI. Radiology 1986: 69–75.

    Google Scholar 

  20. Frazell E, Lucas J. Cancer of the tongue: report on the management of 1554 patients. Cancer 1962: 1085–1099.

    Google Scholar 

  21. Laine F, Smoker W. Oral cavity: anatomy and pathology. Semin Ultrasound Comput Tomogr Magn Reson 1995; 16: 527–545.

    Article  CAS  Google Scholar 

  22. Smoker W. Oral cavity. In: Som PM, ed. Head and Neck Imaging. St. Louis, MO: CV Mosby; 1996: 61–96.

    Google Scholar 

  23. Baker L, Dillon W, Hieshima G, Dowd C, Frieden I. Hemangiomas and vascular malformations of the head and neck: MR characterization. Am J Neuroradiol 1993; 14: 307–314.

    PubMed  CAS  Google Scholar 

  24. Yarington C. Pathology of the oral cavity. In: Paparella MM, ed. Otolaryngology. Philadelphia: WB Saunders; 1980.

    Google Scholar 

  25. Million R, Cassis N. Management of Head and Neck Cancer. Philadelphia: JB Lippincott; 1994.

    Google Scholar 

  26. Teresi L, Lufkin R, Vinuela F, et al. MR imaging of the nasopharynx and the floor of the middle cranial fossa: II, malignant tumors. Radiology 1987: 817–821.

    Google Scholar 

  27. Halvorsen R. Imaging of the pharynx and esophagus. Curr Opin Radiol 1992; 418–425.

    Google Scholar 

  28. Wertheimer-Hatch L, Hatch III G, Hatch B, et al. Tumors of the oral cavity and pharynx. World J Surg 2000; 24: 395–400.

    Article  PubMed  CAS  Google Scholar 

  29. Curtin H. Nasopharynx and paranasopharyngeal space. In: Latchaw R, ed. Computed Tomography of the Head and Spine. Chicago: Year Book Medical Publishers; 1985: 551–561.

    Google Scholar 

  30. Sigal R. Oral cavity, oropharynx, and salivary glands. Neuroimaging Clin NAm 1996; 6: 379–400.

    CAS  Google Scholar 

  31. Tabor E, Curtin H. MR of the salivary glands. Radiol Clin North Am 1989; 27: 379–392.

    PubMed  CAS  Google Scholar 

  32. Weissman J. Imaging of the salivary glands. Semin Ultrasound Comput Tomogr Magn Reson 1995; 16: 546–568.

    Article  CAS  Google Scholar 

  33. Mancuso A, Dillon W. The neck. Radiol Clin North Am 1989; 27: 407–434.

    PubMed  CAS  Google Scholar 

  34. Som P, Braun I, Shapiro M, et al. Tumors of the parapharyngeal space and upper neck: magnetic resonance imaging characteristics. Radiology 1987; 164: 823–829.

    PubMed  CAS  Google Scholar 

  35. Batsakis J. Tumors of the Head and Neck: Clinical and Pathologic Considerations. Baltimore: Williams and Wilkins; 1979: 144–175.

    Google Scholar 

  36. Horton KM, Fishman EK. Spiral CT of the esophagus and stomach. In: Fishman EK Jr, ed. Spiral CT: Principles, Techniques and Practical Applications. New York: Raven Press; 1998: 211–230.

    Google Scholar 

  37. Halber MD, Daffner RH. CT of the esophagus: I, normal appearance. Am J Roentgenol 1979; 133: 1047–1050.

    CAS  Google Scholar 

  38. Noh HM, Fishman EK, Forastiere AA, Bliss DF, Calhoun PS. CT of the esophagus: spectrum of disease with emphasis on esophageal carcinoma. RadioGraphics 1995; 15: 1113–1134.

    PubMed  CAS  Google Scholar 

  39. Rabushka LS, Fishman EK, Kuhlman JE. CT evaluation of achalasia. J Comput Assist Tomogr 1991; 15: 434–439.

    Article  PubMed  CAS  Google Scholar 

  40. Van Overhagen H, Lameris JS, Berger MY. CT assessment of resectability prior to transhiatal esophagectomy for esophageal/ gastroesophageal junction carcinoma. J Comput Assist Tomogr 1993; 17: 367–373.

    Article  PubMed  Google Scholar 

  41. McLoughlin MJ, Weisbord G, Wise DH, Yeung HPH. Computed tomography in congenital anomalies of the aortic arch and great vessels. Radiology 1981; 138: 399–403.

    PubMed  CAS  Google Scholar 

  42. Proto AV, Cuthbert NW, Raider L. Aberrant right subclavian artery: further observations. AJR Am J Roentgenol 1987; 148: 253–257.

    PubMed  CAS  Google Scholar 

  43. Buchholz D. Neurologic causes of dysphagia. Dysphagia 1987; 1: 152–156.

    Article  Google Scholar 

  44. Buchholz D. Neurologic evaluation of dysphagia. Dysphagia 1987; 1: 187–192.

    Article  Google Scholar 

  45. Buchholz D, Bosma J, Donner M. Adaptation, compensation and decompensation of the pharyngeal swallow. Gastrointest Radiol 1985; 10: 235–239.

    Article  PubMed  CAS  Google Scholar 

  46. Kirshner H. Causes of neurogenic dysphagia. Dysphagia 1989; 3: 184–188.

    Article  PubMed  CAS  Google Scholar 

  47. Bahn MM, Oser AB, Cross III DT. CT and MRI of stroke. J Magn Reson Imaging 1996; 6: 833–845.

    Article  PubMed  CAS  Google Scholar 

  48. Gonzales R, Schaefer P, Buonanno F, et al. Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 1999; 210: 155–162.

    Google Scholar 

  49. Schaefer P, Grant P, Gonzalez R. Diffusion-weighted MR imaging of the brain. Radiology 2000; 217: 331–335.

    PubMed  CAS  Google Scholar 

  50. Weitze C, Hertel G, Brittner W. Multiple sclerosis: diagnostic value of computerized tomography with delayed scanning after a double dose of contrast medium in comparison with other tests. NeurosurgRev 1988; 11: 53–58.

    Article  CAS  Google Scholar 

  51. Miller D. MRI: sensitive and safe in diagnosing multiple sclerosis. Magn Reson Imaging Decisions 1988: 17–24.

    Google Scholar 

  52. Miller D. Multiple sclerosis: use of MRI in evaluating new therapies. Semin Neurol 1998; 18: 317–325.

    Article  PubMed  CAS  Google Scholar 

  53. Young I, Randell C, Kaplan P, et al. Nuclear magnetic resonance (NMR) in the white matter disease of the brain using spin-echo sequences. J Comput Assist Tomogr 1983: 290–294.

    Google Scholar 

  54. Gasperini C, Paolillo A, Rovaris M, Yousry T, et al. A comparison of the sensitivity of MRI after double and triple-dose Gd-DTPA for detecting enhancing lesions in multiple sclerosis. Magn Reson Imaging 2000; 18: 761–763.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Point, S.W., Horton, K.M., Bryan, R.N., Cunningham, E.T., Zinreich, S.J. (2003). Cross-Sectional Imaging of Dysphagia. In: Jones, B. (eds) Normal and Abnormal Swallowing. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22434-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22434-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2904-4

  • Online ISBN: 978-0-387-22434-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics