Skip to main content

Abstract

In many areas of research, datasets have a multilevel or hierarchical structure. By hierarchy we mean that units at a certain level are grouped or clustered into, or nested within, higher-level units. The “level” signifies the position of a unit or observation within the hierarchy. This implies that the data are collected in groups or clusters. Examples of clusters are families, schools, and firms. In each of these examples a cluster is a collection of units on which observations can be made. In the case of schools, we can have three levels in the hierarchy with pupils (level 1) within classes (level 2) within schools (level 3). The key thing that defines a variable as being a level is that its units can be regarded as a random sample from a wider population of units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Barlow, R.E., Bartholomew, D.J., Bremner, J.M., Brunk, H.D.: Statistical Inference under Order Restrictions: The Theory and Application of Isotonic Regression. New York, Wiley (1972)

    MATH  Google Scholar 

  2. Berg, W. van den, Eerde, H.A.A. van, Klein, A.S.: Proef op de som: Praktijk en resultaten van reken/wiskundeonderwijs aan allochtone leerlingen op de basisschool [Practice and Results of Education Arithmatics and Mathematics for Immigrant Children in Elementary School]. Rotterdam, RISBO (1993)

    Google Scholar 

  3. Box, G.E.P., Draper, N.R.: Empirical Model-Building and Response Surfaces. New York, Wiley (1987)

    MATH  Google Scholar 

  4. Browne, W.J.: MCMC Estimation in MLwiN (Version 2.0). London, Institute of Education University of London (2003)

    Google Scholar 

  5. Bryk, A.S., Raudenbush, S.W.: Hierarchical Linear Models: Applications and Data Analysis Methods. London, Sage (1999)

    Google Scholar 

  6. Curran, P.J., Stice, E., Chassin, L.: The relation between adolescent and peer alcohol use: A longitudinal random coefficients model. Journal of Consulting and Clinical Psychology, 65, 130–140 (1997)

    Article  Google Scholar 

  7. Gamoran, A.: The variable effects of high school tracking. American Sociological Review, 57, 812–828 (1992)

    Article  Google Scholar 

  8. Geary, D.C.: Children’s Mathematical Development: Research and Practical Applications. Washington, DC, APA (1994)

    Book  Google Scholar 

  9. Gelfand, A.E., Smith, A.F.M., Lee, T.M.: Bayesian analysis of constrained parameter and truncated data problems using gibbs sampling. Journal of the American Statistical Association, 87, 523–532 (1992)

    Article  MathSciNet  Google Scholar 

  10. Gelman, A.: Scaling regression inputs by dividing by two standard deviations. Statistics in Medicine (in press)

    Google Scholar 

  11. Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge, Cambridge University Press (2007)

    Google Scholar 

  12. Goldstein, H.: Multilevel Statistical Models (2nd edition). London, Edward Arnold (1995)

    Google Scholar 

  13. Hoijtink, H.: Posterior inference in the random intercept model based on samples obtained with Markov chain Monte Carlo methods. Computational Statistics, 15, 315–336 (2000)

    Article  MATH  Google Scholar 

  14. Hox, J.: Multilevel Analysis: Techniques and Applications. London, Lawrence Erlbaum Associates (2002)

    Google Scholar 

  15. Kato, B.S., Hoijtink, H.: A Bayesian approach to inequality constrained linear mixed models: estimation and model selection. Statistical Modelling, 6, 231–249 (2006)

    Article  MathSciNet  Google Scholar 

  16. Klugkist, I., Hoijtink, H.: The Bayes factor for inequality and about equality constrained models. Computational Statistics & Data Analysis, 51, 6367–6379 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Klugkist, I., Kato, B., Hoijtink, H.: Bayesian model selection using encompassing priors. Statistica Neerlandica, 59, 57–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Longford, N.T.: Random Coefficient Models. London, Oxford University Press (1993)

    MATH  Google Scholar 

  19. Maxwell, S.E.: The persistence of underpowered studies in psychological research: Causes, consequences, and remedies. Psychological Methods, 9, 147–163 (2004)

    Article  MathSciNet  Google Scholar 

  20. Platt, J.R.: Strong inference. Science, 146, 347–353 (1964)

    Article  Google Scholar 

  21. Press, S.J.: Subjective and Objective Bayesian Statistics: Principles, Models, and Applications (2nd edition). New York, Wiley (2003)

    MATH  Google Scholar 

  22. Silvapulle, M.J., Sen, P.K.: Constrained Statistical Inference: Inequality, Order and Shape Restrictions. Hoboken NJ, Wiley (2005)

    MATH  Google Scholar 

  23. Singer, J.D.: Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and behavioral Statistics, 24, 323–355 (1998)

    Google Scholar 

  24. Singer, J.D., Willett, J.B.: Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. New York, Oxford University Press (2003)

    Google Scholar 

  25. Smith, A.F.M., Roberts, G.O.: Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods. Journal of the Royal Statistical Society, Series B, 55, 3–23 (1993)

    MATH  MathSciNet  Google Scholar 

  26. Snijders, T., Bosker, R.: Multilevel Analysis: An Introduction to the Basic and Advanced Multilevel Modeling. London, Sage (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernet Sekasanvu Kato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kato, B.S., Peeters, C.F. (2008). Inequality Constrained Multilevel Models. In: Hoijtink, H., Klugkist, I., Boelen, P.A. (eds) Bayesian Evaluation of Informative Hypotheses. Statistics for Social and Behavioral Sciences. Springer, New York, NY. https://doi.org/10.1007/978-0-387-09612-4_13

Download citation

Publish with us

Policies and ethics