Skip to main content

Hallucinogens in Drug Discrimination

  • Chapter
Behavioral Neurobiology of Psychedelic Drugs

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 36))

Abstract

Hallucinogens comprise a diverse collection of chemicals with multifarious receptor actions in the central nervous system. Preclinical drug screening methods have proven invaluable in the evaluation and characterization of hallucinogen psychopharmacology. Used in concert with structural chemistry and receptor pharmacology methods, preclinical drug discrimination research has informed our current understanding of hallucinogens and the neurochemical receptor mechanisms responsible for their interoceptive stimulus effects. This chapter summarizes the strengths and limitations of drug discrimination as an in vivo drug detection method and offers a brief review of historical and contemporary drug discrimination research with classical hallucinogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Appel JB, Callahan PM (1989) Involvement of 5-HT receptor subtypes in the discriminative stimulus properties of mescaline. Eur J Pharmacol 159:41–46

    Article  CAS  PubMed  Google Scholar 

  • Appel JB, White FJ, Holohean AM (1982) Analyzing mechanism(s) of hallucinogenic drug action with drug discrimination procedures. Neurosci Biobehav Rev 6:529–536

    Article  CAS  PubMed  Google Scholar 

  • Appel JB, West WB, Rolandi WG, Alici T, Pechersky K (1999) Increasing the selectivity of drug discrimination procedures. Pharmacol Biochem Behav 64:353–358

    Article  CAS  PubMed  Google Scholar 

  • Baker LE, Taylor MM (1997) Assessment of the MDA and MDMA optical isomers in a stimulant-hallucinogen discrimination. Pharmacol Biochem Behav 57:737–748

    Article  CAS  PubMed  Google Scholar 

  • Baker LE, Broadbent J, Michael EK, Matthews CA, Metosh RB, West WB, Appel JB (1995) Assessment of the discriminative stimulus effects of the optical isomers of ecstasy (3,4-methylenedioxymethamphetamine; MDMA). Behav Pharmacol 6:263–275

    Article  CAS  PubMed  Google Scholar 

  • Béïque JC, Imad M, Mladenovic L, Gingrich JA, Andrade R (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci 104(23):9870–9875

    Article  PubMed  PubMed Central  Google Scholar 

  • Callahan PM, Appel JB (1988) Differences in the stimulus properties of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine in animals trained to discriminate hallucinogens from saline. J Pharmacol Exp Ther 246:866–870

    CAS  PubMed  Google Scholar 

  • Callahan PM, Appel JB (1990) Differentiation between the stimulus effects of LSD and lisuride using a three-choice drug discrimination procedure. Psychopharmacology 100:13–18

    Article  CAS  PubMed  Google Scholar 

  • Carbonaro TM, Eshleman AJ, Forster MJ, Cheng K, Rice KC, Gatch MB (2015) The role of 5-HT2A, 5-HT2C and mGlu2 receptors in the behavioral effects of tryptamine hallucinogens N,N-dimethyltryptamine and N,N-diisopropyltryptamine in rats and mice. Psychopharmacology 232: 275–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Colpaert FC (1999) Drug discrimination in neurobiology. Pharmacol Biochem Behav 64:337–345

    Article  CAS  PubMed  Google Scholar 

  • Colpaert FC, Niemegeers CJ, Janssen PA (1982) A drug discrimination analysis of lysergic acid diethylamide (LSD): in vivo agonist and antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, a LSD-antagonist. J Pharmacol Exp Ther 221:206–214

    CAS  PubMed  Google Scholar 

  • Conn PJ, Sanders-Bush E (1986) Regulation of serotonin-stimulated phosphoinositide hydrolysis: relation to the 5-HT2 binding site. J Neurosci 6:3669–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn PJ, Janowsky A, Sanders-Bush E (1987) Denervation supersensitivity of the 5-HT1C receptors in rat choroid plexus. Brain Res 400:396–398

    Article  CAS  PubMed  Google Scholar 

  • Delille HK, Becker JM, Burkhardt S, Bleher B, Terstappen GC, Schmidt M, Meyer AH, Unger L, Marek GJ, Mezler M (2012) Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology 62:2184–2191

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Murnane KS, Reissig CJ (2008) The behavioral pharmacology of hallucinogens. Biochem Pharmacol 75:17–33

    Article  CAS  PubMed  Google Scholar 

  • Fiorella D, Rabin RA, Winter JC (1995a) The role of the 5-H2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs I: antagonist correlation analysis. Psychopharmacology 121:347–356

    Article  CAS  PubMed  Google Scholar 

  • Fiorella D, Helsley SE, Lorraine DS, Palumbo PA, Rabin RA, Winter JC (1995b) The role of the 5-H2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs III: The mechanistic basis for supersensitivity to the LSD stimulus following serotonin depletion. Psychopharmacology 121:364–372

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA (1994) Classical hallucinogens: an introductory overview. NIDA Res Monogr 146:4–32

    CAS  PubMed  Google Scholar 

  • Glennon RA, Young R (1982) Comparison of behavioral properties of di- and tri-methoxyphenylisopropylamines. Pharmacol Biochem Behav 17(4):603–607

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Young R (2011) Drug discrimination and in vivo structure-activity relationships. In: Glennon R, Young R (eds) Drug discrimination: applications to medicinal chemistry and drug studies, 1st edn. Wiley, Hoboken, pp 163–181

    Chapter  Google Scholar 

  • Glennon RA, Rosecrans JA, Young R (1982) The use of the drug discrimination paradigm for studying hallucinogenic agents. In: Colpaert FC, Slangen JL (eds) Drug discrimination: applications in CNS pharmacology. Elsevier Biomedical Press, Amsterdam, pp 69–96

    Google Scholar 

  • Glennon RA, Titeler M, Mckenney JD (1984a) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35:2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Rosecrans JA, Young R (1984b) Drug-induced discrimination: a description of the paradigm and a review of its specific application to the study of hallucinogenic agents. Med Res Rev 3:289–376

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Yousif M, Patrick G (1988) Stimulus properties of 1-(3,4-methylenedioxyphenyl)-2-aminopropane (MDA) analogs. Pharmacol Biochem Behav 29:443–449

    Article  CAS  PubMed  Google Scholar 

  • González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R et al (2007) Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452

    Article  PubMed  Google Scholar 

  • González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin AK, Baker LE (2000) A three-choice drug discrimination procedure dissociates the discriminative stimulus effects of MDMA and d-amphetamine. Exp Clin Psychopharmacol 8(3):415–423

    Article  CAS  PubMed  Google Scholar 

  • Goodwin AK, Pynnonen DM, Baker LE (2003) Serotonergic-dopaminergic mediation of MDMA’s discriminative stimulus effects in a three-choice discrimination. Pharmacol Biochem Behav 74:987–995

    Article  CAS  PubMed  Google Scholar 

  • Harris RT, Balster RL (1971) An analysis of the function of drugs in the stimulus control of operant behavior. In: Thompson T, Pickens R (eds) Stimulus properties of drugs. Appleton-Century Crofts, New York, pp 111–132

    Chapter  Google Scholar 

  • Hirschhorn I, Winter JC (1971) Mescaline and LSD as discriminative stimuli. Psychopharmacologia 22:64–71

    Article  CAS  PubMed  Google Scholar 

  • Holohean AM, White FJ, Appel JB (1982) Dopaminergic and serotonergic mediation of the discriminable effects of ergot alkaloids. Eur J Pharmacol 81(4):595–602

    Article  CAS  PubMed  Google Scholar 

  • Holtzman SG, Locke KW (1988) Neural mechanisms of drug stimuli: experimental approaches. Psychopharmacology 4:138–153

    CAS  Google Scholar 

  • Killinger BA, Peet MM, Baker LE (2010) Salvinorin A fails to substitute for the discriminative stimulus effects of LSD or ketamine in Sprague-Dawley rats. Pharmacol Biochem Behav 96(3):260–265

    Article  CAS  PubMed  Google Scholar 

  • Koek W, Slangen JL (1982) Effects of reinforcement differences between drug and saline sessions on discriminative stimulus properties of fentanyl. In: Colpaert FC, Slangen (eds) Drug discrimination: applications in CNS pharmacology. Elsevier, Amsterdam, pp 343–354

    Google Scholar 

  • Koerner J, Appel JB (1982) Psilocybin as a discriminative stimulus: lack of specificity in an animal behavior model for ‘hallucinogens’. Psychopharmacology 76(2):130–135

    Article  CAS  PubMed  Google Scholar 

  • Kueh D, Baker LE (2007) Reinforcement schedule effects in rats trained to discriminate 3,4-methylenedioxymethamphetamine (MDMA) or cocaine. Psychopharmacology 189:447–457

    Article  CAS  PubMed  Google Scholar 

  • Kuhn DM, White FJ, Appel JB (1978) the discriminative stimulus properties of LSD: mechanism of action. Neuropharmacology 17:257–263

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Aghajanian GK (2007) Prefrontal cortical network activity: opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation. Neuroscience 145:900–910

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Goldman-Rakic PS, Aghajanian GK (2000) Serotonin induces EPSCs preferentially in layer V pyramidal neurons of the frontal cortex in the rat. Cereb Cortex 10:974–980

    Article  CAS  PubMed  Google Scholar 

  • Lambe EK, Aghajanian GK (2001) The role of Kv1.2-containing potassium channels in serotonin-induced glutamate release from thalamocortical terminals in rat frontal cortex. J Neurosci 21:9955–9963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marona-Lewicka D, Nichols DE (2007) Further evidence that the delayed temporal dopaminergic effects of LSD are mediated by a mechanism different than the first temporal phase of action. Pharmacol Biochem Behav 87:453–461

    Article  CAS  PubMed  Google Scholar 

  • Marona-Lewicka D, Kurrasch-Orbaugh DM, Selken JR, Cumbay MG, Lisnicchia JG, Nichols DE (2002) Re-evaluation of lisuride pharmacology: 5-hydroxytryptamine1A receptor-mediated behavioral effects overlap its other properties in rats. Psychopharmacology 64(1):93–107

    Article  Google Scholar 

  • McMillan DE, Wenger GR (1984) Bias of phencyclidine discrimination by the schedule of reinforcement. J Exp Anal Behav 42:51–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan DE, Hardwick WC, Li M (2001) Discrimination of pentobarbital doses and drug mixtures under fixed-ratio and fixed-interval reinforcement schedules. Behav Pharmacol 12(3):195–208

    Article  CAS  Google Scholar 

  • Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J (2011) Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett 493:76–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols DE (1986) Differences between the mechanism of Action of MDMA, MBDB, and the classic hallucinogens. Identification of a new therapeutic class. Entactogens J Psychoactive Drugs 18(4):305–313

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181

    Article  CAS  PubMed  Google Scholar 

  • Oberlender R, Nichols DE (1988) Drug discrimination studies with MDMA and amphetamine. Psychopharmacology 95:71–76

    Article  CAS  PubMed  Google Scholar 

  • Overton DA (1979) Influence of shaping procedure and schedules on performance in the two-bar drug discrimination task: a methodological report. Psychopharmacology 65:291–298

    Article  CAS  PubMed  Google Scholar 

  • Pranzatelli MR (1990) Neonatal, 5,7-DHT lesions up-regulate (3H)mesulergine-labelled spinal 5-HT1C binding sites in the rat. Brain Res Bull 25:151–153

    Article  CAS  PubMed  Google Scholar 

  • Schechter MD (1998) MDMA-like stimulus effects of hallucinogens in male fawn-hooded rats. Pharmacol Biochem Behav 59:265–270

    Article  CAS  PubMed  Google Scholar 

  • Schechter MD, Rosecrans JA (1972) Lysergic acid diethylamide (LSD) as a discriminative cue: drugs with similar stimulus properties. Psychopharmacologia 26:313–316

    Article  CAS  PubMed  Google Scholar 

  • Shannon HE (1981) Evaluation of phencyclidine analogs on the basis of their discriminative stimulus properties in the rat. J Pharmacol Exp Ther 216:543–551

    CAS  PubMed  Google Scholar 

  • Silverman PB & Ho BT (1978) Stimulus properties of DOM: commonality with other hallucinogens. In: Colpaert FC, Rosecrans JA (eds) Stimulus properties of drugs: ten years of progress. Elsevier/North Holland, Amsterdam, pp 189–198

    Google Scholar 

  • Stolerman IP (1989) Discriminative stimulus effects of nicotine in rats trained under different schedules of reinforcement. Psychopharmacology 97:131–138

    Article  CAS  PubMed  Google Scholar 

  • Stolerman IP (1993) Drug discrimination. In: Van Haaren F (ed) Methods in behavioral pharmacology. Elsevier Science, Amsterdam, pp 217–224

    Chapter  Google Scholar 

  • Swedberg MDB, Jarbe TUC (1986) Drug discrimination procedures: differential characteristics of the drug A vs drug B and the drug A vs drug B vs no drug cases. Psychopharmacology 90:341–346

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Appel JB (1982) Lysergic acid diethylamide (LSD) and lisuride: Differentiation of their neuropharmacological actions. Science 216:535–537

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Simmons MA, West KB, Holohean AM, Appel JB (1980) The effect of serotonin depletion on the discriminability of LSD. Pharmacol Biochem Behav 13:567–574

    Article  Google Scholar 

  • Winter JC (1978) Stimulus properties of phenethylamine hallucinogens and lysergic acid diethylamide: the role of 5-hydroxytryptamine. J Pharmacol Exp Ther 204:416–423

    CAS  PubMed  Google Scholar 

  • Winter JC, Fiorella DJ, Timineri DM, Filipink RA, Helsley SE, Rabin RA (1999) Serotonergic receptor subtypes and hallucinogen-induced stimulus control. Pharmacol Biochem Behav 64:283–293

    Article  CAS  PubMed  Google Scholar 

  • Winter JC, Doat M, Rabin RA (2000) Potentiation of DOM-induced stimulus control by non-competitive NMDA antagonists. A link between glutamatergic and serotonergic hypotheses of schizophrenia. Life Sci 68:337–344

    Article  CAS  PubMed  Google Scholar 

  • Winter JC, Eckler JR, Rabin RA (2004) Serotonergic/glutamatergic interactions: the effects of mGlu2/3 receptor ligands in rats trained with LSD and PCP as discriminative stimuli. Psychopharmacology 172:233–240

    Article  CAS  PubMed  Google Scholar 

  • Winter JC, Rice KC, Amorosi DH, Rabin RA (2007) Psilocybin-induced stimulus control in the rat. Pharmacol Biochem Behav 87:472–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter JC (2009) Hallucinogens as discriminative stimuli in animals: LSD, phenethylamines, and tryptamines. Psychopharmacology 203:251–263

    Article  CAS  PubMed  Google Scholar 

  • Young R (2009) Drug discrimination. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK5225/

  • Young R, Rosecrans JA, Glennon RA (1982) Comparative discriminative stimulus effects of 5-methoxy-N, N-dimethoxytryptamine and LSD. Life Sci 30:2057–2062

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa E. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baker, L.E. (2017). Hallucinogens in Drug Discrimination. In: Halberstadt, A.L., Vollenweider, F.X., Nichols, D.E. (eds) Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2017_476

Download citation

Publish with us

Policies and ethics