Skip to main content

Effect of Hallucinogens on Unconditioned Behavior

  • Chapter
Behavioral Neurobiology of Psychedelic Drugs

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 36))

Abstract

Because of the ethical and regulatory hurdles associated with human studies, much of what is known about the psychopharmacology of hallucinogens has been derived from animal models. However, developing reliable animal models has proven to be a challenging task due to the complexity and variability of hallucinogen effects in humans. This chapter focuses on three animal models that are frequently used to test the effects of hallucinogens on unconditioned behavior: head twitch response (HTR), prepulse inhibition of startle (PPI), and exploratory behavior. The HTR has demonstrated considerable utility in the neurochemical actions of hallucinogens. However, the latter two models have clearer conceptual bridges to human phenomenology. Consistent with the known mechanism of action of hallucinogens in humans, the behavioral effects of hallucinogens in rodents are mediated primarily by activation of 5-HT2A receptors. There is evidence, however, that other receptors may play secondary roles. The structure–activity relationships (SAR) of hallucinogens are reviewed in relation to each model, with a focus on the HTR in rats and mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson HA, Sklarofsky B, Baron MO, Fremont-Smith N (1958) Lysergic acid diethylamide (LSD-25) antagonists. II. Development of tolerance in man to LSD-25 by prior administration of MLD-41 (1-methyl-d-lysergic acid diethylamide). Arch Neurol Psychiatry 79:201–207

    Article  CAS  Google Scholar 

  • Acuña-Castillo C, Villalobos C, Moya PR, Sáez P, Cassels BK, Huidobro-Toro JP (2002) Differences in potency and efficacy of a series of phenylisopropylamine/phenylethylamine pairs at 5-HT2A and 5-HT2C receptors. Br J Pharmacol 136:510–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams LM, Geyer MA (1985a) Effects of DOM and DMT in a proposed animal model of hallucinogenic activity. Prog Neuropsychopharmacol Biol Psychiatry 9:121–132

    Article  CAS  PubMed  Google Scholar 

  • Adams LM, Geyer MA (1985b) A proposed animal model for hallucinogens based on LSD’s effects on patterns of exploration in rats. Behav Neurosci 99:881–900

    Article  CAS  PubMed  Google Scholar 

  • Adams LM, Geyer MA (1985c) Patterns of exploration in rats distinguish lisuride from lysergic acid diethylamide. Pharmacol Biochem Behav 23:461–468

    Article  CAS  PubMed  Google Scholar 

  • Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36:589–599

    Article  CAS  PubMed  Google Scholar 

  • Agurell S, Holmstedt B, Lindgren JE (1969) Metabolism of 5-methoxy-N,-N dimethyltryptamine-14C in the rat. Biochem Pharmacol 18:2771–2781

    Article  CAS  PubMed  Google Scholar 

  • Allen JA, Yadav PN, Setola V, Farrell M, Roth BL (2011) Schizophrenia risk gene CAV1 is both pro-psychotic and required for atypical antipsychotic drug actions in vivo. Transl Psychiatry 1:e33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appel JB, West WB, Rolandi WG, Alici T, Pechersky K (1999) Increasing the selectivity of drug discrimination procedures. Pharmacol Biochem Behav 64:353–358

    Article  CAS  PubMed  Google Scholar 

  • Arnt J, Hyttel J (1989) Facilitation of 8-OHDPAT-induced forepaw treading of rats by the 5-HT2 agonist DOI. Eur J Pharmacol 161:45–51

    Article  CAS  PubMed  Google Scholar 

  • Axelrod J (1962) The enzymatic N-methylation of serotonin and other amines. J Pharmacol Exp Ther 138:28–33

    CAS  PubMed  Google Scholar 

  • Baisley SK, Fallace KL, Rajbhandari AK, Bakshi VP (2012) Mutual independence of 5-HT2 and α1 noradrenergic receptors in mediating deficits in sensorimotor gating. Psychopharmacology 220:465–479

    Article  CAS  PubMed  Google Scholar 

  • Baladi MG, Newman AH, France CP (2010) Dopamine D3 receptors mediate the discriminative stimulus effects of quinpirole in free-feeding rats. J Pharmacol Exp Ther 332:308–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balsara JJ, Bapat TR, Nandal NV, Gada VP, Chandorkar AG (1986) Head-twitch response induced by ergometrine in mice: behavioural evidence for direct stimulation of central 5-hydroxytryptamine receptors by ergometrine. Psychopharmacology 88:275–278

    Article  CAS  PubMed  Google Scholar 

  • Baumann MH, Clark RD, Rothman RB (2008) Locomotor stimulation produced by 3,4-methylenedioxymethamphetamine (MDMA) is correlated with dialysate levels of serotonin and dopamine in rat brain. Pharmacol Biochem Behav 90:208–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedard P, Pycock CJ (1977) “Wet-dog” shake behaviour in the rat: a possible quantitative model of central 5-hydroxytryptamine activity. Neuropharmacology 16:663–670

    Article  CAS  PubMed  Google Scholar 

  • Beique JC, Imad M, Mladenovic L, Gingrich JA, Andrade R (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA 104:9870–9875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benes H, Deissler A, Rodenbeck A, Engfer A, Kohnen R (2006) Lisuride treatment of Restless Legs Syndrome: first studies with monotherapy in de novo patients and in combination with levodopa in advanced disease. J Neural Transm 113:87–92

    Article  CAS  PubMed  Google Scholar 

  • Berendsen HH, Broekkamp CL (1990) Behavioural evidence for functional interactions between 5-HT-receptor subtypes in rats and mice. Br J Pharmacol 101:667–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen HH, Jenck F, Broekkamp CL (1989) Selective activation of 5HT1A receptors induces lower lip retraction in the rat. Pharmacol Biochem Behav 33:821–827

    Article  CAS  PubMed  Google Scholar 

  • Berlyne DE (1950) Novelty and curiosity as determinants of exploratory behavior. Br J Psychol 41:68–80

    Google Scholar 

  • Berlyne DE (1955) The arousal and satiation of perceptual curiosity in the rat. J Comp Physiol Psychol 48:238–246

    Article  CAS  PubMed  Google Scholar 

  • Berlyne DE (1960) Conflict, arousal and curiosity. Macgraw-Hill, New-York

    Book  Google Scholar 

  • Berlyne DE (1966) Curiosity and exploration. Science 153:25–33

    Article  CAS  PubMed  Google Scholar 

  • Bigwood J, Ott J, Thompson C, Neely P (1979) Entheogenic effects of ergonovine. J Psychedelic Drugs 11:147–149

    Article  CAS  PubMed  Google Scholar 

  • Blair JB, Kurrasch-Orbaugh D, Marona-Lewicka D, Cumbay MG, Watts VJ, Barker EL, Nichols DE (2000) Effect of ring fluorination on the pharmacology of hallucinogenic tryptamines. J Med Chem 43:4701–4710

    Article  CAS  PubMed  Google Scholar 

  • Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D, Ciruela F, Agnati LF, Fuxe K (2010) Dopamine D2 and 5-hydroxytryptamine 5-HT2A receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun 401:605–610

    Article  CAS  PubMed  Google Scholar 

  • Braden MR, Parrish JC, Naylor JC, Nichols DE (2006) Molecular interaction of serotonin 5-HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol Pharmacol 70:1956–1964

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Stone C, Callaway E, Geyer M, Glick I, Bali L (1978) Prestimulus effects on human startle reflex in normals and schizophrenics. Psychophysiology 15:339–343

    Article  CAS  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156:234–258

    Article  CAS  PubMed  Google Scholar 

  • Brandt SD, Kavanagh PV, Westphal F, Elliott SP, Wallach J, Colestock T, Burrow TE, Chapman SJ, Stratford A, Nichols DE, Halberstadt AL (2017) Return of the lysergamides. Part II: analytical and behavioural characterization of N6-allyl-6-norlysergic acid diethylamide (AL-LAD) and (2’S,4’S)-lysergic acid 2,4-dimethylazetidide (LSZ). Drug Test Anal 9:38–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brandt SD, Kavanagh PV, Westphal F, Stratford A, Elliott SP, Hoang K, Wallach J, Halberstadt AL (2016) Return of the lysergamides. Part I: Analytical and behavioral characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD). Drug Test Anal 8:891–902

    Article  CAS  PubMed  Google Scholar 

  • Brauer LH, Johanson CE, Schuster CR, Rothman RB, de Wit H (1996) Evaluation of phentermine and fenfluramine, alone and in combination, in normal, healthy volunteers. Neuropsychopharmacology 14:233–241

    Article  CAS  PubMed  Google Scholar 

  • Bräuer D, Strobel A, Hensch T, Diers K, Lesch KP, Brocke B (2009) Genetic variation of serotonin receptor function affects prepulse inhibition of the startle. J Neural Transm 116:607–613

    Article  PubMed  CAS  Google Scholar 

  • Brea J, Castro M, Loza MI, Masaguer CF, Raviña E, Dezi C, Pastor M, Sanz F, Cabrero-Castel A, Galán-Rodríguez B, Fernández-Espejo E, Maldonado R, Robledo P (2006) QF2004B, a potential antipsychotic butyrophenone derivative with similar pharmacological properties to clozapine. Neuropharmacology 51:251–262

    Article  CAS  PubMed  Google Scholar 

  • Brimblecombe RE (1963) Effects of psychotropic drugs on open-field behaviour in rats. Psychopharmacologia 4:139–147

    Article  CAS  PubMed  Google Scholar 

  • Brookshire BR, Jones SR (2009) Direct and indirect 5-HT receptor agonists produce gender-specific effects on locomotor and vertical activities in C57 BL/6J mice. Pharmacol Biochem Behav 94:194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burris KD, Breeding M, Sanders-Bush E (1991) (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist. J Pharmacol Exp Ther 258:891–896

    CAS  PubMed  Google Scholar 

  • Callaway CW, Wing LL, Geyer MA (1990) Serotonin release contributes to the locomotor stimulant effects of 3,4-methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 254:456–464

    CAS  PubMed  Google Scholar 

  • Canal CE, Morgan D (2012) Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal 4:556–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canal CE, Olaghere da Silva UB, Gresch PJ, Watt EE, Sanders-Bush E, Airey DC (2010) The serotonin 2C receptor potently modulates the head-twitch response in mice induced by a phenethylamine hallucinogen. Psychopharmacology 209:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canal CE, Booth RG, Morgan D (2013) Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model. Neuropharmacology 70:112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonaro TM, Eshleman AJ, Forster MJ, Cheng K, Rice KC, Gatch MB (2015) The role of 5-HT2A, 5-HT 2C and mGlu2 receptors in the behavioral effects of tryptamine hallucinogens N, N-dimethyltryptamine and N, N-diisopropyltryptamine in rats and mice. Psychopharmacology 232:275–284

    Article  CAS  PubMed  Google Scholar 

  • Carhart-Harris RL, Erritzoe D, Williams T, Stone JM, Reed LJ, Colasanti A, Tyacke RJ, Leech R, Malizia AL, Murphy K, Hobden P, Evans J, Feilding A, Wise RG, Nutt DJ (2012) Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc Natl Acad Sci USA 109:2138–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsson ML, Burstein ES, Kloberg A, Hansson S, Schedwin A, Nilsson M, Rung JP, Carlsson A (2011) I. In vivo evidence for partial agonist effects of (−)-OSU6162 and (+)-OSU6162 on 5-HT2A serotonin receptors. J Neural Transm 118:1511–1522

    Article  CAS  PubMed  Google Scholar 

  • Ciccocioppo R, Angeletti S, Colombo G, Gessa G, Massi M (1999) Autoradiographic analysis of 5-HT2A binding sites in the brain of Sardinian alcohol-preferring and nonpreferring rats. Eur J Pharmacol 373:13–19

    Article  CAS  PubMed  Google Scholar 

  • Cohen M (1960) LSD: Side effects and complications. J Nerv Ment Dis 130:39–45

    Article  Google Scholar 

  • Colpaert FC, Niemegeers CJ, Janssen PA (1982) A drug discrimination analysis of lysergic acid diethylamide (LSD): in vivo agonist and antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, a LSD-antagonist. J Pharmacol Exp Ther 221:206–214

    CAS  PubMed  Google Scholar 

  • Corne SJ, Pickering RW (1967) A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 11:65–78

    Article  CAS  PubMed  Google Scholar 

  • Corne SJ, Pickering RW, Warner BT (1963) A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharmacol Chemother 20:106–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cussac D, Boutet-Robinet E, Ailhaud MC, Newman-Tancredi A, Martel JC, Danty N, Rauly-Lestienne I (2008) Agonist-directed trafficking of signalling at serotonin 5-HT2A, 5-HT2B and 5-HT2C-VSV receptors mediated Gq/11 activation and calcium mobilisation in CHO cells. Eur J Pharmacol 594:32–38

    Article  CAS  PubMed  Google Scholar 

  • Dandiya PC, Gupta BD, Gupta ML, Patni SK (1969) Effects of LSD on open field performance in rats. Psychopharmacologia 15:333–340

    Article  CAS  PubMed  Google Scholar 

  • Darmani NA (1998a) Cocaine and selective monoamine uptake blockers (sertraline, nisoxetine, and GBR 12935) prevent the d-fenfluramine-induced head-twitch response in mice. Pharmacol Biochem Behav 60:83–90

    Article  CAS  PubMed  Google Scholar 

  • Darmani NA (1998b) The silent and selective 5-HT1A antagonist, WAY 100635, produces via an indirect mechanism, a 5-HT2A receptor-mediated behaviour in mice during the day but not at night. Short communication. J Neural Transm 105:635–643

    Article  CAS  PubMed  Google Scholar 

  • Darmani NA, Pandya DK (2000) Involvement of other neurotransmitters in behaviors induced by the cannabinoid CB1 receptor antagonist SR 141716A in naive mice. J Neural Transm 107:931–945

    Article  CAS  PubMed  Google Scholar 

  • Darmani NA, Martin BR, Pandey U, Glennon RA (1990) Do functional relationships exist between 5-HT1A and 5-HT2 receptors? Pharmacol Biochem Behav 36:901–906

    Article  CAS  PubMed  Google Scholar 

  • Darmani NA, Mock OB, Towns LC, Gerdes CF (1994) The head-twitch response in the least shrew (Cryptotis parva) is a 5-HT2- and not a 5-HT1C-mediated phenomenon. Pharmacol Biochem Behav 48:383–396

    Article  CAS  PubMed  Google Scholar 

  • Darmani NA, Shaddy J, Gerdes CF (1996) Differential ontogenesis of three DOI-induced behaviors in mice. Physiol Behav 60:1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Darmani NA, Janoyan JJ, Kumar N, Crim JL (2003) Behaviorally active doses of the CB1 receptor antagonist SR 141716A increase brain serotonin and dopamine levels and turnover. Pharmacol Biochem Behav 75:777–787

    Article  CAS  PubMed  Google Scholar 

  • Delille HK, Becker JM, Burkhardt S, Bleher B, Terstappen GC, Schmidt M, Meyer AH, Unger L, Marek GJ, Mezler M (2012) Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology 62:2184–2191

    Article  CAS  PubMed  Google Scholar 

  • Delille HK, Mezler M, Marek GJ (2013) The two faces of the pharmacological interaction of mGlu2 and 5-HT2A—relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology 70:296–305

    Article  CAS  PubMed  Google Scholar 

  • Dodge R, Louttit CM (1926) Modification of the pattern of the guinea pig’s reflex response to noise. J Com Psychol 60:267–285

    Article  Google Scholar 

  • Drust EG, Connor JD (1983) Pharmacological analysis of shaking behavior induced by enkephalins, thyrotropin-releasing hormone or serotonin in rats: evidence for different mechanisms. J Pharmacol Exp Ther 224:148–154

    CAS  PubMed  Google Scholar 

  • Dulawa SC, Geyer MA (2000) Effects of strain and serotonergic agents on prepulse inhibition and habituation in mice. Neuropharmacology 39:2170–2179

    Article  CAS  PubMed  Google Scholar 

  • Dulawa SC, Gross C, Stark KL, Hen R, Geyer MA (2000) Knockout mice reveal opposite roles for serotonin 1A and 1B receptors in prepulse inhibition. Neuropsychopharmacology 22:650–659

    Article  CAS  PubMed  Google Scholar 

  • Dursun SM, Handley SL (1996) Similarities in the pharmacology of spontaneous and DOI-induced head-shakes suggest 5HT2A receptors are active under physiological conditions. Psychopharmacology 128:198–205

    Article  CAS  PubMed  Google Scholar 

  • Egan CT, Herrick-Davis K, Miller K, Glennon RA, Teitler M (1998) Agonist activity of LSD and lisuride at cloned 5HT2Aand 5HT2Creceptors. Psychopharmacology 136:409–414

    Article  CAS  PubMed  Google Scholar 

  • Egashira N, Shirakawa A, Okuno R, Mishima K, Iwasaki K, Oishi R, Fujiwara M (2011) Role of endocannabinoid and glutamatergic systems in DOI-induced head-twitch response in mice. Pharmacol Biochem Behav 99:52–58

    Article  CAS  PubMed  Google Scholar 

  • Ettrup A, Holm S, Hansen M, Wasim M, Santini MA, Palner M, Madsen J, Svarer C, Kristensen JL, Knudsen GM (2013) Preclinical safety assessment of the 5-HT2A receptor agonist PET radioligand [11C]Cimbi-36. Mol Imaging Biol 15:376–383

    Article  PubMed  Google Scholar 

  • Fantegrossi WE, Kiessel CL, Leach PT, Van Martin C, Karabenick RL, Chen X, Ohizumi Y, Ullrich T, Rice KC, Woods JH (2004) Nantenine: an antagonist of the behavioral and physiological effects of MDMA in mice. Psychopharmacology 173:270–277

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Harrington AW, Eckler JR, Arshad S, Rabin RA, Winter JC, Coop A, Rice KC, Woods JH (2005a) Hallucinogen-like actions of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in mice and rats. Psychopharmacology 181:496–503

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Kiessel CL, De la Garza R, Woods JH (2005b) Serotonin synthesis inhibition reveals distinct mechanisms of action for MDMA and its enantiomers in the mouse. Psychopharmacology 181:529–536

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Harrington AW, Kiessel CL, Eckler JR, Rabin RA, Winter JC, Coop A, Rice KC, Woods JH (2006) Hallucinogen-like actions of 5-methoxy-N, N-diisopropyltryptamine in mice and rats. Pharmacol Biochem Behav 83:122–129

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Reissig CJ, Katz EB, Yarosh HL, Rice KC, Winter JC (2008) Hallucinogen-like effects of N, N-dipropyltryptamine (DPT): possible mediation by serotonin 5-HT1A and 5-HT2A receptors in rodents. Pharmacol Biochem Behav 88:358–365

    Article  CAS  PubMed  Google Scholar 

  • Fantegrossi WE, Simoneau J, Cohen MS, Zimmerman SM, Henson CM, Rice KC, Woods JH (2010) Interaction of 5-HT2A and 5-HT2C receptors in R(−)-2,5-dimethoxy-4-iodoamphetamine-elicited head twitch behavior in mice. J Pharmacol Exp Ther 335:728–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantegrossi WE, Gray BW, Bailey JM, Smith DA, Hansen M, Kristensen JL (2014) Hallucinogen-like effects of 2-([2-(4-cyano-2,5-dimethoxyphenyl) ethylamino]methyl)phenol (25CN-NBOH), a novel N-benzylphenethylamine with 100-fold selectivity for 5-HT2A receptors, in mice. Psychopharmacology 232:1039–1047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Filip M, Bubar MJ, Cunningham KA (2004) Contribution of serotonin (5-hydroxytryptamine; 5-HT) 5-HT2 receptor subtypes to the hyperlocomotor effects of cocaine: acute and chronic pharmacological analyses. J Pharmacol Exp Ther 310:1246–1254

    Article  CAS  PubMed  Google Scholar 

  • Fiorella D, Rabin RA, Winter JC (1995) Role of 5-HT2A and 5-HT2C receptors in the stimulus effects of hallucinogenic drugs. II: reassessment of LSD false positives. Psychopharmacology 121:357–363

    Article  CAS  PubMed  Google Scholar 

  • Fleshler M (1965) Adequate acoustic stimulus for the startle reflex in the rat. J Com Physiol Psychol 60:200–207

    Article  CAS  Google Scholar 

  • Fletcher PJ, Tampakeras M, Sinyard J, Slassi A, Isaac M, Higgins GA (2009) Characterizing the effects of 5-HT2C receptor ligands on motor activity and feeding behaviour in 5-HT2C receptor knockout mice. Neuropharmacology 57:259–267

    Article  CAS  PubMed  Google Scholar 

  • Fowler H (1965) Curiosity and exploratory behavior. Macmillan, New York

    Google Scholar 

  • Fox MA, French HT, LaPorte JL, Blackler AR, Murphy DL (2010a) The serotonin 5-HT2A receptor agonist TCB-2: a behavioral and neurophysiological analysis. Psychopharmacology 212:13–23

    Article  CAS  PubMed  Google Scholar 

  • Fox MA, Stein AR, French HT, Murphy DL (2010b) Functional interactions between 5-HT2A and presynaptic 5-HT1A receptor-based responses in mice genetically deficient in the serotonin 5-HT transporter (SERT). Br J Pharmacol 159:879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freedland CS, Mansbach RS (1999) Behavioral profile of constituents in ayahuasca, an Amazonian psychoactive plant mixture. Drug Alcohol Depend 54:183–194

    Article  CAS  PubMed  Google Scholar 

  • Garcia EE, Smith RL, Sanders-Bush E (2007) Role of Gq protein in behavioral effects of the hallucinogenic drug 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane. Neuropharmacology 52:1671–1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gewirtz JC, Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology 23:569–576

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA (1998) Behavioral studies of hallucinogenic drugs in animals: implications for schizophrenia research. Pharmacopsychiatry 31:73–79

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Krebs KM (1994) Serotonin receptor involvement in an animal model of the acute effects of hallucinogens. NIDA Res Monograph Ser 146:124–156

    CAS  Google Scholar 

  • Geyer MA, Paulus MP (1992) Multivariate and nonlinear approaches to characterizing drug effects on the locomotor and investigatory behavior of rats. NIDA Res Monogr 124:203–235

    CAS  PubMed  Google Scholar 

  • Geyer MA, Russo PV, Masten VL (1986) Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav 25:277–288

    Article  CAS  PubMed  Google Scholar 

  • Geyer MA, Russo PV, Segal DS, Kuczenski R (1987) Effects of apomorphine and amphetamine on patterns of locomotor and investigatory behavior in rats. Pharmacol Biochem Behav 28:393–399

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA (1991) Discriminative stimulus properties of hallucinogens and related designer drugs. NIDA Res Monogr 116:25–44

    CAS  Google Scholar 

  • Glennon RA, Hauck AE (1985) Mechanistic studies on DOM as a discriminative stimulus. Pharmacol Biochem Behav 23:937–941

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Young R, Rosecrans JA (1982a) Discriminative stimulus properties of DOM and several molecular modifications. Pharmacol Biochem Behav 16:553–556

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Young R, Rosecrans JA (1982b) A comparison of the behavioral effects of DOM homologs. Pharmacol Biochem Behav 16:557–559

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Young R, Rosecrans JA (1983) Antagonism of the effects of the hallucinogen DOM and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur J Pharmacol 91:189–196

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Titeler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35:2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, McKenney JD, Lyon RA, Titeler M (1986) 5-HT1 and 5-HT2 binding characteristics of 1-(2,5-dimethoxy-4-bromophenyl)-2-aminopropane analogues. J Med Chem 29:194–199

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Titeler M, Seggel MR, Lyon RA (1987) N-Methyl derivatives of the 5-HT2 agonist 1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. J Med Chem 30:930–932

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Titeler M, Lyon RA, Slusher RM (1988) N, N-di-n-propylserotonin: binding at serotonin binding sites and a comparison with 8-hydroxy-2-(di-n-propylamino)tetralin. J Med Chem 31:867–870

    Article  CAS  PubMed  Google Scholar 

  • Glennon RA, Dukat M, el-Bermawy M, Law H, De los Angeles J, Teitler M, King A, Herrick-Davis K (1994) Influence of amine substituents on 5-HT2A versus 5-HT2C binding of phenylalkyl- and indolylalkylamines. J Med Chem 37:1929–1935

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Bogeski M, van den Buuse M (2008) Role of serotonin-1A receptors in the action of antipsychotic drugs: comparison of prepulse inhibition studies in mice and rats and relevance for human pharmacology. Behav Pharmacol 19:548–561

    Article  CAS  PubMed  Google Scholar 

  • Gold LH, Koob GF, Geyer MA (1988) Stimulant and hallucinogenic behavioral profiles of 3,4-methylenedioxymethamphetamine and N-ethyl-3,4-methylenedioxyamphetamine in rats. J Pharmacol Exp Ther 247:547–555

    CAS  PubMed  Google Scholar 

  • González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452

    Article  CAS  PubMed  Google Scholar 

  • González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorzalka BB, Hill MN, Sun JC (2005) Functional role of the endocannabinoid system and AMPA/kainate receptors in 5-HT2A receptor-mediated wet dog shakes. Eur J Pharmacol 516:28–33

    Article  CAS  PubMed  Google Scholar 

  • Gouzoulis-Mayfrank E, Heekeren K, Thelen B, Lindenblatt H, Kovar KA, Sass H, Geyer MA (1998) Effects of the hallucinogen psilocybin on habituation and prepulse inhibition of the startle reflex in humans. Behav Pharmacol 9:561–566

    Article  CAS  PubMed  Google Scholar 

  • Griffiths RR, Richards WA, McCann U, Jesse R (2006) Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology 187:268–283

    Article  CAS  PubMed  Google Scholar 

  • Grillon C, Ameli R, Charney DS, Krystal J, Braff DL (1992) Startle gating deficits occur across prepulse intensities in schizophrenic patients. Biol Psychiatry 32:939–943

    Article  CAS  PubMed  Google Scholar 

  • Grob CS, Danforth AL, Chopra GS, Hagerty M, McKay CR, Halberstadt AL, Greer GR (2011) Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry 68:71–78

    Article  CAS  PubMed  Google Scholar 

  • Grotewiel MS, Chu H, Sanders-Bush E (1994) m-Chlorophenylpiperazine and m-trifluoromethylphenylpiperazine are partial agonists at cloned 5-HT2A receptors expressed in fibroblasts. J Pharmacol Exp Ther 271:1122–1126

    CAS  PubMed  Google Scholar 

  • Gupta BD, Dandiya PC, Gupta ML, Gabba AK (1971) An examination of the effect of central nervous system stimulant and anti-depressant drugs on open field performance in rats. Eur J Pharmacol 13:341–346

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL (2015) Recent advances in the neuropsychopharmacology of hallucinogens. Behav Brain Res 277:99–120

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL (2016) Behavioral and pharmacokinetic interactions between monoamine oxidase inhibitors and the hallucinogen 5-methoxy-N, N-dimethyltryptamine. Pharmacol Biochem Behav 143:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halberstadt AL, Geyer MA (2010) LSD but not lisuride disrupts prepulse inhibition in rats by activating the 5-HT2A receptor. Psychopharmacology 208:179–189

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL, Geyer MA (2011) Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61:364–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halberstadt AL, Geyer MA (2013) Characterization of the head-twitch response induced by hallucinogens in mice: detection of the behavior based on the dynamics of head movement. Psychopharmacology 227:727–739

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL, Geyer MA (2014) Effect of the hallucinogen 2C-I and two superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology 77:200–207

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL, Buell MR, Masten V, Risbrough VB, Geyer MA (2008) Modification of the effects of 5-methoxy-N,N-dimethyltryptamine on exploratory behavior in rats by monoamine oxidase inhibitors. Psychopharmacology 201:55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halberstadt AL, van der Heijden I, Ruderman M, Risbrough VB, Gingrich JA, Geyer MA, Powell SB (2009) Opposing effects of 5-HT2A and 5-HT2C receptors on locomotor activity in mice. Neuropsychopharmacology 34:1958–1967

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL, Koedood L, Powell SB, Geyer MA (2011) Differential contributions of serotonin receptors to the behavioral effects of indoleamine hallucinogens in mice. J Psychopharmacol 25:1548–1561

    Article  CAS  PubMed  Google Scholar 

  • Halberstadt AL, Nichols DE, Geyer MA (2012) Behavioral effects of α, α, β, β-tetradeutereo-5-MeO-DMT in rats: comparison with 5-MeO-DMT administered in combination with a monoamine oxidase inhibitor. Psychopharmacology 221:709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halberstadt AL, Powell SB, Geyer MA (2013) Role of the 5-HT2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 70:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halberstadt AL, Sindhunata I, Scheffers K, Flynn AD, Sharp RF, Geyer MA, Young JW (2016a) Effect of 5-HT2A and 5-HT2C receptors on temporal discrimination by mice. Neuropharmacology 107:364–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halberstadt AL, Slepak N, Hyun J, Buell MR, Powell SB (2016b) The novel ketamine analog methoxetamine produces dissociative-like behavioral effects in rodents. Psychopharmacology 233:1215–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen M, Phonekeo K, Paine JS, Leth-Petersen S, Begtrup M, Bräuner-Osborne H, Kristensen JL (2014) Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists. ACS Chem Neurosci 5:243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins MF, Uzelac SM, Baumeister AA, Hearn JK, Broussard JI, Guillot TS (2002) Behavioral responses to stress following central and peripheral injection of the 5-HT2 agonist DOI. Pharmacol Biochem Behav 73:537–544

    Article  CAS  PubMed  Google Scholar 

  • Hazama K, Hayata-Takano A, Uetsuki K, Kasai A, Encho N, Shintani N, Nagayasu K, Hashimoto R, Reglodi D, Miyakawa T, Nakazawa T, Baba A, Hashimoto H (2014) Increased behavioral and neuronal responses to a hallucinogenic drug in PACAP heterozygous mutant mice. PLoS ONE 9:e89153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heal DJ, Philpot J, O’Shaughnessy KM, Davies CL (1986) The influence of central noradrenergic function on 5-HT2-mediated head-twitch responses in mice: possible implications for the actions of antidepressant drugs. Psychopharmacology 89:414–420

    Article  CAS  PubMed  Google Scholar 

  • Heekeren K, Neukirch A, Daumann J, Stoll M, Obradovic M, Kovar KA, Geyer MA, Gouzoulis-Mayfrank E (2007) Prepulse inhibition of the startle reflex and its attentional modulation in the human S-ketamine and N, N-dimethyltryptamine (DMT) models of psychosis. J Psychopharmacol 21:312–320

    Article  CAS  PubMed  Google Scholar 

  • Herrmann WM, Horowski R, Dannehl K, Kramer U, Lurati K (1977) Clinical effectiveness of lisuride hydrogen maleate: a double-blind trial versus methysergide. Headache 17:54–60

    Article  CAS  PubMed  Google Scholar 

  • Hillegaart V, Estival A, Ahlenius S (1996) Evidence for specific involvement of 5-HT1A and 5-HT2A/C receptors in the expression of patterns of spontaneous motor activity of the rat. Eur J Pharmacol 295:155–161

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu M, Nabeshima T, Kameyama T, Maeda Y, Cho AK (1989) The effect of optical isomers of 3,4-methylenedioxymethamphetamine (MDMA) on stereotyped behavior in rats. Pharmacol Biochem Behav 33:343–347

    Article  CAS  PubMed  Google Scholar 

  • Hoffman HS, Ison JR (1980) Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol Rev 87:175–189

    Article  CAS  PubMed  Google Scholar 

  • Hoffman HS, Searle JL (1965) Acoustic variables in the modification of startle reaction in the rat. J Comp Physiol Psychol 60:53–58

    Article  CAS  PubMed  Google Scholar 

  • Hoffman HS, Searle JL (1968) Acoustic and temporal factors in the evocation of startle. J Acoustic Soc Am 43:269–282

    Article  CAS  Google Scholar 

  • Holohean AM, White FJ, Appel JB (1982) Dopaminergic and serotonergic mediation of the discriminable effects of ergot alkaloids. Eur J Pharmacol 81:595–602

    Article  CAS  PubMed  Google Scholar 

  • Huang JT, Ho BT (1973) Differentiation of pressor and behavioral effects of d-amphetamine and 2,5-dimethoxy-4-methylamphetamine (STP) by cinanserin. Can J Physiol Pharmacol 51:976–980

    Article  CAS  PubMed  Google Scholar 

  • Hughes RN (1972) Chlordiazepoxide modified exploration in rats. Psychopharmacologia 24:462–469

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Trulson ME, Stern WC (1976) An animal behavior model for studying the actions of LSD and related hallucinogens. Science 194:741–743

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Trulson ME, Stern WC (1977) Behavioral effects of LSD in the cat: proposal of an animal behavior model for studying the actions of hallucinogenic drugs. Brain Res 132:301–314

    Article  CAS  PubMed  Google Scholar 

  • Johansson C, Jackson DM, Zhang J, Svensson L (1995) Prepulse inhibition of acoustic startle, a measure of sensorimotor gating: effects of antipsychotics and other agents in rats. Pharmacol Biochem Behav 52:649–654

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Hoffman AJ, Nichols DE (1986) Effects of the enantiomers of MDA, MDMA and related analogues on [3H]serotonin and [3H]dopamine release from superfused rat brain slices. Eur J Pharmacol 132:269–276

    Article  CAS  PubMed  Google Scholar 

  • Kantor RE, Dudlettes SD, Shulgin AT (1980) 5-Methoxy-α-methyltryptamine (α, O-dimethylserotonin) a hallucinogenic homolog of serotonin. Biol Psychiatry 15:349–352

    CAS  PubMed  Google Scholar 

  • Kärkkäinen J, Forsström T, Tornaeus J, Wähälä K, Kiuru P, Honkanen A, Stenman UH, Turpeinen U, Hesso A (2005) Potentially hallucinogenic 5-hydroxytryptamine receptor ligands bufotenine and dimethyltryptamine in blood and tissues. Scand J Clin Lab Invest 65:189–199

    Article  PubMed  CAS  Google Scholar 

  • Keller DL, Umbreit WW (1956) Permanent alteration of behavior in mice by chemical and psychological means. Science 124:723–724

    Article  CAS  PubMed  Google Scholar 

  • Kennett GA, Wood MD, Glen A, Grewal S, Forbes I, Gadre A, Blackburn TP (1994) In vivo properties of SB 200646A, a 5-HT2C/2B receptor antagonist. Br J Pharmacol 111:797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura KK, Akai TT, Nakamura KK, Yamaguchi MM, Nakagawa H, Oshino NN (1991) Dual activation by lisuride of central serotonin 5-HT1A and dopamine D2 receptor sites: drug discrimination and receptor binding studies. Behav Pharmacol 2:105–112

    PubMed  Google Scholar 

  • Klodzinska A, Bijak M, Tokarski K, Pilc A (2002) Group II mGlu receptor agonists inhibit behavioural and electrophysiological effects of in mice. Pharmacol Biochem Behav 73:327–332

    Article  CAS  PubMed  Google Scholar 

  • Knauer CS, Campbell JE, Chio CL, Fitzgerald LW (2009) Pharmacological characterization of mitogen-activated protein kinase activation by recombinant human 5-HT2C, 5-HT2A, and 5-HT2B receptors. Naunyn Schmiedebergs Arch Pharmacol 379:461–471

    Article  CAS  PubMed  Google Scholar 

  • Kometer M, Schmidt A, Jäncke L, Vollenweider FX (2013) Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci 33:10544–10551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs KM, Geyer MA (1994) Cross-tolerance studies of serotonin receptors involved in behavioral effects of LSD in rats. Psychopharmacology 113:429–437

    Article  CAS  PubMed  Google Scholar 

  • Krebs-Thomson K, Geyer MA (1996) The role of 5-HT1A receptors in the locomotor-suppressant effects of LSD: WAY-100635 studies of 8-OH-DPAT, DOI and LSD in rats. Behav Pharmacol 7:551–559

    CAS  PubMed  Google Scholar 

  • Krebs-Thomson K, Lehmann-Masten V, Naiem S, Paulus MP, Geyer MA (1998a) Modulation of phencyclidine-induced changes in locomotor activity and patterns in rats by serotonin. Eur J Pharmacol 343:135–143

    Article  CAS  PubMed  Google Scholar 

  • Krebs-Thomson K, Paulus MP, Geyer MA (1998b) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18:339–351

    Article  CAS  PubMed  Google Scholar 

  • Krebs-Thomson K, Ruiz EM, Masten V, Buell M, Geyer MA (2006) The roles of 5-HT1A and 5-HT2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats. Psychopharmacology 189:319–329

    Article  CAS  PubMed  Google Scholar 

  • Kurrasch-Orbaugh DM, Watts VJ, Barker EL, Nichols DE (2003) Serotonin 5-hydroxytryptamine2A receptor-coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther 304:229–237

    Article  CAS  PubMed  Google Scholar 

  • Lehmann-Masten VD, Geyer MA (1991) Spatial and temporal patterning distinguishes the locomotor activating effects of dizocilpine and phencyclidine in rats. Neuropharmacology 30:629–636

    Article  CAS  PubMed  Google Scholar 

  • Leng A, Ouagazzal A, Feldon J, Higgins GA (2003) Effect of the 5-HT6 receptor antagonists Ro04-6790 and Ro65-7199 on latent inhibition and prepulse inhibition in the rat: comparison to clozapine. Pharmacol Biochem Behav 75:281–288

    Article  CAS  PubMed  Google Scholar 

  • Leysen JE, Niemegeers CJ, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21:301–314

    CAS  PubMed  Google Scholar 

  • Lucki I, Minugh-Purvis N (1987) Serotonin-induced head shaking behavior in rats does not involve receptors located in the frontal cortex. Brain Res 420:403–406

    Article  CAS  PubMed  Google Scholar 

  • Lucki I, Nobler MS, Frazer A (1984) Differential actions of serotonin antagonists on two behavioral models of serotonin receptor activation in the rat. J Pharmacol Exp Ther 228:133–139

    CAS  PubMed  Google Scholar 

  • Lukasiewicz S, Polit A, Kędracka-Krok S, Wędzony K, Maćkowiak M, Dziedzicka-Wasylewska M (2010) Hetero-dimerization of serotonin 5-HT2A and dopamine D2 receptors. Biochim Biophys Acta 1803:1347–1358

    Article  CAS  PubMed  Google Scholar 

  • Lyon RA, Glennon RA, Titeler M (1986) 3,4-Methylenedioxymethamphetamine (MDMA): stereoselective interactions at brain 5-HT1 and 5-HT2 receptors. Psychopharmacology 88:525–526

    Article  CAS  PubMed  Google Scholar 

  • Mackeprang T, Kristiansen KT, Glenthoj BY (2002) Effects of antipsychotics on prepulse inhibition of the startle response in drug-naïve schizophrenic patients. Biol Psychiatry 52:863–873

    Article  CAS  PubMed  Google Scholar 

  • Malick JB, Doren E, Barnett A (1977) Quipazine-induced head-twitch in mice. Pharmacol Biochem Behav 6:325–329

    Article  CAS  PubMed  Google Scholar 

  • Marini JL, Jacobs BL, Sheard MH, Trulson ME (1981) Activity of a non-hallucinogenic ergoline derivative, lisuride, in an animal behavior model for hallucinogens. Psychopharmacology 73:328–331

    Article  CAS  PubMed  Google Scholar 

  • Marquis KL, Sabb AL, Logue SF, Brennan JA, Piesla MJ, Comery TA, Grauer SM, Ashby CR Jr, Nguyen HQ, Dawson LA, Barrett JE, Stack G, Meltzer HY, Harrison BL, Rosenzweig-Lipson S (2007) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole]: a novel 5-hydroxytryptamine 2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320:486–496

    Article  CAS  PubMed  Google Scholar 

  • Matthews WD, Smith CD (1980) Pharmacological profile of a model for central serotonin receptor activation. Life Sci 26:1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Mavlyutov TA, Epstein ML, Liu P, Verbny YI, Ziskind-Conhaim L, Ruoho AE (2012) Development of the sigma-1 receptor in C-terminals of motoneurons and colocalization with the N, N’-dimethyltryptamine forming enzyme, indole-N-methyl transferase. Neuroscience 206:60–68

    Article  CAS  PubMed  Google Scholar 

  • May JA, Dantanarayana AP, Zinke PW, McLaughlin MA, Sharif NA (2006) 1-((S)-2-aminopropyl)-1H-indazol-6-ol: a potent peripherally acting 5-HT2 receptor agonist with ocular hypotensive activity. J Med Chem 49:318–328

    Article  CAS  PubMed  Google Scholar 

  • McKenna DJ, Repke DB, Lo L, Peroutka SJ (1990) Differential interactions of indolealkylamines with 5-hydroxytryptamine receptor subtypes. Neuropharmacology 29(3):193–198

    Article  CAS  PubMed  Google Scholar 

  • McOmish CE, Lira A, Hanks JB, Gingrich JA (2012) Clozapine-induced locomotor suppression is mediated by 5-HT2A receptors in the forebrain. Neuropsychopharmacology 37:2747–2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittman SM, Geyer MA (1989) Effects of 5HT-1A agonists on locomotor and investigatory behaviors in rats differ from those of hallucinogens. Psychopharmacology 98:321–329

    Article  CAS  PubMed  Google Scholar 

  • Mittman SM, Geyer MA (1991) Disassociation of multiple effects of acute LSD on exploratory behavior in rats by ritanserin and propranolol. Psychopharmacology 105:69–76

    Article  CAS  PubMed  Google Scholar 

  • Molinaro G, Traficante A, Riozzi B, Di Menna L, Curto M, Pallottino S, Nicoletti F, Bruno V, Battaglia G (2009) Activation of mGlu2/3 metabotropic glutamate receptors negatively regulates the stimulation of inositol phospholipid hydrolysis mediated by 5-hydroxytryptamine2A serotonin receptors in the frontal cortex of living mice. Mol Pharmacol 76:379–387

    Article  CAS  PubMed  Google Scholar 

  • Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J (2011) Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett 493:76–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mos J, Olivier B, Tulp MThM (1992) Ethopharmacological studies differentiate the effects of various serotonergic compounds on agression in rats. Drug Dev Res 26:343–360

    Article  CAS  Google Scholar 

  • Moya PR, Berg KA, Gutiérrez-Hernandez MA, Sáez-Briones P, Reyes-Parada M, Cassels BK, Clarke WP (2007) Functional selectivity of hallucinogenic phenethylamine and phenylisopropylamine derivatives at human 5-hydroxytryptamine (5-HT)2A and 5-HT2C receptors. J Pharmacol Exp Ther 321:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Murnane KS, Fantegrossi WE, Godfrey JR, Banks ML, Howell LL (2010) Endocrine and neurochemical effects of 3,4-methylenedioxymethamphetamine and its stereoisomers in rhesus monkeys. J Pharmacol Exp Ther 334:642–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA (2004) Lysergic acid diethylamide and [−]-2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res 1023:134–140

    Article  CAS  PubMed  Google Scholar 

  • Nakagawasai O, Murata A, Arai Y, Ohba A, Wakui K, Mitazaki S, Niijima F, Tan-No K, Tadano T (2007) Enhanced head-twitch response to 5-HT-related agonists in thiamine-deficient mice. J Neural Transm (Vienna) 114:1003–1010

    Article  CAS  Google Scholar 

  • Nash JF, Roth BL, Brodkin JD, Nichols DE, Gudelsky GA (1994) Effect of the R(−) and S(+) isomers of MDA and MDMA on phosphatidyl inositol turnover in cultured cells expressing 5-HT2A or 5-HT2C receptors. Neurosci Lett 177:111–115

    Article  CAS  PubMed  Google Scholar 

  • Newman-Tancredi A, Cussac D, Audinot V, Nicolas JP, De Ceuninck F, Boutin JA, Millan MJ (2002) Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. II. Agonist and antagonist properties at subtypes of dopamine D2-like receptor and alpha1/alpha2-adrenoceptor. J Pharmacol Exp Ther 303:805–814

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE (2012) Structure-activity relationships of serotonin 5-HT2A agonists. Wiley Interdiscip Rev Membr Transp Signal 1:559–579

    Article  CAS  Google Scholar 

  • Nichols DE, Pfister WR, Yim GK (1978) LSD and phenethylamine hallucinogens: new structural analogy and implications for receptor geometry. Life Sci 22:2165–2170

    Article  CAS  PubMed  Google Scholar 

  • Nichols DE, Sassano MF, Halberstadt AL, Klein LM, Brandt SD, Elliott SP, Fiedler WJ (2015) N-benzyl-5-methoxytryptamines as potent serotonin 5-HT2 receptor family agonists and comparison with a series of phenethylamine analogues. ACS Chem Neurosci 6:165–1175

    Article  CAS  Google Scholar 

  • Ouagazzal A, Grottick AJ, Moreau J, Higgins GA (2001) Effect of LSD on prepulse inhibition and spontaneous behavior in the rat. A pharmacological analysis and comparison between two rat strains. Neuropsychopharmacology 25:565–575

    Article  CAS  PubMed  Google Scholar 

  • Padich RA, McCloskey TC, Kehne JH (1996) 5-HT modulation of auditory and visual sensorimotor gating: II. Effects of the 5-HT2A antagonist MDL 100,907 on disruption of sound and light prepulse inhibition produced by 5-HT agonists in Wistar rats. Psychopharmacology 124:107–116

    Article  CAS  PubMed  Google Scholar 

  • Palenicek T, Hlinak Z, Bubenikova-Valesova V, Novak T, Horacek J (2010) Sex differences in the effects of N, N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Prog Neuropsychopharmacol Biol Psychiatry 34:588–596

    Article  CAS  PubMed  Google Scholar 

  • Pálenícek T, Balíková M, Bubeníková-Valesová V, Horácek J (2008) Mescaline effects on rat behavior and its time profile in serum and brain tissue after a single subcutaneous dose. Psychopharmacology 196:51–62

    Article  PubMed  CAS  Google Scholar 

  • Pálenícek T, Fujáková M, Brunovskỳ M, Horácek J, Gorman I, Balíková M, et al. (2013) Behavioral, neurochemical and pharmaco-EEG profiles of the psychedelic drug 4-bromo-2,5-dimethoxyphenethylamine (2C-B) in rats. Psychopharmacology (Berl) 225:75–93

    Article  PubMed  CAS  Google Scholar 

  • Parrish JC, Braden MR, Gundy E, Nichols DE (2005) Differential phospholipase C activation by phenylalkylamine serotonin 5-HT2A receptor agonists. J Neurochem 95:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Paulus MP, Geyer MA (1991) A temporal and spatial scaling hypothesis for the behavioral effects of psychostimulants. Psychopharmacology 104:6–16

    Article  CAS  PubMed  Google Scholar 

  • Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, Henry BL, Zhuang X, Masten VL, Sharp RF, Geyer MA (2009) A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 66:1072–1080

    Article  PubMed  PubMed Central  Google Scholar 

  • Piercey MF, Hoffmann WE, Smith MW, Hyslop DK (1996) Inhibition of dopamine neuron firing by pramipexole, a dopamine D3 receptor-preferring agonist: comparison to other dopamine receptor agonists. Eur J Pharmacol 312:35–44

    Article  CAS  PubMed  Google Scholar 

  • Pranzatelli MR (1990) Evidence for involvement of 5-HT2 and 5-HT1C receptors in the behavioral effects of the 5-HT agonist 1-(2,5-dimethoxy-4-iodophenyl aminopropane)-2 (DOI). Neurosci Lett 115:74–80

    Article  CAS  PubMed  Google Scholar 

  • Quednow BB, Kühn K-U, Mössner R, Schwab SG, Schuhmacher A, Maier W, Wagner M (2008) Sensorimotor gating of schizophrenia patients is influenced by 5-HT2A receptor polymorphisms. Biol Psychiatry 64:434–437

    Article  CAS  PubMed  Google Scholar 

  • Quednow BB, Schmechtig A, Ettinger U, Petrovsky N, Collier DA, Vollenweider FX, Wagner M, Kumari V (2009) Sensorimotor gating depends on polymorphisms of the serotonin-2A receptor and catechol-O-methyltransferase, but not on neuregulin-1 Arg38Gln genotype: a replication study. Biol Psychiatry 66:614–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quednow BB, Kometer M, Geyer MA, Vollenweider FX (2012) Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 37:630–640

    Article  CAS  PubMed  Google Scholar 

  • Rabin RA, Regina M, Doat M, Winter JC (2002) 5-HT2A receptor-stimulated phosphoinositide hydrolysis in the stimulus effects of hallucinogens. Pharmacol Biochem Behav 72:29–37

    Article  CAS  PubMed  Google Scholar 

  • Raffaelli E Jr, Martins OJ, dos Santos P, Dãgua Filho A (1983) Lisuride in cluster headache. Headache 23:117–121

    Article  PubMed  Google Scholar 

  • Rempel NL, Callaway CW, Geyer MA (1993) Serotonin1B receptor activation mimics behavioral effects of presynaptic serotonin release. Neuropsychopharmacology 8:201–211

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Parada M, Scorza C, Romero V, Silveira R, Medina JH, Andrus D, Nichols DE, Cassels BK (1996) (±)-1-(2,5-Dimethoxy-4-ethylthiophenyl)-2-aminopropane (ALEPH-2), a novel putative anxiolytic agent lacking affinity for benzodiazepine sites and serotonin-1A receptors. Naunyn Schmiedebergs Arch Pharmacol 354:579–585

    Article  CAS  PubMed  Google Scholar 

  • Riba J, Rodríguez-Fornells A, Barbanoj MJ (2002) Effects of ayahuasca on sensory and sensorimotor gating in humans as measured by P50 suppression and prepulse inhibition of the startle reflex, respectively. Psychopharmacology 165:18–28

    Article  CAS  PubMed  Google Scholar 

  • Rigdon GC, Weatherspoon JK (1992) 5-Hydroxytryptamine1a receptor agonists block prepulse inhibition of acoustic startle reflex. J Pharmacol Exp Ther 263:486–493

    CAS  PubMed  Google Scholar 

  • Rusterholz DB, Spratt JL, Long JP, Kelly TF (1978) Serotonergic and dopaminergic involvement in the mechanism of action of R-(-)-2,5-dimethoxy-4-bromoamphetamine (DOB) in cats. Life Sci 23:1499–1506

    Article  CAS  PubMed  Google Scholar 

  • Salvatore S, Hyde RW (1956) Progression of effects of lysergic acid diethylamide (LSD). Arch Neurol Psychiat 2:50–59

    Article  Google Scholar 

  • Sanchez C, Arnt J, Moltzen E (1996) Assessment of relative efficacies of 5-HT1A receptor ligands by means of in vivo animal models. Eur J Pharmacol 315:245–254

    Article  CAS  PubMed  Google Scholar 

  • Sard H, Kumaran G, Morency C, Roth BL, Toth BA, He P, Shuster L (2005) SAR of psilocybin analogs: discovery of a selective 5-HT2C agonist. Bioorg Med Chem Lett 15:4555–4559

    Article  CAS  PubMed  Google Scholar 

  • Schlemmer RF Jr, Davis JM (1986) A primate model for the study of hallucinogens. Pharmacol Biochem Behav 24:381–392

    Article  CAS  PubMed  Google Scholar 

  • Schmid CL, Bohn LM (2010) Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ß-arrestin2/Src/Akt signaling complex in vivo. J Neurosci 30:13513–13524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid CL, Raehal KM, Bohn LM (2008) Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA 105:1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, Brenneisen R, Müller F, Borgwardt S, Liechti ME (2015) Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry 78:544–553

    Article  CAS  PubMed  Google Scholar 

  • Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glu-tamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    CAS  PubMed  Google Scholar 

  • Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2,5-Dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT)2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112

    CAS  PubMed  Google Scholar 

  • Scorza MC, Reyes-Parada M, Silveira R, Viola H, Medina JH, Viana MB, Zangrossi H Jr, Graeff FG (1996) Behavioral effects of the putative anxiolytic (±)-1-(2,5-dimethoxy-4-ethylthiophenyl)-2-aminopropane (ALEPH-2) in rats and mice. Pharmacol Biochem Behav 54:355–361

    Article  CAS  PubMed  Google Scholar 

  • Scruggs JL, Schmidt D, Deutch AY (2003) The hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) increases cortical extracellular glutamate levels in rats. Neurosci Lett 346:137–140

    Article  CAS  PubMed  Google Scholar 

  • Segal DS, Geyer MA (1985) Animal models of psychopathology. In: Judd LL, Groves PM (eds) Psychobiolgical foundations of clinical psychiatry. J.B. Lippincott Co., Philadelphia, pp 1–14

    Google Scholar 

  • Shen HW, Jiang XL, Winter JC, Yu AY (2010) Psychedelic 5-methoxy-N, N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions. Curr Drug Metabol 11:659–666

    Article  CAS  Google Scholar 

  • Shulgin AT (1973) Stereospecific requirements for hallucinogenesis. J Pharm Pharmacol 25:271–272

    Article  CAS  PubMed  Google Scholar 

  • Shulgin AT, Nichols DE (1978) Characterization of three new psychotomimetics In: Stillman RC, Willette RE (eds) The psychopharmacology of hallucinogens. Pergamon Press, New York, p 74

    Google Scholar 

  • Shulgin AT, Shulgin A (1991) PIHKAL: a chemical love story. Transform Press, Berkeley, CA

    Google Scholar 

  • Shulgin AT, Sargent T, Naranjo C (1971) 4-Bromo-2,5-dimethoxyphenylisopropylamine, a new centrally active amphetamine analog. Pharmacology 5:103–107

    Article  CAS  PubMed  Google Scholar 

  • Shulgin AT, Manning T, Daley PF (2011) The shulgin index. vol 1. Psychedelic phenethylamines and related compounds. Transform Press, Berkeley, CA

    Google Scholar 

  • Silva MT, Calil HM (1975) Screening hallucinogenic drugs: systematic study of three behavioral tests. Psychopharmacologia 42:163–171

    Article  CAS  PubMed  Google Scholar 

  • Singleton C, Marsden CA (1981) Circadian variation in the head twitch response produced by 5-methoxy-N1, N1-dimethyltryptamine and p-chloroamphetamine in the mouse. Psychopharmacology 74:173–176

    Article  CAS  PubMed  Google Scholar 

  • Sipes TA, Geyer MA (1994) Multiple serotonin receptor subtypes modulate prepulse inhibition of the startle response in rats. Neuropharmacology 33:441–448

    Article  CAS  PubMed  Google Scholar 

  • Sipes TA, Geyer MA (1995a) 8-OH-DPAT disruption of prepulse inhibition in rats: reversal with (+)WAY 100,135 and localization of site of action. Psychopharmacology 117:41–48

    Article  CAS  PubMed  Google Scholar 

  • Sipes TE, Geyer MA (1995b) DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT2A and not by 5-HT2C receptors. Behav Pharmacol 6:839–842

    Article  CAS  PubMed  Google Scholar 

  • Sipes TE, Geyer MA (1997) DOI disrupts prepulse inhibition of startle in rats via 5-HT2A receptors in the ventral pallidum. Brain Res 761:97–104

    Article  CAS  PubMed  Google Scholar 

  • Sitaram BR, Lockett L, Talomsin R, Blackman GL, McLeod WR (1987) In vivo metabolism of 5-methoxy-N, N-dimethyltryptamine and N, N-dimethyltryptamine in the rat. Biochem Pharmacol 36:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Siuciak JA, Chapin DS, McCarthy SA, Guanowsky V, Brown J, Chiang P, Marala R, Patterson T, Seymour PA, Swick A, Iredale PA (2007) CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity. Neuropharmacology 52:279–290

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Bailey JM, Williams D, Fantegrossi WE (2014) Tolerance and cross-tolerance to head twitch behavior elicited by phenethylamine- and tryptamine-derived hallucinogens in mice. J Pharmacol Exp Ther 351:485–491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snyder SH, Unger S, Blatchley R, Barfknecht CF (1974) Stereospecific actions of DOET (2,5-dimethoxy-4-ethylamphetamine) in man. Arch Gen Psychiatry 31:103–106

    Article  CAS  PubMed  Google Scholar 

  • Spencer DG Jr, Glaser T, Traber J (1987) Serotonin receptor subtype mediation of the interoceptive discriminative stimuli induced by 5-methoxy-N, N-dimethyltryptamine. Psychopharmacology 93:158–166

    Article  CAS  PubMed  Google Scholar 

  • Squires RF (1975) Evidence that 5-methoxy-N, N-dimethyltryptamine is a specific substrate for MAO-A in the rat: implications for the indoleamine dependent behavioral syndrome. J Neurochem 24:47–50

    Article  CAS  PubMed  Google Scholar 

  • Strachan RT, Sciaky N, Cronan MR, Kroeze WK, Roth BL (2010) Genetic deletion of p90 ribosomal S6 kinase 2 alters patterns of 5-hydroxytryptamine2A serotonin receptor functional selectivity. Mol Pharmacol 77:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki O, Katsumata Y, Oya M (1981) Characterization of eight biogenic indoleamines as substrates for type A and type B monoamine oxidase. Biochem Pharmacol 30:1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL (1993) A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder (OCD). Biol Psychiatry 33:298–301

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Zinner S, Hartston H, Filion D, Magulac M (1994) Central inhibitory deficits in obsessive compulsive disorder and Tourette syndrome. Biol Psychiatry 35(664):1994

    Google Scholar 

  • Swerdlow NR, Geyer MA, Braff DL (2001) Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology 156:194–215

    Article  CAS  PubMed  Google Scholar 

  • Tadano T, Neda M, Hozumi M, Yonezawa A, Arai Y, Fujita T, Kinemuchi H, Kisara K (1995) alpha-Methylated tryptamine derivatives induce a 5-HT receptor-mediated head-twitch response in mice. Neuropharmacology 34:229–234

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Young JW, Halberstadt AL, Masten VL, Geyer MA (2012) Four factors underlying mouse behavior in an open field. Behav Brain Res 233:55–61

    Article  PubMed  Google Scholar 

  • Thompson MA, Moon E, Kim UJ, Xu J, Siciliano MJ, Weinshilboum RM (1999) Human indolethylamine N-methyltransferase: cDNA cloning and expression, gene cloning, and chromosomal localization. Genomics 61:285–297

    Article  CAS  PubMed  Google Scholar 

  • Tilson HA, Baker TG, Chamberlain JH (1975) Behavioral and neuropharmacological analysis of amphetamine and 2,5-dimethoxy-4-methylamphetamine in rats. Psychopharmacologia 44:229–239

    Article  CAS  PubMed  Google Scholar 

  • Turner EH, Loftis JM, Blackwell AD (2006) Serotonin a la carte: supplementation with the serotonin precursor 5-hydroxytryptophan. Pharmacol Ther 109:325–338

    Article  CAS  PubMed  Google Scholar 

  • van den Buuse M, Ruimschotel E, Martin S, Perrin K, Risbrough VB, Halberstadt AL (2011) Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT1A receptor knockout mice: implications for schizophrenia. Neuropharmacology 61:209–216

    Article  PubMed  CAS  Google Scholar 

  • van Praag HM, Schut T, Bosma E, van den Bergh R (1971) A comparative study of the therapeutic effects of some 4-chlorinated amphetamine derivatives in depressive patients. Psychopharmacologia 20:66–76

    Article  PubMed  Google Scholar 

  • Varty GB, Higgins GA (1995) Examination of drug-induced and isolation-induced disruptions of prepulse inhibition as models to screen antipsychotic drugs. Psychopharmacology 122:15–26

    Article  CAS  PubMed  Google Scholar 

  • Verde G, Chiodini PG, Liuzzi A, Cozzi R, Favales F, Botalla L et al (1980) Effectiveness of the dopamine agonist lisuride in the treatment of acromegaly andpathological hyperprolactinemic states. J Endocrinol Invest 3:405–414

    Article  CAS  PubMed  Google Scholar 

  • Vickers SP, Easton N, Malcolm CS, Allen NH, Porter RH, Bickerdike MJ, Kennett GA (2001) Modulation of 5-HT2A receptor-mediated head-twitch behaviour in the rat by 5-HT2C receptor agonists. Pharmacol Biochem Behav 69:643–652

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX (1994) Evidence for a cortical–subcortical imbalance of sensory information processing during altered states of consciousness using positron emission tomography and [18F]fluorodeoxyglucose In: Pletscher A, Ladewig D (eds) 50 years of LSD: current status and perspectives of hallucinogens. Parthenon, London, pp 67–86

    Google Scholar 

  • Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: integrating natural and drug-induced psychoses Brain Res Bull 56:495–507

    CAS  PubMed  Google Scholar 

  • Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport 9:3897–3902

    Article  CAS  PubMed  Google Scholar 

  • Vollenweider FX, Csomor PA, Knappe B, Geyer MA, Quednow BB (2007) The effects of the preferential 5-HT2A agonist psilocybin on prepulse inhibition of startle in healthy human volunteers depend on interstimulus interval. Neuropsychopharmacology 32:1876–1887

    Article  CAS  PubMed  Google Scholar 

  • Wasson RG, Hofmann A, Ruck CAP (1978) The road to Eleusis: unveiling the secret of the mysteries. Harcourt, Brace, Jovanovich, New York

    Google Scholar 

  • Watson NV, Gorzalka BB (1992) Concurrent wet dog shaking and inhibition of male rat copulation after ventromedial brainstem injection of the 5-HT2 agonist DOI. Neurosci Lett 141:25–29

    Article  CAS  PubMed  Google Scholar 

  • Webster VA, Griffiths EC, Slater P (1982) Induction of wet-dog shaking in rats by analogues and metabolites of thyrotrophin-releasing hormone (TRH). Regul Pept 5:43–51

    Article  CAS  PubMed  Google Scholar 

  • Wettstein JG, Host M, Hitchcock JM (1999) Selectivity of action of typical and atypical anti-psychotic drugs as antagonists of the behavioral effects of1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI). Prog Neuropsychopharmacol Biol Psychiatry 23:533–544

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Appel JB (1982) Lysergic acid diethylamide (LSD) and lisuride: differentiation of their neuropharmacological actions. Science 216:535–537

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Kuhn DM, Appel JB (1977) Discriminative stimulus properties of quipazine. Neuropharmacology 16:827–832

    Article  CAS  Google Scholar 

  • Wieland S, Kreider MS, McGonigle P, Lucki I (1990) Destruction of the nucleus raphe obscurus and potentiation of serotonin-mediated behaviors following administration of the neurotoxin 3-acetylpyridine. Brain Res 520:291–302

    Article  CAS  PubMed  Google Scholar 

  • Willins DL, Meltzer HY (1997) Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharmacol Exp Ther 282:699–706

    CAS  PubMed  Google Scholar 

  • Wing LL, Tapson GS, Geyer MA (1990) 5HT-2 mediation of acute behavioral effects of hallucinogens in rats. Psychopharmacology 100:417–425

    Article  CAS  PubMed  Google Scholar 

  • Winter JC (1979) Quipazine-induced stimulus control in the rat. Psychopharmacology 60:265–269

    Article  CAS  PubMed  Google Scholar 

  • Winter JC (1994) The stimulus effects of serotonergic hallucinogens in animals. NIDA Res Monograph Ser 146:157–182

    CAS  Google Scholar 

  • Winter CA, Flataker L (1956) Effects of lysergic acid diethylamide upon performance of trained rats. Proc Soc Exp Biol Med 92:285–289

    Article  CAS  PubMed  Google Scholar 

  • Winter JC, Filipink RA, Timineri D, Helsley SE, Rabin RA (2000) The paradox of 5-methoxy-N, N-dimethyltryptamine: an indoleamine hallucinogen that induces stimulus control via 5-HT1A receptors. Pharmacol Biochem Behav 65:75–82

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Ueki S (1975) Behavioral effects of 2,5-dimethoxy-4-methylamphetamine (DOM) in rats and mice. Eur J Pharmacol 32:156–162

    Article  CAS  PubMed  Google Scholar 

  • Yarosh HL, Katz EB, Coop A, Fantegrossi WE (2007) MDMA-like behavioral effects of N-substituted piperazines in the mouse. Pharmacol Biochem Behav 88:18–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JW, Minassian A, Paulus MP, Geyer MA, Perry W (2007) A reverse-translational approach to bipolar disorder: rodent and human studies in the Behavioral Pattern Monitor. Neurosci Biobehav Rev 31:882–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaniewska M, McCreary AC, Filip M (2009) Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: locomotor activity studies in rats. Synapse 63:653–661

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Marek GJ (2008) AMPA receptor involvement in 5-hydroxytryptamine2A receptor-mediated pre-frontal cortical excitatory synaptic currents and DOI-induced head shakes. Prog Neuropsychopharmacol Biol Psychiatry 32:62–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NIDA (R01 DA002925 and R01 DA041336), NIMH (K01 MH100644), and the Veteran’s Affairs VISN 22 MIRECC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam L. Halberstadt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Halberstadt, A.L., Geyer, M.A. (2016). Effect of Hallucinogens on Unconditioned Behavior. In: Halberstadt, A.L., Vollenweider, F.X., Nichols, D.E. (eds) Behavioral Neurobiology of Psychedelic Drugs. Current Topics in Behavioral Neurosciences, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2016_466

Download citation

Publish with us

Policies and ethics