Skip to main content

Near-Wall Turbulence Control

  • Chapter
  • First Online:
Flow Control

Part of the book series: Lecture Notes in Physics ((LNPMGR,volume 53))

Abstract

The control of near-wall turbulence is the topic of this contribution to the shortcourse volume on Flow Control. Turbulent boundary layer structure and near-wall turbulence structure in particular is considered and how passive and active modifications to the structure can produce a diminution in drag. This contribution examines various methods for passive and active control of these structures, which include riblets, humplets, spanwise wall oscillations, selective interference and selective introduction of turbulence at scales different to those already existing within a boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhavan, R., Jung, W.J. and Mangiavacchi, N. (1992): Turbulence control in wall bounded flows by spanwise oscillations. Advances in Turbulence IV, Nieuwstadt (ed) Kluwer Academic Publ., See also Applied Scientific Research, 51:299–303.

    Google Scholar 

  • Aubry, N., Holmes, P., Lumley, J.L. and Stone, E. (1988): The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mechanics, 192:115–173.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Berkooz, G., Holmes, P. and Lumley, J.L. (1993): On the relation between low-dimensional models and the dynamics of coherent structures in the turbulent wall layer, Theoretical Comp. Fluid Dynamics, 4:255–269.

    Article  MATH  ADS  Google Scholar 

  • Cousteix, J., Houdeville, R. and Javelle, J. (1981): Response of a turbulent boundary layer to a pulsation of the external flow with and without adverse pressure gradient. Proceedings, IUTAM Symposium on Unsteady Turbulent Shear Flows, pp 120–144.

    Google Scholar 

  • Baron, A. and Quadrio, M. (1993): Some preliminary results on the influence of riblets on the structure of a turbulent boundary layer. International J. Heat and Fluid Flow, 14(3), 223–230.

    Article  Google Scholar 

  • Baron, A., Quadrio, M. and Vigevano, L. (1993): On the boundary layer-riblet interaction mechanisms and the prediction of turbulent drag reduction. Intl. J. Heat and Fluid Flow, 14(4), 324–332.

    Article  Google Scholar 

  • Bechert, D.W. (1987): Experiments on three dimensional riblets. In Turbulent Drag Reduction by Passive Means, Royal Aeronautical Society, London.

    Google Scholar 

  • Bechert, D.W. and Bartenwerfer, M. (1989): The viscous flow on surfaces with longitudinal ribs. J. Fluid Mechanics, 206:105–129.

    Article  ADS  Google Scholar 

  • Benhalilou, M. Ansehnet, P., Liandrat, J. and Folachier, L. (1991): Experimental and numerical investigation of a turbulent boundary layer over riblets. In Proc, 8th Symposium on Turbulent Shear Flows, Munich.

    Google Scholar 

  • Brereton, G.J. and Reynolds, W.C. (1991): Dynamic response of boundary layer turbulence to oscillatory flow. Physics Fluids A, 3:178–187.

    Article  ADS  Google Scholar 

  • Breuer, K.S., Haritonidis, J.H. and Landahl, M.T. (1989): The control of transient disturbances in a flat plate boundary layer through active wall motion. Physics Fluids A, 1:574–582.

    Article  ADS  Google Scholar 

  • Bruse, M., Bechert, D.W., vander Hoeven, J.G., Hage, W. and Hoppe, G. (1993): Experiments with conventional and with novel adjustable dragreducing surfaces. In B.E. Launder R.M.C. So, C. G.Speziale, Editors, Nearwall turbulent flows, pages 719–738. Elsevier Publishers, B.V.

    Google Scholar 

  • Bushnell, D. and McGinley, C. (1989): Turbulence control in wall flows. Annual Review of Fluid Mechanics, 21:1–20.

    Article  ADS  Google Scholar 

  • Carlson, H.A. (1995): Direct numerical simulation of laminar and turbulent flow in a channel with complex, time-dependent wall geometries, Ph.D. thesis, Cornell University, May.

    Google Scholar 

  • Carlson, H.A. and Lumley, J.L. (1996): Flow over and obstacle emerging from the wall of a channel, AIAA J., 34(5):924–931.

    Article  MATH  ADS  Google Scholar 

  • Canuto, C, Hussaini, M.Y. Quarteroni, A. and Zang, T.A. (1987): Spectral Methods in Fluid Dynamics. Springer Verlag, Berlin.

    Google Scholar 

  • Chapman, D.R. and Kuhn, G.D. (1986): The limiting behavior of turbulence near a wall. J. Fluid Mechanics, 170:265–292.

    Article  MATH  ADS  Google Scholar 

  • Choi, K-S. (1987): The wall pressure fluctuations of modified turbulent boundary layer with riblets, in Turbulence Management and Relaminarization, Springer Verlag, Liepmann and Narasimha (eds.).

    Google Scholar 

  • Choi, K-S. (1989): Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mechanics, 208:417–458.

    Article  ADS  Google Scholar 

  • Choi, K-S. (1993): Breakdown of the Reynolds analogy over drag-reducing riblet surface. Applied Scientific Research, 50:563–567.

    Google Scholar 

  • Choi, H., Moin, P. and Kim, J. (1991): On the effects of riblets in fully developed laminar channel flows. Physics Fluids A, 3:1892–1896.

    Article  MATH  ADS  Google Scholar 

  • Choi, H., Moin, P. and Kim, J. (1992): Turbulent drag reduction: Studies of feedback control and flow over riblets. Technical Report Report TF-55, Dept. Mechanical Engineering, Stanford University, California.

    Google Scholar 

  • Choi, H., Moin, P. and Kim, J. (1993): Direct numerical simulation of turbulent flow over riblets. J. Fluid Mechanics, 255:503–540.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Choi, H., Theman, R., Moin, P. and Kim, J. (1993): Feedback control for unsteady flow and its application to the stochastic burgers equation. J. Fluid Mechanics, 253:509–544.

    Article  MATH  ADS  Google Scholar 

  • Chu, D.C., Henderson, R. and Karniadakis, G.E. (1992): ParaEel spectral element fourier simulation of turbulent flow over riblet mounted surfaces. Theoretical and Corrvp. Fluid Dynamics, 3:219–229.

    Article  MATH  ADS  Google Scholar 

  • Chu, D.C. and Karniadakis, G.E. (1993): A direct numerical simulation of laminar and turbulent flow over riblet mounted surfaces. J. Fluid Mechanics, 250:1–42.

    Article  ADS  Google Scholar 

  • Clark, D.G. (1989): Boundary layer flow visualization patterns on a riblet surface. Technical Report QMC-EP-1081, Queen Mary and Westfield College, University of London.

    Google Scholar 

  • Coustols, E. and Savill, A.M. (1992): Turbulent skin-friction drag reduction by active and passive means. In Coustiex, J. Editor, Special course on skin friction drag reduction, Report 786. AGARD.

    Google Scholar 

  • Chu, D.C. (1992): A direct numerical simulation of laminar and turbulent flow over streamwise aligned riblets. Master’s thesis, Department of Mechanical and Aerospace Engineering, Princeton University.

    Google Scholar 

  • Chu, C.C. and Falco, R.E. (1988): Vortex ring/viscous wall layer interaction model of the turbulence production process near-walls, Experiments in Fluids, 6:305–315.

    Article  ADS  Google Scholar 

  • Djenidi, L. and Antonia, R.A. (1993): Riblet flow prediction with a low-Reynolds-number k-e model. In K. Krishna Prasad, Editor, Further developments in turbulence management, see also: Applied Scientific Research, 50:267-282.

    Google Scholar 

  • Enyutin, G.V., Lashkov, Y.A., Samoilova, N.V., Fedeev, I.V. and Shumilkina, E.A. (1987): Experimental investigation of the effect of longitudinal riblets on the friction drag of a flat plate. Fluid Dynamics, 23(2):284–289.

    Article  ADS  Google Scholar 

  • Ersoy, S. and Walker, J.D.A. (1985): Viscous flow induced by counter-rotating vorticies. Physics Fluids, 28(9):2687–2698.

    Article  MATH  ADS  Google Scholar 

  • Falco, R.E. (1991): A coherent structure model of the turbulent boundary layer and its ability to predict Reynolds number dependence. Philosophical Transactions Royal Society London A, 336:103–129.

    Article  MATH  ADS  Google Scholar 

  • Finnicum, D.S. and Hanratty, T.J. (1988): Effect of favorable pressure gradients on turbulent boundary layers. American Institute Chemical Engineering Journal, 34(4):529–540.

    Google Scholar 

  • Finnicum, D.S. and Hanratty, T.J. Influence of imposed flow oscillations on turbulence. Physico-chemical Hydrodynamics, 10:585–596.

    Google Scholar 

  • Foie, F. (1991): Etude Numerique de L’ecoulement sur une paroi striee (A numerical study of the flow over streamwise grooves). PhD thesis, L’Ecole Natioanl Superieure de L’Aeronautique et de L’Espace, Marseille.

    Google Scholar 

  • Fortuna, G. and Hanratty, T.J. (1972): The influence of drag-reducing polymers on turbulence in the viscous sublayer. J. Fluid Mechanics, 53(3):575–586.

    Article  ADS  Google Scholar 

  • Gallagher, J.A. and Tomas, A.S.W. (1984): Turbulent boundary layer characteristics over streamwise grooves, AIAA paper 84-2185.

    Google Scholar 

  • Gajdeczko, B. and Ramaprian, B.R. (1987): Experiments on periodic turbulent boundary layers in adverse pressure gradients. In Proc, 6th Symposium on Turbulent Shear Flows, Toulouse, pages 4.3.1–4.3.6.

    Google Scholar 

  • Gedney, C.J. (1993): The cancellation of sound-excited Tollmem-Schlichting waves with plate vibration, Physics Fluids, 26:1158–1160.

    Article  ADS  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P. and Cabot, W.H. (1991): A dynamic sub-grid scale eddy viscosity model. Physics of Fluids A, 3:1760–1765.

    Article  MATH  ADS  Google Scholar 

  • Goldstein, D., Handler, R. and Sirovich, L. (1995): Direct numerical simulation of turbulent flow over a modelled riblet covered surface. J. Fluid Mechanics, 302:333–376.

    Article  MATH  ADS  Google Scholar 

  • Grant, ELL. (1958): The large eddies of turbulent motion. J. Fluid Mechanics, 4:149–190.

    Article  ADS  Google Scholar 

  • Handler, R.A., Levich, E. and Sirovich, L. (1993): Drag reduction in turbulent channel flow by phase randomization. Physics of Fluids A, 5:686–694.

    Article  MATH  ADS  Google Scholar 

  • Hanratty, T.J., Chorn, L.G. and Hatziavramidis, D.T. (1977): Turbulent fluctuations in the viscous wall region for Newtonian and drag reducing fluids. Physics Fluids, 20(10):S112–S119.

    Article  ADS  Google Scholar 

  • Hatziavramidis, D.T. and Hanratty, T.J. (1979): The representation of the viscous wall region by a regular eddy pattern. J. Fluid Mechanics, 95:655–679.

    Article  MATH  ADS  Google Scholar 

  • Hooshmand, A. (1985): An experimental investigation of the influence of a drag reducing, longitudinally aligned, triangular riblet surface on the velocity and streamwise vorticity fields of a zero-pressure gradient turbulent boundary layer. Ph.D. thesis, University of Maryland.

    Google Scholar 

  • Jimenez, J. (1994): On the structure and control of near-wall turbulence. Physics Fluids, 6:994–953.

    Article  Google Scholar 

  • Johansson, A.V. and Alfredsson, P.H. (1982): On the structure of turbulent channel flow. J. Fluid Mechanics, 112:295–314.

    Article  ADS  Google Scholar 

  • Jung, W.J., Mangiavacchi, N. and Akhavan, R. (1992): Suppression of turbulence in wall bounded flows by high-frequency spanwise oscillations. Physics of Fluids A, 8:1605–1607.

    Article  ADS  Google Scholar 

  • Kachanov, Y.S. (1994): Physical mechanisms of laminar boundary layer transition, Annual Review of Fluid Mechanics, 26:411–482.

    ADS  MathSciNet  Google Scholar 

  • Khan, M.M.S. (1986): A numerical investigation of the drag reduction by riblet surfaces. AIAA paper 86-1127.

    Google Scholar 

  • Kim, J., Moin, P. and Moser, R. (1987): Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mechanics, 177:133–166.

    Article  MATH  ADS  Google Scholar 

  • Klein, H. and Ereidrich, R. (1989): Manipulating large-scale turbulence in a channel and a boundary layer. In Seventh Symposium Turbulent Shear Flows, Stanford.

    Google Scholar 

  • Kline, S.J., Reynolds, W.C., Schraub, F.A. and Runstadler, P.W. (1967): The structure of turbulent boundary layers, J. Fluid Mechanics, 30:283–325.

    Article  Google Scholar 

  • Kobashi, Y. and Hayakawa, M. (1981): Structure of a turbulent boundary layer on an osculating flat plate. Proceedings, IUTAM Symposium on Unsteady Turbulent Shear Flows, pages 67–76.

    Google Scholar 

  • Kravchenko, A.C., Choi, H. and Moin, P. (1993): On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers, Physics Fluids, 5:3307–3309.

    Article  ADS  Google Scholar 

  • Kravchenko, A.C., Moin, P. and Moser, R. (1996): Zonal embedded grids for numerical simulations of wall bounded turbulent flows. J. Computational Physics, 127:412–423.

    Article  MATH  ADS  Google Scholar 

  • Liu C. and Liu, Z. (1993): Multigrid methods and high order finite difference for flow in transition. In 11th AIAA Computational Fluid Dynamics Conference, Orlando, number 93-3354.

    Google Scholar 

  • Sirovich, L., Ball, K.S. and Handler, R.A. (1991): Propogating structures in wall bounded turbulent flows. Theoretical and Computational Fluid Dynamics, 2:307–317.

    Article  ADS  MATH  Google Scholar 

  • Sirovich, L., Ball, K.S. and Keefe, L.R. (1990): Plane waves and structures in turbulent channel flow. Physics of Fluids A, 2:2217–2226.

    Article  ADS  Google Scholar 

  • Luchini, P. Manzo, F. and Pozzi, A. (1991): Resistance of a grooved parallel flow and cross-flow. J. Fluid Mechanics, 228:87–109.

    MATH  ADS  Google Scholar 

  • Lumley, J.L. (1967): The structure of inhomogeneous turbulent flows, Atmoshperic Turbulence and Radio Wave Propogation, Yaglom and Tatarsky, Editors, Nauka PubL, Moscow.

    Google Scholar 

  • Lumley, J.L. (1969): Drag reduction by additives. Annual Review of Fluid Mechanics, 1:367–384.

    Article  ADS  Google Scholar 

  • Lumley, J. (1970): Stochastic Tools in Turbulence. Academic Press, New York.

    MATH  Google Scholar 

  • Lyons, S.L., Nikolaides, C. and Hanratty, T.J. (1988): The size of turbulent eddies close to a wall. American Institute Chemical Engineering Journal, 34(6):938–945.

    Google Scholar 

  • Lyons, S.L., Hanratty, T.J. and McLaughlin, J.B. (1989): Turbulence producing eddies in the viscous wall region, AIChE J., 35(12): 1962–1974.

    Article  Google Scholar 

  • Manhardt, M. and Wengle, H. (1993): A spatio-temporal decomposition of a fully inhomogeneous turbulent flow filed. Theoretical and Computational Fluid Dynamics, 5:223–242.

    Article  ADS  Google Scholar 

  • Mao, Z.-X. and Hanratty, T.J. (1986): Studies of the wall shear stress in a turbulent pulsating pipe flow. J. Fluid Mechanics, 170:545–564.

    Article  ADS  Google Scholar 

  • Masson, C, Saabas, H..J. and Baliga, B.R. (1994): Co-located equal-order control volume finite element method for two dimensional axisymmetric incompressible fluid flow. Int’l. J. Numerical Methods in Fluids, 18:1–26.

    Article  MATH  ADS  Google Scholar 

  • Mcllwain, S., Ewing, D. and Pollard, A. (1996): Evolution of large and small scale coherent structures in non-homogeneous shear flows, Bulletin of APS, Div. Fluid Dynamics, paper HI-6, November, Syracuse, New York.

    Google Scholar 

  • Morrison, J.F., Subramanian, C.S. and Bradshaw, P. (1992): Bursts and the law of the wall in turbulent boundary layers. J. Fluid Mechanics, 241:75–108.

    Article  ADS  Google Scholar 

  • Morrison, J.F., Tsai, H.M. and Bradshaw, P. (1989): Conditional sampling schemes for turbulent flow based on the VITA algorithm, Experiments in Fluids, 7:173–189.

    Article  ADS  Google Scholar 

  • Nikolaides, C. (1984): A Study of the Coherent Structures in the Viscous Wall Region of a Turbulent Flow. Ph.D. thesis, Dept. of Chem. Eng., University of Illinois, Urbana.

    Google Scholar 

  • Orlandi, P. and Jimenez, J. (1994): On the generation of turbulent wall friction, Physics Fluids, 6:634–641.

    Article  ADS  Google Scholar 

  • Osaka, H. and Fukushima, C. (1994): Variation of skin friction for a turbulent boundary layer interacting with the controlled longitudinal vortex arrays. In Truong, T.V., Choi, K-S., Prasad, K. Krishna, Editor, Emerging Techniques in Drag Reduction, IMechE. (see also, JSME, Series B, Vol. 39, No. 1 1996).

    Google Scholar 

  • Park, S.-R. (1992): An experimental study of passive drag reduction in a turbulent boundary layer by a riblet surface. PhD thesis, University of Maryland.

    Google Scholar 

  • Peridier, V.J., Smith, F.T. and Walker, J.D.A. (1991): Vortex induced boundary layer separation, part 1. the unsteady limit problem, Re →∞. J. Fluid Mechanics, 232:99–131.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Peridier, V.J., Smith, F.T. and Walker, J.D.A. (1991): Vortex induced boundary layer separation, part 2. unsteady interacting boundary layer theory. J. Fluid Mechanics, 232:133–165.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Perry, A.E. and Chong, M.S. (1982): On the mechanism of wall turbulence. J. Fluid Mechanics, 119:173–217.

    Article  MATH  ADS  Google Scholar 

  • Perry, A.E. and Li, J.D. (1990): Experimental support for the attached-eddy hypothesis in zero pressure gradient turbulent boundary layers. J. Fluid Mechanics, 218:405–438.

    Article  ADS  Google Scholar 

  • Perry, A.E., Maru, Isić, and Li, J.D. (1993): Some recent ideas and developments in the modelling of wall turbulence. In Launder, B.E., So, R.M.C. and Speziale, C.G., Editors, Near-wall turbulent flows, pages 1–25. Elsevier Publishers, B.V.

    Google Scholar 

  • Perry, A.E., Maru, Isić, and Li, J.D. (1994): Wall turbulenceclosure based on classical similarity laws and the attached eddy hypothesis, Physics Fluids, 6:1024–1035.

    Article  MATH  ADS  Google Scholar 

  • Pollard, A. (1994): Riblets, skin friction and near wall turbulence, Invited lecture, 11th Canadian Symposium Fluid Dynamics, Edmonton, Alta.

    Google Scholar 

  • Pollard, A., Tullis, S. and Wang, X. (1993a): Flow over pyramid, rectangular and compound rectangular shaped riblets, including higher order statistics. Presentation, 8th. European Drag Reduction Meeting, Lausanne, Switzerland.

    Google Scholar 

  • Pollard, A., Delville, J. and Bonnet, J.P. (1993b): Skin friction reduction using a laterally oscillating ribbon. Presentation, 8th European Drag Reduction Meeting, Lausanne, Switzerland.

    Google Scholar 

  • Pollard, A., Tullis, S. and Wang, X. (1994): Skin friction drag reduction: A computational study of riblets. Proceedings, CFD Society of Canada, CFD’94, Toronto, Ontario, Gottlieb and Ethier (eds).

    Google Scholar 

  • Pollard, A., Savill, A.M., Tullis, S. and Wang, X. (1996): Effects of thin element, compound thin element and trapezoidal vaiïey riblets on near-wall turbulent flow. AIAA J., 34(11):2261–2268.

    Article  MATH  ADS  Google Scholar 

  • Pulles, C. J. A. (19988): Drag reduction of turbulent boundary layers by means of grooved surfaces, Ph.D. Thesis, Technische Universiteit Eindhoven.

    Google Scholar 

  • Rizk, M.H. and Menon, S. (1988): Large eddy simulations of axisymmetric excitation effects on a row of impinging jets. Physics Fluids, 31(7):1892–1903.

    Article  ADS  Google Scholar 

  • Robinson, S.K. (1991): The kinematics of turbulent boundary layer structure. Technical Report TM-103859, NASA.

    Google Scholar 

  • Ronneberger, D. and Ahrens, C.D. (1977): Wall shear stress caused by small amplitude perturbations of turbulent boundary layer flow: an Experimental investigation. J. Fluid Mechanics, 83:433–464.

    Article  ADS  Google Scholar 

  • Smith, C.R. and Metzler, S.P. (1983): The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mechanics, 129:27–54.

    Article  ADS  Google Scholar 

  • Smith, C.R., Walker, J.D.A., Haidari, A.H. and Sobran, U. (1991): On the dynamics of near-wall turbulence. Philosophical Transactions Royal Society London A, 336:131–175.

    Article  MATH  ADS  Google Scholar 

  • Sullivan, P., Day, M. and Pollard, A. (1995): Enhanced vita techniques for turbulent structure identification. Experiments in Fluids, 18(1/2):10–16.

    ADS  Google Scholar 

  • Sullivan, P.E. and Pollard, A. (1994): Large eddy simulation sub-grid-scale reconstruction using Gram Charlier with stochastic estimation and wavelet filters, Proceedings, 2nd. Annual Conference, CFD Society of Canada, Toronto, Ethier and Gottlieb (eds).

    Google Scholar 

  • Suzuki, Y. and Kasagi, N. (1993): Drag reduction mechanism on micro-grooved riblet surface. In Near-wall Turbulent Flows, So, Speziale, and Launder, (Eds), pages 709–718. Eiselvier Science Pub.

    Google Scholar 

  • Tang, Y.P. and Clark, D.G. (1991): On turbulence generating events over drag reducing riblets. Technical Report QMW-EP-1087, Queen Mary and Westfield College.

    Google Scholar 

  • Tang, Y.P. and Clark, D.G. (1993): On near-wall turbulence-generating events in a turbulent boundary layer on a riblet surface. Applied Scientific Research, 50:215–232.

    Google Scholar 

  • Tardu, S., Truong, T.V. and Tanguay, B. (1993): Bursting and structure of the turbulence in an internal flow manipulated by riblets. Applied Scientific Research, 50:189–213.

    Google Scholar 

  • Tardu, S. and Binder, G. (1993): Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies. Physics of Fluids A 5:2028–2037.

    Article  ADS  Google Scholar 

  • Tritton, D.J. (1967): Some new correlation measurements in turbulent boundary layers. J. Fluid Mechanics, 28:439–462.

    Article  ADS  Google Scholar 

  • Tullis, S. (1992): Modelling the time dependent flow over ribiets in the viscous wall region. Master’s thesis, Dept. of Mechanical Engineering, Queen’s University at Kingston.

    Google Scholar 

  • Tullis, S. and Pollard, A. (1991): Modelling the flow over riblets including their effects on near-wall turbulent eddies. Presentation, 6th. European Drag Reduction Working Meeting, Eindhoven, Netherlands.

    Google Scholar 

  • Tullis, S. and Pollard, riblets, A. (1993): Modelling the time dependent flow over riblets in the viscous wall region. Applied Scientific Research, 50:299–314.

    Google Scholar 

  • Tullis, S. and Pollard, A. (1993): A numerical ivestigation of the turbulent flow over v and u groove riblets using a viscous wall region model. In Near-wall Turbulent Flows, So, Speziale, and Launder, (Eds), pages 761–770. Eiselvier Science Pub.

    Google Scholar 

  • Tullis, S. and Pollard, A. (1994): The time dependent flow over v and u groove riblets of different sizes. Physics of Fluids A, 6(2):1000–1001.

    Google Scholar 

  • Virk, P.S. (1975): Drag reduction fundamentals. AIChE J., 21:625–556.

    Article  Google Scholar 

  • P. Vukoslavcevic, Wallace, J.M. and Balint, J-L. (1987): On the mechanism of viscous drag reduction using streamwise aligned riblets: a review with new results. In Turbulent Drag Reduction by Passive Means, pages 290–309. Royal Aeronautical Society.

    Google Scholar 

  • P. Vukoslavcevic, Wallace, J.M. and Balint, J-L. (1992): Viscous drag reduction using streamwise-aligned riblets. AIAA X, 30(4):1119–1122.

    Article  ADS  Google Scholar 

  • Walsh, M.J. (1990): Riblets. In Bushnell, D.M. and Hefner, J. Editors, Viscous Drag Reduction in Boundary Layers, Progress in Astronautics and Aeronautics123.

    Google Scholar 

  • Wark, C. and Nagib, H. (1991): Experimental investigation of coherent structures in turbulent boundary layers, J Fluid Mechanics, 230:183–208.

    Article  ADS  Google Scholar 

  • Welsh, M.C., Hourigan, K., Welch, L.W., Downie, R.J., Thompson, M.C. and Stokes, A.N. (1990): Acoustics and experimental methods: the influence of sound on flow and heat transfer, Exp. Thermal and Fluid Science, 3:138–152.

    Article  ADS  Google Scholar 

  • Wilkinson, S.P. (1990): Interactive wall turbulence control. In Bushnell, D.M. and Hefner, J., Editors, Viscous Drag Reduction in Boundary Layers, Progress in Astronautics and Aeronautics123.

    Google Scholar 

  • Wilkinson, S.P., Anders, J.B., Lazos, B.S. and Bushnell, D.M. (1989): Turbulent drag reduction research at NASA Langley-progress and plans. International J Heat and Fluid Flow, 9:266–277.

    Article  Google Scholar 

  • Willmarth, W.W. (1975): Pressure fluctuations beneath boundary layers. Annual Review Fluid Mechanics, 7:13–38.

    Article  ADS  Google Scholar 

  • Yang, K.S. and Ferziger, J.H. (1993): Large eddy simulation of turbulent obstacle flow using a dynamic sub-grid scale model. AIAA X, 31:1406–1413.

    Article  MATH  ADS  Google Scholar 

  • Zang, Y., Street, R.L. and Koseff, J.R. (1993): A dynamic mixed subgrid scale model and its application to turbulent recirculating flows. Physics Fluids A, 5:3186–3196.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pollard, A. (1998). Near-Wall Turbulence Control. In: Gad-el-Hak, M., Pollard, A. (eds) Flow Control. Lecture Notes in Physics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69672-5_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-69672-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63936-7

  • Online ISBN: 978-3-540-69672-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics