Skip to main content

Some Notes on Drag Reduction in the Near-Wall Region

  • Chapter
  • First Online:
Flow Control

Part of the book series: Lecture Notes in Physics ((LNPMGR,volume 53))

Abstract

The last thirty years has seen an explosion of information concerning the structure of the near-wall region of bounded shear flows. (1967) were one of the first to examine its eddy structure and provide a detailed description using primarily visualization methods. They showed the existence of the ubiquitous low-speed streaks and coined the word “burst” to describe the violent lift-up and mixing. The intervening thirty years have provided many details about this region and its importance to the dynamics of bounded shear flows. It is well known that the eddies in this region control the production of turbulence and the drag due to the boundary. The general structure of the eddies and processes in this region is covered in the next section followed by a discussion of the similarities between this region and transitional flows. The use of suction and actuators for manipulating and controlling the eddies follow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abergel R., Temam R. (1990): On some control problems in fluid mechanics. Theor. and Gomp. Fluid Dynamics 1, 303.

    Article  MATH  ADS  Google Scholar 

  • Aihara Y. (1979): Görtier vortices in the nonlinear region. In Theoretical and Experimental Mechanics, eds. U. MåAller, K.G. Roesner & B. Schmidt, Springer, Berlin, 331.

    Google Scholar 

  • Aihara Y., Sonada T. (1981): Effects of Pressure Gradient on the secondary instability of Görtier vortices. AIAA Paper No. 81-0197.

    Google Scholar 

  • Anders J.B., Blackwelder R.F. (1979): Longitudinal vortices in a transitioning boundary layer. In Laminar Turbulent Transition, ed. R. Eppler and H. Fasel, Springer Verlag, Berlin, 110.

    Google Scholar 

  • Aubrey N., Hohnes P., Lumley J.L., Stone E. (1988): The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115.

    Article  ADS  MathSciNet  Google Scholar 

  • Bacher E.V., Smith C.R. (1986): Turbulent boundary layer by surface riblets. ALAA J. 24, 1382.

    ADS  Google Scholar 

  • Bechert D.W., Hoppe G., Reif W.-E. (1985): On the drag reduction of the shark skin. AIAA Paper No. 85-0546.

    Google Scholar 

  • Bewley T. (1997): Optimal and robust control and estimation of transition and turbulence. Ph.D. Thesis, Mechanical Engineering, Stanford University.

    Google Scholar 

  • Bippes H. (1972): Experimentelle Untersuchung des laminar-turbulenten Umschlags an einer parallel angeströmten konkaven Wand. Heidel. Akad.

    Google Scholar 

  • Bissonnette L.R., Mellor G.L. (1974): Experiments on the behavior of an axisymmetric turbulent boundary layer with a sudden circumferential strain. J. Fluid Mech. 63, 369.

    Article  ADS  Google Scholar 

  • Blackwelder R.F. (1989): Some ideas on the control of near-wall eddies. AIAA Paper No. 89-1009.

    Google Scholar 

  • Blackwelder R.F., Eckelmann H. (1979): Streamwise vortices associated with the bursting phenomenon. J. Fluid Mech. 94, 577.

    Article  ADS  Google Scholar 

  • Blackwelder R.F., Kaplan R.E. (1976): Wall structure of the turbulent boundary layer. J. Fluid Mech. 76, 89.

    Article  ADS  Google Scholar 

  • Blackwelder R.F., Liu D., Jeon W.-P. (1998): Velocity perturbations produced by oscillating delta wing actuators in the wall region. Experimental Thermal and Fluid Science, to appear.

    Google Scholar 

  • Bogar D.G., Tiederman W.G. (1986): Burst detection with single-point velocity measurements. J. Fluid Mech. 162, 389.

    Article  ADS  Google Scholar 

  • Bradshaw P., Terrell M.C. (1969): The response of a turbulent boundary layer on an ‘infinite’ swept wing to the sudden removal of pressure gradient. NPL Aero Report No. 1305.

    Google Scholar 

  • Chen C.-H. P., Blackwelder R.F. (1978): Large-scale motion in a turbulent boundary layer: a study using temperature contamination. J. Fluid Mech. 89, 1.

    Article  MATH  ADS  Google Scholar 

  • Choi H., Moin P., Kim J. (1994): Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75.

    Article  MATH  ADS  Google Scholar 

  • Coller B.D., Holmes P. (1997): Suppression of bursting. Automatica 33(1), 1.

    Article  MATH  MathSciNet  Google Scholar 

  • Corino E.R., Brodkey R.S. (1969): A visual study of turbulent shear flow. J. Fluid Mech. 37, 1.

    Article  ADS  Google Scholar 

  • Corrsin S. (1957): Some current problems in turbulent shear flows. Symp. on Naval Hydrodyn, Publ. No. 515, NAS-NRC, 373.

    Google Scholar 

  • Emmerling R. (1973): Die Momentare Struktur des Wanddruckes einer Turbulenten Grenzschichtströmung. Mitt. M.P.I. Strömungforschung, Göttingen, No. 56.

    Google Scholar 

  • Falco R.E. (1977): Coherent motions in the outer region of turbulent boundary layers. Phys. Fluids 20, S124.

    Article  ADS  Google Scholar 

  • Falco R.E. (1979): Structural aspects of turbulence in boundary layer flows. Sixth Biennial Symp. on Turbulence, Rolla, 1-1.

    Google Scholar 

  • Fan X., Hofmann L., Herbert T. (1993): Active flow control with neural networks. AIAA Paper No. 93-3273.

    Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F. (1987): A drag reduction method for turbulent boundary layers. AIAA Paper No. 87-0358.

    Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F-(1989): Selective suction for controlling bursting events in a boundary layer. AIAA J. 27, 308.

    Article  ADS  Google Scholar 

  • Grass A.J. (1971): Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 233.

    Article  ADS  Google Scholar 

  • Greenspan H.P., Benney, D.J. (1963): On shear-layer instability, breakdown and transition. J. Fluid Mech. 15, 133.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Guezennec Y., Piomelli U., Kim J. (1989): On the shape and dynamics of wall structures in turbulent channel flow. Phys. Fluids A1, 764.

    ADS  Google Scholar 

  • Hama F.H., Nutant J. (1963): Detailed flow field observations in the transition process in a thick boundary layer. Proc. of the Heat Trans, and Fluid Mech. Inst., Stanford Univ. Press, Stanford, CA, 77.

    Google Scholar 

  • Hites M., Nagib, H., Wark C. (1997): Velocity and wall shear-stress measurements in high Reynolds number turbulent boundary layers. AIAA Paper No. 97-1873.

    Google Scholar 

  • Huerre P. (1983): Finite amplitude evolution of mixing layers in the presence of solid boundaries. J. de Mecanique Theorique et Appliquee, Numero Special, 121.

    Google Scholar 

  • Ito A. (1980): The generation and breakdown of longitudinal vortices along a concave wall. Trans. Japan Soc. Aero, and Space Sci. 29, 327.

    Google Scholar 

  • Jacobson S.A., Reynolds W.C. (1995): An experimental investigation towards the active control of turbulent boundary layers. Dept. of Mech. Eng. Report No. TF-64, Stanford Univ.

    Google Scholar 

  • Jung W.J., Mangiavacchi N., Akhavan R. (1992): Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4, 1605.

    Article  ADS  Google Scholar 

  • Kim J. (1997): Taming Turbulence. AIAA Paper No. 97-1791.

    Google Scholar 

  • Kim J., Moin, P. (1986): The structure of the vorticity field in turbulent channel flow—Part 1. J. Fluid Mech. 155, 441.

    Google Scholar 

  • Klebanoff P.S., Tidstrom K.D, Sargent L.D. (1962): The three dimensional nature of boundary layer instability. J. Fluid Mech. 12, 1.

    Article  MATH  ADS  Google Scholar 

  • Kline S.J., Reynolds W.C., Schraub F.A., Runstadler P.W. (1967): The structure of turbulent boundary layers. J. Fluid Mech. 30, 741.

    Article  ADS  Google Scholar 

  • Kovasznay L.S.G. (1970): The turbulent boundary layer. Ann. Reviews of Fluid Mech. 2, 94.

    ADS  Google Scholar 

  • Kovasznay L.S.G., Komoda H., Vasudeva B.R. (1962): Detailed flow field in transition. Proc. of the Heat Transfer & Fluid Mech. Inst, Stanford Univ. Press, Stanford, CA, 1.

    Google Scholar 

  • Laadhari F., Skandaji L, Morel R. (1994): Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids 6, 3218.

    Article  ADS  Google Scholar 

  • Lee M.K., Eckelman L.D., Hanratty T.J. (1974): Identification of turbulent wall eddies. J. Fluid Mech. 66, 17.

    Article  ADS  Google Scholar 

  • Lee C., Kim J., Babcock D., Goodman R. (1997): Application of neural networks to turbulence control for drag reduction. Phys. Fluids 9, 1740.

    Article  ADS  Google Scholar 

  • Liepmann H.W. (1979): The Rise and Fall of Ideas in Turbulence. American Scientist 67, 221.

    ADS  MathSciNet  Google Scholar 

  • Liepmann H.W., Brown G.L., Nosenchuck D.M. (1982): Control of laminarinstability waves using a new technique. J. fluid Mech. 118, 187.

    Article  ADS  Google Scholar 

  • Liepmann H.W., Nosenchuck D.M. (1982): Active control of laminar-turbulent transition. J. Fluid Mech. 118, 201.

    Article  ADS  Google Scholar 

  • Lorkowski T., Rathnasingham R., Breuer K.S. (1997): Smallscale forcing of a turbulent boundary layer. AIAA Paper No. 97-1792.

    Google Scholar 

  • Ludwig H., Tillman W. (1949): Untersuchungen über die Wandschubspannung in turbulenten Reibungsshicten. Ind. Arch. 17(4), 288.

    Article  Google Scholar 

  • Lumley J.L. (1967): The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Radio Wave Propagation, eds. A.M. Yaglom & V.I. Tatarski, Moscow.

    Google Scholar 

  • Lumley J.L. (1996): Control of Turbulence. AIAA Paper No. 96-0001.

    Google Scholar 

  • Michalke A. (1965): On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521.

    Google Scholar 

  • Mito Y., Kasagi N. (1997): Turbulence modification with streamwise-uniform sinusoidal wall oscillation. XI Symp. on Turbulent Shear Flows, Grenoble.

    Google Scholar 

  • Moin P., Shih T.-H., Driver D., Mansour N.N. (1990): Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids A 2, 1846.

    Article  ADS  Google Scholar 

  • Myose R.Y., Blackwelder R.F. (1994): Selective suction for controlling the breakdown of streamwise vortices on concave walls. AIAA Paper No. 94-2216.

    Google Scholar 

  • Nishioka M., Asai M., Iida S. (1979): An experimental investigation of the secondary instability. In Laminar-Turbulent Transition, eds. R. Eppler & H. Fasel, Springer Verlag, Berlin, 37.

    Google Scholar 

  • Offen G.R., Kline S.J. (1974): Combined dye-streak and hydrogen bubble visual observations of a turbulent boundary layer. J. Fluid Mech. 62, 233.

    Article  ADS  Google Scholar 

  • Oldaker D.K., Tiederman W.G. (1977): Spatial structure of the viscous sublayer in drag reducing channel flows. Phys. Fluids 20, Supplement, S133.

    Article  ADS  Google Scholar 

  • Rathnasingham R., Breuer, K.S. (1997): System identification and control of a turbulent boundary layer. Phys. Fluids 9, 1867.

    Article  ADS  Google Scholar 

  • Robinson S.K. (1990): The kinematics of turbulent boundary layer structure Ph.D. Thesis, Stanford Univ.

    Google Scholar 

  • Saric W.S., Carter J.D., Reynolds G.A. (1981): Computation and visualization of unstable wave streaklines in a boundary layer. Bull. Am. Phys. Soc. 26, 1252.

    Google Scholar 

  • Sendstad O., Moin, P. (1991): On the mechanics of 3-D turbulent boundary layers. In VIII Symp. on Turbulent Shear Flows, Sept 9–11, Munich.

    Google Scholar 

  • Schubauer G.B., Skramstad, H.K. (1947): Laminar boundary layer oscillations and stability of laminar flow. J. Aero. Sci. 14, 68.

    Google Scholar 

  • Smith C.R. (1978): Visualization of turbulent boundary layer structure using a moving hydrogen bubble wire probe. In Coherent Structure of Turbulent Boundary Layers, Lehigh U., 48.

    Google Scholar 

  • Smith C.R., Metzler, S.P. (1983): The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 27.

    Article  ADS  Google Scholar 

  • Sreenivasan K.R. (1989): The turbulent boundary layer. In Frontiers in Exp. Fluid Mech., Lecture Notes in Engineering, vol. 46, ed. M. Gad-el-Hak, 159.

    Google Scholar 

  • Swearingen J.D., Blackwelder R.F. (1987): The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255.

    Article  ADS  Google Scholar 

  • Swearingen J.D., Blackwelder R.F. (1988): The role of inflectional velocity profiles in wall bounded flows. In Near Wall Turbulence, ed. S.J. Kline, Hemisphere Pub. Corp.

    Google Scholar 

  • Tani I. (1962): Production of longitudinal vortices in the boundary layer along a concave wall. J. Geophysical Research 67, 3075.

    Article  ADS  Google Scholar 

  • Tani I., Aihara Y. (1969): Görtier vortices and boundary layer transition. Z. Angew. Math. Phys. 20, 609.

    Article  Google Scholar 

  • Tani I., Sakagami J. (1962): Boundary layer instability at subsonic speeds. Proc. of the International Council of the Aerospace Sciences, ed. M. Roy, Spartan books, Washington, 391.

    Google Scholar 

  • Temam R., Bewley T., Moin P. (1997): Control of turbulent flows. Proc. 18th IFIP TC7 Conf. on System Modeling and Optimization, Detroit.

    Google Scholar 

  • Tiederman W.G., Luchik T.S., Bogard D.G. (1985): Wall-layer structure and drag reduction. J. Fluid Mech. 156, 4.

    Article  Google Scholar 

  • Toms B.A. (1949): Proc. of the International Congress on Rheology, North-Holland Pub., Amsterdam,Sec. II, 135.

    Google Scholar 

  • Trujillo S.M., Bogard D.G., Ball K.S. (1997): Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper No. 97-1870.

    Google Scholar 

  • Tung S., Hong W., Huang J., Ho C.-M., Liu C, Tai Y.C. (1995): Control of a streamwise vortex by a mechanical actuator. In Turbulent Shear Flows X, Perm. State Univ., August 14–16.

    Google Scholar 

  • Willmarth W.W., Lu S.S. (1972): Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 65.

    Article  ADS  Google Scholar 

  • Wortmann F.X. (1969): Visualization of transition. J. Fluid Mech. 38, 473.

    Article  ADS  Google Scholar 

  • Wortmann F.X. (1979): The incompressible fluid motion downstream of two dimensional Tolhnien Schlichting waves. In Laminar-Turbulent Transition, eds. R. Eppler & H. Fasel, Springer, Berlin, 110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blackwelder, R.F. (1998). Some Notes on Drag Reduction in the Near-Wall Region. In: Gad-el-Hak, M., Pollard, A. (eds) Flow Control. Lecture Notes in Physics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69672-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-69672-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63936-7

  • Online ISBN: 978-3-540-69672-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics