Skip to main content

Representational Levels for the Perception of the Courses of Motion

  • Chapter
  • First Online:
Spatial Cognition

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1404))

Abstract

The problem of representation and processing of motion information is addressed from an integrated perspective covering the range from early visual processing to higher-level cognitive aspects.

A spatio-temporal memory is presented as indispensible representational prerequisite for the recognition of spatiotemporal gestalt. We assume that this structure is replicated on different processing-levels in the visual system mirroring its hierarchical structure. Thus, each level requires a different representation for spatio-temporal information.

As a first step, we present a two-layered architecture for the qualitative representation of motion trajectories: The vectorial layer is quite accurate and allows switches between deictic and intrinsic frame of reference. The propositional layer is more abstract and reveals similarities and regularities of motion paths which will be useful for motion prediction.

First psychophysical experiments indicate that information about direction and position are not stored independently but mereley in form of a spatio-temporal compound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, E. and Bergen, J. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America, A2, 284–299.

    Google Scholar 

  • Anstis, S. M. (1986). Motion perception in the frontal plane. In Kaufman, L., and Thomas, J., editors Handbook of Perception and Human Performance. John Wiley Boff et al. (1986), chapter 16.

    Google Scholar 

  • Del Bimbo, A., Vicario, E., and Zingoni, D. (1992). A spatio-temporal logic for image sequence coding and retrieval. In Proceedings IEEE VL’92 Workshop on Visual Languages, Seattle, WA.

    Google Scholar 

  • Del Bimbo, A., Vicario, E., and Zingoni, D. (1993). Sequence retrieval by contents through spatio temporal indexing. In Proceedings IEEE VL’93 Workshop on Visual Languages, Bergen, Norway.

    Google Scholar 

  • Del Bimbo, A., Vicario, E., and Zingoni, D. (1995). Symbolic description and visual querying of image sequences using spatio-temporal logic. IEEE Transactions on Knowledge and Data Engineering, 7(4), 609–622.

    Article  Google Scholar 

  • Boff, K., Kaufman, L., and Thomas, J., editors (1986). Handbook of Perception and Human Performance. John Wiley.

    Google Scholar 

  • Braddick, O. (1974). A short-range process in apparent motion. Vision Research, 14, 519–527.

    Article  Google Scholar 

  • Cutting, J. E. and Proffitt, D. R. (1982). The minimum principle and the perception of absolute, common, and relative motion. Cognitive Psychology, 14, 211–146.

    Article  Google Scholar 

  • Faltings, B. (1987). Qualitative kinematics in mechanisms. In Proceedings IJCA-87, pages 436–442, Detroit.

    Google Scholar 

  • Fernyhough, J., Cohn, A. G., and Hogg, D. C. (1997). Event recognition using qualitative reasoning on automatically generated spatio-temporal models from visual input. In Proc. IJCAI-97 Workshop on Spatial and Temporal Reasoning, Nagoya.

    Google Scholar 

  • Fernyhough, J. H. (1996). Qualitative reasoning for automatic traffic surveillance. In Proc. 10. International Workshop on Qualitative Reasoning, pages 40–42. AAAI Press, Lake Tahoe, California.

    Google Scholar 

  • Finke, R. A., Freyd, J. J., and Shyi, G. C.-W. (1986). Implied velocity and acceleration induce transformations of visual memory. Journal of Experimental Psychology: General, 2, 175–188.

    Article  Google Scholar 

  • Finke, R. A. and Shyi, G. C.-W. (1988). Mental extrapolation and representational momentum for complex implied motion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(1), 112–120.

    Article  Google Scholar 

  • Forbus, K., Nielsen, P., and Faltings, B. (1990). Qualitative kinematics: A framework. In Weld, D. S. and de Kleer, J., editors, Readings in Qualitative Reasoning about Physical Systems, pages 562–567. Morgan Kaufmann Publishers Inc., San Mateo, California.

    Google Scholar 

  • Forbus, K. D. (1983). Qualitative reasoning about space and motion. In Gentner, D. and Stevens, A. L., editors, Mental Models, pages 53–73. Lawrence Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Freyd, J. J. (1987). Dynamic mental representations. Psychological Review, 4, 427–438.

    Article  Google Scholar 

  • Freyd, J. J. and Johnson, J. Q. (1987). Probing the time course of representational momentum. Journal of Experimental Psychology, 13(2), 259–268.

    Google Scholar 

  • Galton, A. (1995). Space, time, and movement. Unpublished manuscript distributed at the Bolzano School on Spatial Reasoning.

    Google Scholar 

  • Grzywacz, N. M., Harris, J. M., and Amthor, F. R. (1994). Computational and neural constraints for the measurement of local visual motion. In Snowden, R. J., editors Visual Detection of Motion. Academic Press, San Diego Smith and Snowden (1994), chapter 2, pages 19–50.

    Google Scholar 

  • Herzog, G. and Rohr, K. (1995). Integrating vision and language: Towards automatic description of human movements. In Proc. of the 19th Annual German Conference on Artificial Intelligence, KI-95.

    Google Scholar 

  • Hochberg, J. (1986). Representation of motion and space in video and cinematic displays. In Kaufman, L., and Thomas, J., editors Handbook of Perception and Human Performance. John Wiley Boff et al. (1986), chapter 22.

    Google Scholar 

  • Johansson, G. (1975). Visual motion perception. Scientific American, 232(6), 76–88.

    Article  Google Scholar 

  • Johansson, G. (1976). Spatio-temporal differentiation and integration in visual motion perception. Psychological Research, 38, 379–393.

    Article  Google Scholar 

  • Julesz, B. (1960). Binocular depth perception of computer generated patterns. Bell Syst. tech. J., 39, 1125–1126.

    Google Scholar 

  • Jungert, E. (1993). Symbolic spatial reasoning on object shapes for qualitative matching. In Frank, A. U. and Campari, I., editors, Spatial Information Theory. A Theoretical Basis for GIS. European Conference, COSIT’93, Marciana Marina, Italy, Volume 716 of Lecture Notes in Computer Science, pages 444–462. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Jungert, E. (1996). A qualitative approach to recognition of man-made objects in laser-radar images. Unpublished manuscript.

    Google Scholar 

  • Kim, H.-K. (1992). Qualitative kinematics of linkages. In Faltings, B. and Struss, P., editors, Recent Advances in Qualitative Physics, pages 137–151. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Lu, Z. and Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35(19), 2697–2722.

    Article  Google Scholar 

  • McKee, S. P. and Watamaniuk, S. N. J. (1994). The psychophysics of motion perception. In Snowden, R. J., editors Visual Detection of Motion. Academic Press, San Diego Smith and Snowden (1994), chapter 4, pages 85–114.

    Google Scholar 

  • Mohnhaupt, M. (1990). Eine hybride Repräsentation von Objektbewegungen: Von analogen zu propositionalen Beschreibungen. In Freksa, C. and Habel, C., editors, Repräsentation und Verarbeitung räumlichen Wissens. Springer, Berlin.

    Google Scholar 

  • Nakayama, K. (1985). Biological Image Motion Processing: A Review. Vision Research, 25(5), 625–660.

    Article  MathSciNet  Google Scholar 

  • Peterken, C., Brown, B., and Bowman, K. (1991). Predicting the future position of a moving target. Perception, 20, 5–16.

    Article  Google Scholar 

  • Poizner, H., Bellugi, U., and Lutes-Driscoll, V. (1981). Perception of american sign language in dynamic point-light displays. Journal of Experimental Psychology: Human Perception and Performance, 7, 430–440.

    Article  Google Scholar 

  • Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 312–320.

    Article  Google Scholar 

  • Pöppel, E. and Schill, K. (1995). Time perception: Problems of representation and processing. In Arbib, M. A., editor, The Handbook of Brain Theory and Neural Networks, pages 987–990. The MIT Press.

    Google Scholar 

  • Reichardt, W. (1957). Autokorrelations-auswertung als Funktionsprinzip des Zentralnervensystems. Zeitschrift für Naturforschung, 12b, 448–457.

    Google Scholar 

  • Rock, I. (1975). An Introduction to Perception. Macmillan, New York.

    Google Scholar 

  • Rosenbaum, D. A. (1975). Perception and extrapolation of velocity and acceleration. Journal of Experimental Psychology: Human Perception and Performance, 1(4), 395–403.

    Article  Google Scholar 

  • Schill, K. and Zetzsche, C. (1995a). A model of visual spatio-temporal memory: The icon revisited. Psychological Research, 57, 88–102.

    Google Scholar 

  • Schill, K. and Zetzsche, C. (1995b). Why some masks do not mask: Critical reevaluation of a standard psychophysicical paradigm. In Perception, Volume 24, page 23.

    Google Scholar 

  • Schill, K., Zetzsche, C., Brauer, W., Eisenkolb, A., and Musto, A. (1998). Visual representation of spatio-temporal structure. In Rogowitz, B. and Papas, T., editors, Human Vision and Electronic Imaging. Proceedings of SPIE, 3299. to appear.

    Google Scholar 

  • Shepard, R. N. (1983). Path-guided apparent motion. Science, 220, 632–634.

    Article  Google Scholar 

  • Smith, A. T. and Snowden, R. J., editors (1994). Visual Detection of Motion. Academic Press, San Diego.

    Google Scholar 

  • Stein, K. (1998). Generalisierung und Segmentierung von qualitativen Bewegungsdaten. Master’s thesis, TU München.

    Google Scholar 

  • Van Doorn, A. J. and Koenderink, J. J. (1982a). Spatial properties of the visual detectability of moving spatial white noise. Journal of Experimental Brain Research, 45, 189–195.

    Google Scholar 

  • Van Doorn, A. J. and Koenderink, J. J. (1982b). Temporal properties of the visual detectability of moving spatial white noise. Experimental Brain Research, 45, 179–182.

    Google Scholar 

  • van Santen, J. P. H. and Sperling, G. (1985). Elaborated reichardt detectors. J. Opt. Soc. Am. A, 2(2), 300–320.

    Google Scholar 

  • Verfaillie, K. and d’Ydewalle, G. (1991). Representational momentum and event course anticipation in the perception of implied periodical motions. Journal of Experimental Psychology, 17(2), 302–313.

    Google Scholar 

  • Watson, A. B. and Ahumada, A. J. (1985). Model of human visual-motion sensing. J. Opt. Soc. Am., 2, 322–342.

    Article  Google Scholar 

  • Werkhoven, P., Snippe, H. P., and Toet, A. (1992). Visual processing of optic acceleration. Vision Research, 32(12), 2113–2329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eisenkolb, A., Musto, A., Schill, K., Hernández, D., Brauer, W. (1998). Representational Levels for the Perception of the Courses of Motion. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69342-4_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-69342-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64603-7

  • Online ISBN: 978-3-540-69342-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics