Skip to main content

From Motion Observation to Qualitative Motion Representation

  • Chapter
  • First Online:
Spatial Cognition II

Abstract

Since humans usually prefer to communicate in qualitative and not in quantitative categories, qualitative spatial representations are of great importance for user interfaces of systems that involve spatial tasks. Abstraction is the key for the generation of qualitative representations from observed data. This paper deals with the conversion of motion data into qualitative representations, and it presents a new generalization algorithm that abstracts from irrelevant details of a course of motion. In a further step of abstraction, the shape of a course of motion is used for qualitative representation. Our approach is motivated by findings of our own experimental research on the processing and representation of spatio-temporal information in the human visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elisabeth André, Guido Bosch, Gerd Herzog, and Thomas Rist. Characterizing trajectories of moving objects using natural language path descriptions. In Proceedings of the 7th ECAI, volume 2, pages 1–8, Brighton, UK, 1986.

    Google Scholar 

  2. Eliseo Clementini, Paolino Di Felice, and Daniel Hernández. Qualitative representation of positional information. Artificial Intelligence, 95(2):317–356, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  3. Douglas and Peucker. Algorithms for reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10/2, 1973.

    Google Scholar 

  4. Christian Freksa and David M. Mark, editors. Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science. International Conference COSIT’99, volume 1661 of Lecture Notes in Computer Science, Berlin, Heidelberg, New York, August 1999. Springer.

    Google Scholar 

  5. Emmanuel Fritsch and Jean Philippe Lagrange. Spectral representations of linear features for generalisation. In Andrew U. Frank and Werner Kuhn, editors, Spatial Information Theory. A Theoretical Basis for GIS. European Conference, COSIT’95, volume 988 of Lecture Notes in Computer Science, pages 157–171, Berlin, Heidelberg, New York, September 1995. Springer.

    Google Scholar 

  6. Daniel Hernández. Qualitative Representation of Spatial Knowledge, volume 804 of Lecture Notes in Artificial Intelligence. Springer, Berlin, Heidelberg, New York, 1994.

    Book  MATH  Google Scholar 

  7. Alexandra Musto, Klaus Stein, Kerstin Schill, Andreas Eisenkolb, and Wilfried Brauer. Qualitative Motion Representation in Egocentric and Allocentric Frames of Reference. In Freksa and Mark [4] pages 461–476.

    Google Scholar 

  8. Jonas Persson and Erland Jungert. Generation of multi-resolution maps from run-length-encoded data. International Journal of Geographical Information Systems, 6(6):497–510, 1992.

    Article  Google Scholar 

  9. Hans Raith. Methoden zur Analyse von Bewegungsinformationen in technischen Systemen und Implementierung eines biologischen Modells zur Repräsentation spatio-temporaler Informationen. Diploma Thesis, 1999. Institut für Informatik, Technische Universität München.

    Google Scholar 

  10. Thomas Röfer. Route navigation using motion analysis. In Freksa and Mark [4], pages 21–36.

    Chapter  Google Scholar 

  11. Thomas Röfer and Axel Lankenau. Architecture and applications of the Bremen Autonomous Wheelchair. In P. P. Wang, editor, Proceedings of the Fourth Joint Conference on Information Systems, volume 1, pages 365–368. Association of Intelligent Machinery, 1998.

    Google Scholar 

  12. Kerstin Schill and Christoph Zetzsche. A model of visual spatio-temporal memory: The icon revisited. Psychological Research, 57: 88–102, 1995.

    Google Scholar 

  13. Kerstin Schill, Christoph Zetzsche, Wilfried Brauer, Andreas Eisenkolb, and Alexandra Musto. Visual representation of spatio-temporal structure. In B. E. Rogowitz and T. N. Pappas, editors, Human Vision and Electronic Imaging. Proceedings of SPIE, pages 128–137, 1998.

    Google Scholar 

  14. Brian J. Scholl and Zenon W. Pylyshyn. Tracking multiple items through occlusion: Clues to visual objecthood. Cognitive Psychology, (38):259–290, 1999.

    Article  Google Scholar 

  15. Klaus Stein. Generalisierung und Segmentierung von qualitativen Bewegungsdaten. Diploma Thesis, 1998. Institut für Informatik an der TU München.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Musto, A., Stein, K., Eisenkolb, A., Röfer, T., Brauer, W., Schill, K. (2000). From Motion Observation to Qualitative Motion Representation. In: Freksa, C., Habel, C., Brauer, W., Wender, K.F. (eds) Spatial Cognition II. Lecture Notes in Computer Science(), vol 1849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45460-8_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45460-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67584-6

  • Online ISBN: 978-3-540-45460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics