Skip to main content

Comparative Analysis of Kernel Methods for Statistical Shape Learning

  • Conference paper
Computer Vision Approaches to Medical Image Analysis (CVAMIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4241))

Abstract

Prior knowledge about shape may be quite important for image segmentation. In particular, a number of different methods have been proposed to compute the statistics on a set of training shapes, which are then used for a given image segmentation task to provide the shape prior. In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding for doing shape analysis. The surfaces are represented as the zero level set of a signed distance function and shape learning is performed on the embeddings of these shapes. We carry out some experiments to see how well each of these methods can represent a shape, given the training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terzopoulos, D., Szeliski, R.: Tracking with Kalman Snakes. In: Active Vision, pp. 3–20. MIT Press, Cambridge (1992)

    Google Scholar 

  2. Ayache, N., Cohen, I., Herlin, I.: Medical image tracking. In: Active Vision, pp. 3–20. MIT Press, Cambridge (1992)

    Google Scholar 

  3. Blake, A., Yuille, A. (eds.): Active Vision. MIT Press, Cambridge (1992)

    Google Scholar 

  4. Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision and Graphics. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  5. Dambreville, S., Rathi, Y., Tannenbaum, A.: Shape-based approach to robust image segmentation using kernel pca. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  6. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models, their training and application. In: Computer Vision and Image Understanding, vol. 61, pp. 38–59 (1995)

    Google Scholar 

  7. Faugeras, O., Gomes, J.: Dynamic shapes of arbitrary dimension: the vector distance functions. In: Cipolla, R., Martin, R. (eds.) Proceedings of the Ninth IMA Conference on Mathematics of Surfaces. The Mathematics of Surfaces IX. Springer, Heidelberg (2000)

    Google Scholar 

  8. Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statistics in mumford-shah based segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 93–108. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. CVPR, pp. 1316–1324. IEEE, Los Alamitos (2000)

    Google Scholar 

  10. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, E., Willsky, A.: A shape-based approach to the sementation of medical imagery using level sets. IEEE Trans. on Medical Imaging 22, 137–153 (2003)

    Article  Google Scholar 

  11. Gomes, J., Faugeras, O.: Shape representation as the intersection of n − k hypersurfaces. Technical Report 4011, INRIA (2000)

    Google Scholar 

  12. Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang, Y., Staib, L.: Boundary finding with correspondence using statistical shape models. In: Proc. CVPR, pp. 338–345 (1998)

    Google Scholar 

  14. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Technical report, Max-Planck-Institute fur biologische Kybernetik (1996)

    Google Scholar 

  15. Rathi, Y., Dambreville, S., Tannenbaum, A.: Statistical shape analysis using kernel pca. In: SPIE, Electronic Imaging (2006)

    Google Scholar 

  16. Mika, S., Scholkopf, B., Smola, A., Muller, K.R., Scholz, M., Ratsch, G.: Kernel pca and de-noising in feature spaces. Advances in Neural Information Processing Systems 11

    Google Scholar 

  17. Kwok, J., Tsang, I.: The pre-image problem in kernel methods. In: 20th Intl. Conference on Machine Learning (2003)

    Google Scholar 

  18. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. In: ACM Transactions on Graphics (SIGGRAPH 2004) (2004)

    Google Scholar 

  19. Saul, L.K., Roweis, S.: An introduction to locally linear embedding, http://www.cs.toronto.edu/~roweis/lle/papers/lleintro.pdf

  20. Ridder, D., Duin, R.: Locally linear embedding for classification. Technical Report PH-2002-01, Pattern Recognition Group, Delft University of Technology (2002)

    Google Scholar 

  21. DeCoste, D.: Visualizing mercer kernel feature spaces via kernelized locally-linear embeddings. In: 8th Intl. Conf. on Neural Information Processing (2001)

    Google Scholar 

  22. Chan, T., Zhu, W.: Level set based shape prior segmentation. Technical report, Computational Applied Mathematics, UCLA (2003)

    Google Scholar 

  23. Srivastava, A., Joshi, S., Mio, W., Liu, X.: Statistical shape analysis: Clustering, learning and testing. Trans. PAMI (2005)

    Google Scholar 

  24. Yezzi, A., Mennucci, A.: Metrics in the space of curves (2004), http://arxiv.org/abs/math.DG/0412454

  25. Michor, P., Mumford, D.: Riemannian geomtries of space of plane curves, http://front.math.ucdavis.edu/math.DG/0312384

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rathi, Y., Dambreville, S., Tannenbaum, A. (2006). Comparative Analysis of Kernel Methods for Statistical Shape Learning. In: Beichel, R.R., Sonka, M. (eds) Computer Vision Approaches to Medical Image Analysis. CVAMIA 2006. Lecture Notes in Computer Science, vol 4241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889762_9

Download citation

  • DOI: https://doi.org/10.1007/11889762_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46257-6

  • Online ISBN: 978-3-540-46258-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics