Skip to main content

Combined Fluorescence Methods to Determine Synapses in the Light Microscope: Multilabel Confocal Laser Scanning Microscopy

  • Chapter
Neuroanatomical Tract-Tracing 3

Abstract

The dimensions of synapses are at or below the resolution limit of classical light microscopy. Under optimal conditions, one can appreciate processes of pre- and postsynaptic neurons that appose each other. Such appositions may be casual only and as such not functional in terms of synaptic communication. As a consequence, until quite recently, electron microscopy was the only means available to determine whether identified neurons synapse with each other. Technological developments, however, have created a middle ground between the strictly separated realms of light and electron microscopy. In this chapter I present a triple-fluorescence approach aimed at identifying the apposition of a presynaptic and a postsynaptic neuron, and simultaneously pinpointing a highly specific synapse-associated marker. This third marker identifies the presence of an active zone, necessary to distinguish casual appositions from functional synapses. Methods involved are neuroanatomical tracing, immunofluorescence, confocal laser scanning, and postacquisition computer processing followed by three-dimensional reconstruction and inspection. In my contribution, I will review the theory and practice involved in triple-labeling confocal fluorescence imaging. I begin by dealing with the dimensions of synapses and the structures involved, and relate the physical limitations of light microscopy to the problem of resolving synaptic structure. I then review the principles of image formation in fluorescence microscopy, and present the conditions that must be fulfilled in order to do sound multilabel confocal laser scanning: fluorochromes, lasers, channels, channel separation, and procedures to recognize and suppress unwanted phenomena such as crosstalk. In order to fully illustrate the points discussed, an actual triple visualization experiment will be described. Finally, I will emphasize several important aspects of “operator awareness”, that is, the mind setting necessary to work with an advanced optoelectronic instrument like a confocal microscope and its sophisticated software. An aware user senses when some part of the complicated chain of processes is not producing what it is supposed to produce. If operator awareness is absent, strange results may be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bacallao, R., Kiai, K., and Jesaites, L., 1995, Guiding principles of specimen preparation for confocal fluorescence microscopy, In: Pawley, J. B. (ed.), Handbook of Biological Confocal Microscopy, New York: Plenum Press, pp. 311–325.

    Google Scholar 

  • Bertero, M., Boccacci, P., Brakenhoff, G. J., Malfanti, F., and van derVoort, H.T. M., 1990, Three-dimensional image restoration and super-resolution in fluorescence confocal microscopy, J. Microsc. 157:3–20.

    Google Scholar 

  • Böckers, T. M., Bockmann, J., Kreutz, M. R., and Gundelfinger, E. D., 2002, ProSAP/Shank proteins—a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease, J. Neurochem. 81:903–910.

    Article  Google Scholar 

  • Böckers, T. M., Kreutz, M. R., Winter, C., Zuschratter, W., Smalla, K. H., Sanmarti-Vila, L., Wex, H., Langnaese, K., Bockmann, J., Garner, C. C., and Gundelfinger, E. D., 1999, Prolinerich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density, J. Neurosci. 9:6506–6518.

    Google Scholar 

  • Brakenhoff, G. J., Blom, P., and Barends, P., 1979, Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117:219–232.

    Google Scholar 

  • Foster, M., and Sherrington, C. S., 1897, A Text Book of Physiology, Part III: The Central Nervous System, 7th ed., London: Macmillan.

    Google Scholar 

  • Gerfen, C. R., and Sawchenko, P. E., 1984, A method for anterograde axonal tracing of chemically specified circuits in the central nervous system: combined Phaseolus vulgarisleucoagglutinin (PHA-L) tract tracing and immunohistochemistry, Brain Res. 343:144–150.

    Article  Google Scholar 

  • Gerfen, C. R., Sawchenko, P. E., and Carlsen, J., 1989, The PHA-L anterograde axonal tracing method, In: Heimer, L., and Zaborszky, L. (eds.). Neuroanatomical Tract-Tracing Methods 2, Recent Progress, New York: Plenum Press, pp. 19–48.

    Google Scholar 

  • Gerlach, J., 1858, Mikroskopische Studien aus den Gebiete der menschlichen Morphologie, Erlangen, Germany: Enke.

    Google Scholar 

  • Groenewegen, H. J., and Wouterlood, F. G., 1990, Light and electron microscopic tracing of neuronal connections with Phaseolus vulgaris-leucoagglutinin (PHA-L), and combinations with other neuroanatomical techniques, In: Björklund, A., Hökfelt, T., Wouterlood, F. G., and van den Pol, A. N. (eds.). Analysis of Neuronal Microcircuits and Synaptic Interactions. Handbook of Chemical Neuroanatomy, Vol. 8, Amsterdam: Elsevier Biomedical Press, pp. 47–124.

    Google Scholar 

  • Hiesinger, P. R., Scholz, M., Meinertzhagen, I. A., Fischbach, K.-F., and Obermayer, K., 2001, Visualization fo synaptic markers in the optic neuropil of Drosophila using a new constrained deconvolution method, J. Comp. Neurol. 429:277–288.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, T. J., Bhattacharyya, S., Cooper, J. A., Hanzel, D., Szarowski, D. H., and Turner, J. N., 1995, Light microscopic images reconstructed by maximum likelihood deconvolution, In: Pawley, J. B. (ed.). Handbook of Biological Confocal Microscopy, New York: Plenum Press, pp. 389–402.

    Google Scholar 

  • Inoué, S., 1995, Foundations of confocal scanned imaging in light microscopy. In: Pawley, J. B. (ed.). Handbook of Biological Confocal Microscopy, New York: Plenum Press, pp. 1–14.

    Google Scholar 

  • Jonkers, B., Sterk, J., and Wouterlood, F. G., 1984, Transcardial perfusion fixation of the CNS by means of a compressed-air driven device, J. Neurosci. Methods 12:141–149.

    Article  PubMed  CAS  Google Scholar 

  • Kano, H., van der Voort, H. T. M., Schrader, M., van Kempen, G. M. P., and Hell, S. W., 1996, Avalanche photodiode detection with object scanning and image restoration provides 2–4 fold resolution increase in two-photon fluorescence microscopy, Bioimaging 4:187–197.

    Article  Google Scholar 

  • Leranth, C., and Pickel, V. M., 1989, Electron microscopic preembedding double immunostaining methods, In: Heimer, L., and Zaborszky, L. (eds.). Neuroanatomical Tract-Tracing Methods 2, Recent Progress, New York: Plenum Press, pp. 129–172.

    Google Scholar 

  • Longin, A., Souchier, C., Ffrench, M., and Bryon, P. A., 1993, Comparison of anti-fading agents used in fluorescence microscopy: image analysis and laser confocal microscopy study, J. Histochem. Cytochem. 41:1833–1840.

    PubMed  CAS  Google Scholar 

  • Minsky, M., 1957, US patent no. 301467, Microscopy Apparatus.

    Google Scholar 

  • Ono, M., Murakami, T., Kudo, A., Isshiki, M., Sawada, H., and Segawa, A., 2001, Quantitative comparison of anti-fading mounting media for confocal laser scanning microscopy, J. Histochem. Cytochem. 49:305–311.

    PubMed  CAS  Google Scholar 

  • Palade, G. E., and Palay, S. L., 1954, Electron microscope observations of interneuronal and neuromuscular synapses, Anat Rec. 118:335–336.

    Google Scholar 

  • Palay, S. L., and Palade, G. E., 1955, The fine structure of neurons, J. Biophys. Biochem. Cytol. 1:69–88.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., Palay, S. L., and de Webster, F. H., 1991, The Fine Structure of the Nervous System: Neurons and Their Supporting Cells, 2nd ed, Oxford: Oxford University Press, 494 pp.

    Google Scholar 

  • Platt, J. L., and Michael, A. F., 1983, Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylendiamine, J. Histochem. Cytochem. 31:840–842.

    PubMed  CAS  Google Scholar 

  • Rayleigh, L., and Strutt, J. W., 1891, On pin-hole photography, Philos. Mag. 11:87–99.

    Google Scholar 

  • Rosene, D. L., Roy, N. J., and Davis, B. J., 1986, A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact, J. Histochem. Cytochem. 34:1301–1315.

    PubMed  CAS  Google Scholar 

  • Sassoë-Pognetto, M., and Fritschy, J.-M., 2000, Gephyrin, a major postsynaptic protein of GABAergic synapses, Eur. J. Neurosci. 12:2205–2210.

    Article  PubMed  Google Scholar 

  • Shaw, P. J., 1995, Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging, In: Pawley, J. B. (ed.). Handbook of Biological Confocal Microscopy, New York: Plenum Press, pp. 373–387.

    Google Scholar 

  • Sheppard, C. J. R., and Choudhurry, A., 1977, Image formation in the scanning microscope, Opt. Acta 24:1051–1073.

    Google Scholar 

  • Snyder, D. L., Schulz, T. J., and O’Sullivan, J. A., 1992, Deblurring subject to nonnegativity constraints, IEEE Trans. Sign. Proc. 40:1143–1150.

    Article  Google Scholar 

  • van der Voort, H.T. M., and Strasters, K. C., 1995, Restoration of confocal images for quantitative image analysis, J. Microsc. 158:43–45.

    Google Scholar 

  • Waldeyer, F., 1891, Über einige neuere Forschungen im Gebiete der Anatomie des Centralnervensystems, Dtsch. Med. Wochenschr. 17:1213–1218, 1244–1246, 1267–1269, 1287–1289, 1331–1332, 1352–1356.

    Article  Google Scholar 

  • Webb, R. H., and Dorey, C. K., 1995, The pixilated image, In: Pawley, J. B. (ed.). Handbook of Biological Confocal Microscopy, New York: Plenum Press, pp. 55–67.

    Google Scholar 

  • Wessendorf, M. W., 1990, Characterization and use of multi-color fluorescence microscopic techniques, In: Björklund, A., Hökfelt, T., Wouterlood, F. G., and van den Pol, A. N. (eds.). Handbook of Chemical Neuroanatomy: Analysis of Neuronal Microcircuits and Synaptic Interactions, Vol. 8. Amsterdam: Elsevier, pp. 1–46.

    Google Scholar 

  • Wouterlood, F. G., Böckers, T., and Witter, M. P., 2003, Synaptic contacts between identified neurons visualized in the confocal laser scanning microscope. Neuroanatomical tracing combined with immunofluorescence detection of postsynaptic density proteins and target neuron-markers, J. Neurosci. Methods 128:129–142.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., and Jorritsma-Byham, B., 1993, The anterograde tracer biotinylated dextranamine: comparison with the tracer Phaseolus vulgaris-leucoagglutnin in preparations for electron microscopy, J. Neurosci. Methods 48:75–88.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., Pattiselanno, A., Jorritsma-Byham, B., Arts M. P. M., and Meredith G. E., 1993, Connectional, immunocytochemical and ultrastructural characterization of neurons injected intracellularly in fixed brain tissue, In: Meredith, G. E., and Arbuthnott, G. W. (eds.). Morphological Investigations of Single Neurons In Vitro. IBRO Handbook Series “Methods in the Neurosciences,” No. 16, Chichester, UK: Wiley and Sons, pp. 47–74.

    Google Scholar 

  • Wouterlood, F. G., van Denderen, J. C. M., Blijleven, N., van Minnen, J., and Härtig, W., 1998, Two-laser dual-immunofluorescence confocal laserscanning microscopy using Cy2-and Cy5-conjugated secondary antibodies: unequivocal detection of co-localization of neuronal markers, Brain Res. Protoc. 2:149–159.

    Article  CAS  Google Scholar 

  • Wouterlood, F. G., van Haeften, T., Blijleven, N., Perez-Templado, P., and Perez-Templado, E., 2002, Double-label confocal laserscanning microscopy, image restoration and real-time 3D-reconstruction to study axons in the CNS and their contacts with target neurons, Appl. Immunohistochem. Mol. Morphol. 10:85–102.

    Article  PubMed  Google Scholar 

  • Wouterlood, F. G., van Haeften, T., Eijkhoudt, M., Baks-te-Bulte, L., Goede, P. H., and Witter, M. P., 2004, Input from the presubiculum to dendrites of layer-V neurons of the medial entorhinal cortex of the rat, Brain Res. 1013:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky, L., and Cullinan, W. E., 1989, Hypothalamic axons terminate on forebrain cholinergic neurons: an ultrastructural double-labeling study using PHA-L tracing and ChAT immunocytochemistry, Brain Res. 479:177–184.

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky, L., and Heimer, L., 1989, Combination of tracer technqiues, especially HRP and PHA-L with transmitter identification for correlated light and electron microscopic studies, In: Heimer, L., and Zaborszky, L. (eds.). Neuroanatomical Tract-Tracing Methods 2, Recent Progress, New York: Plenum Press, pp. 49–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wouterlood, F.G. (2006). Combined Fluorescence Methods to Determine Synapses in the Light Microscope: Multilabel Confocal Laser Scanning Microscopy. In: Zaborszky, L., Wouterlood, F.G., Lanciego, J.L. (eds) Neuroanatomical Tract-Tracing 3. Springer, Boston, MA . https://doi.org/10.1007/0-387-28942-9_13

Download citation

Publish with us

Policies and ethics