Skip to main content

Tract-Tracing in Developing Systems and in Postmortem Human Material Using Carbocyanine Dyes

  • Chapter
Neuroanatomical Tract-Tracing 3

Abstract

Rapid progress in neurobiology and genetics demands knowledge of fundamental aspects of brain development including the connectivity patterns within developing and adult brains. The primary focus of this chapter is on neuroanatomical tract-tracing using carbocyanine dyes which have several advantages over traditional tracing methods. First utilized for in vitro studies, a major breakthrough in the late 1980s was the demonstration that carbocyanine dyes act as anterograde and retrograde tracers in fixed tissue, eliminating the need for diffusion of tracers in vivo. Moreover, carbocyanine dyes are more efficacious than classical tracing methodologies especially during early stages of development, and consequently have been used to reveal the spatiotemporal patterns of axonal development in different species. Furthermore, the unique properties of the carbocyanine dye tracing method have opened up new avenues for tracing connections in human postmortem specimens. This is a key step in determining the precise connectivity of neural circuits in the human brain, and subsequently to relate this knowledge to pathological cases.

The success of carbocyanine dyes as tracers, both in vitro and in fixed material, is reflected in the flurry of publications throughout the 1990s and into the present. However, there are relatively few systematic studies that have tested parameters to optimize their use or to give practical advice to enhance their efficacy. This chapter aims to bring together some of our experiences with the carbocyanine dye tracing method drawn from our studies in mammalian, reptilian, and human and nonhuman primate specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agmon, A., and Connors, B. W., 1991, Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro, Neuroscience 41:365–379.

    Article  PubMed  CAS  Google Scholar 

  • Agmon, A., Hollrigel, G., and O’Dowd, D. K., 1996, Functional GABAergic synaptic connection in neonatal mouse barrel cortex, J. Neurosci. 16:4684–4695.

    PubMed  CAS  Google Scholar 

  • Beach, T. G., and McGeer, E. G., 1988, Retrograde filling of pyramidal neurons in postmortem human cerebral cortex using horseradish peroxidase, J. Neurosci. Methods 23:187–193.

    Article  PubMed  CAS  Google Scholar 

  • Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., Barker, G. J., Sillery, E. L., Sheehan, K., Ciccarelli, O., Thompson, A. J., Brady, J. M., and Matthews, P. M., 2003a, Noninvasive mapping of connections between human thalamus and cortex using diffusion imaging, Nat. Neurosci. 6:750–757.

    Article  PubMed  CAS  Google Scholar 

  • Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., Matthews, P. M., Brady, J. M., and Smith, S. M., 2003b, Characterization and propagation of uncertainty in diffusion-weighted MR imaging, Magn. Reson. Med. 50:1077–1088.

    Article  PubMed  CAS  Google Scholar 

  • Bicknese, A. R., Sheppard, A. M., O’Leary, D. D., and Pearlman, A. L., 1994, Thalamocortical axons extend along a chondroitin sulfate proteoglycan-enriched pathway coincident with the neocortical subplate and distinct from the efferent path, J. Neurosci. 14: 3500–3510.

    PubMed  CAS  Google Scholar 

  • Bruce, L. L., Christensen, M. A., and Fritzsch, B., 1997, Electron microscopic differentiation of directly and transneuronally transported DiI and applications for studies of synaptogenesis, J. Neurosci. Methods 73:107–112.

    Article  PubMed  CAS  Google Scholar 

  • Bystron, I., Molnár, Z., Otellin, V., and Blakemore, C., 2005, Tangential networks of precocious neurons and early axonal outgrowth in the embryonic human forebrain, J. Neurosci. 25:2781–2792.

    Article  PubMed  CAS  Google Scholar 

  • Bystron, I., Otellin, V., Blakemore, C., and Molnár, Z., 2002, The early development of interconnections between thalamus and cortex in humans. FENS, Paris, France A039.3.

    Google Scholar 

  • Cajal, S. R., 1909, Histologie du système nerveux de l’homme et des vertebres. Reprinted by Consejo Superior de Investigaciones Cientifias, Insituto Ramón y Cajal, 1952–1955.

    Google Scholar 

  • Carney, R. S. E., 2004, Thalamocortical development and cell proliferation in fetal primate and rodent cortex, D. Phil Thesis, Department of Human Anatomy and Genetics, University of Oxford, UK.

    Google Scholar 

  • Carney, R. S. E., Molnár, Z., Giroud, P., Cortay, V., Berland, M., Kennedy, H., and Dehay, C., 2002, Thalamocortical projections in the developing primate cortex. FENS, Paris, France A007.06.

    Google Scholar 

  • Carney, R. S. E., Molnár, Z., Giroud, P., Cortay, V., Berland, M., Kennedy, H., and Dehay, C., 2003, Novel Features of Thalamocortical Development in the Fetal Primate Cortex, P3.09 ed., UK: British Neuroscience Association.

    Google Scholar 

  • Catalano, S. M., Robertson, R. T., and Killackey, H. P., (1996), Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex, J. Comp. Neurol. 367:36–53.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, G., Zhou, X., Qu, J., Ashwell, K. W., and Paxinos, G., 2004, Central vagal sensory and motor connections: human embryonic and fetal development, Auton. Neurosci. 114:83–96.

    Article  PubMed  Google Scholar 

  • Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas, J. Comp. Neurol. 298:188–214.

    Article  PubMed  CAS  Google Scholar 

  • Dai, J., Swaab, D. F., Van der Vliet, J., and Buijs, R. M., 1998a, Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain, J. Comp. Neurol. 400:87–102.

    Article  PubMed  CAS  Google Scholar 

  • Dai, J., Van Der Vliet, J., Swaab, D. F., and Buijs, R. M., 1998b, Postmortem anterograde tracing of intrahypothalamic projections of the human dorsomedial nucleus of the hypothalamus, J. Comp. Neurol. 401:16–33.

    Article  PubMed  CAS  Google Scholar 

  • Dai, J., Van der Vliet, J., Swaab, D. F., and Buijs, R. M., 1998c, Human retinohypothalamic tract as revealed by in vitro postmortem tracing, J. Comp. Neurol. 397:357–370.

    Article  PubMed  CAS  Google Scholar 

  • deAzevedo, L. C., Fallet, C., Moura-Neto, V., Daumas-Duport, C., Hedin-Pereira, C., and Lent, R., 2003, Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes, J. Neurobiol. 55:288–298.

    Article  Google Scholar 

  • De Carlos, J. A., Lopez-Mascaraque, L., and Valverde, F., 1996, Dynamics of cell migration from the lateral ganglionic eminence in the rat, J. Neurosci. 16:6146–6156.

    PubMed  Google Scholar 

  • Dehay, C., Horsburgh, G., Berland, M., Killackey, H., and Kennedy, H., 1989, Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input, Nature 337:265–267.

    Article  PubMed  CAS  Google Scholar 

  • Dehay, C., Savatier, P., Cortay, V., and Kennedy, H., 2001, Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons, J. Neurosci. 21:201–214.

    PubMed  CAS  Google Scholar 

  • Fishell, G., Blazeski, R., Godement, P., Rivas, R., Wang, L. C., and Mason, C. A., 1995, Optical microscopy: III. Tracking fluorescently labeled neurons in developing brain, FASEB J. 9:324–334.

    PubMed  CAS  Google Scholar 

  • Fishell, G., Mason, C. A., and Hatten, M. E., 1993, Dispersion of neural progenitors within the germinal zones of the forebrain, Nature 362:636–638.

    Article  PubMed  CAS  Google Scholar 

  • FitzGibbon, T., 1997, The human fetal retinal nerve fiber layer and optic nerve head: a DiI and DiA tracing study, Vis. Neurosci. 14:433–447.

    Article  PubMed  CAS  Google Scholar 

  • Fujimori, K. E., Takauji, R., Yoshihara, Y., Tamada, A., Mori, K., and Tamamaki, N., 1997, A procedure for in situ hybridization combined with retrograde labeling of neurons: application to the study of cell adhesion molecule expression in Dil-labeled rat pyramidal neurons, J. Histochem. Cytochem. 45:455–459.

    PubMed  CAS  Google Scholar 

  • Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O., and Lichtman, J. W., 2000, Multicolor “DiOlistic” labeling of the nervous system using lipophilic dye combinations, Neuron 27:219–225.

    Article  PubMed  CAS  Google Scholar 

  • Godement, P., Vanselow, J., Thanos, S., and Bonhoeffer, F., 1987, A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue, Development 101:697–713.

    PubMed  CAS  Google Scholar 

  • Grafe, M. R., and Leonard, C. M., 1980, Successful silver impregnation of degenerating axons after long survivals in the human brain, J. Neuropathol. Exp. Neurol. 39:555–574.

    PubMed  CAS  Google Scholar 

  • Haber, S., 1988, Tracing intrinsic fiber connections in postmortem human brain with WGAHRP, J. Neurosci. Methods 23:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Hannan, A. J., Servotte, S., Katsnelson, A., Sisodiya, S., Blakemore, C., Squier, M., and Molnár, Z., 1999, Characterization of nodular neuronal heterotopia in children. Brain 122 (Pt 2):219–238.

    Article  PubMed  Google Scholar 

  • Hevner, R. F., 2000, Development of connections in the human visual system during fetal mid-gestation: a DiI-tracing study, J. Neuropathol. Exp. Neurol. 59:385–392.

    PubMed  CAS  Google Scholar 

  • Hevner, R. F., and Kinney, H. C., 1996, Reciprocal entorhinal-hippocampal connections established by human fetal midgestation, J. Comp. Neurol. 372:384–394.

    Article  PubMed  CAS  Google Scholar 

  • Hevner, R. F., Miyashita-Lin, E., and Rubenstein, J. L., 2002, Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other, J. Comp. Neurol. 447:8–17.

    Article  PubMed  Google Scholar 

  • Higashi, S., Molnár, Z., Kurotani, T., and Toyama, K., 2002, Prenatal development of neural excitation in rat thalamocortical projections studied by optical recording, Neuroscience 115:1231–1246.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, M. H., and Bleckmann, H., 1999, Effect of temperature and calcium on transneuronal diffusion of DiI in fixed brain preparations, J. Neurosci. Methods 88:27–31.

    Article  PubMed  CAS  Google Scholar 

  • Honig, M. G., and Hume, R. I., 1986, Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures, J. Cell Biol. 103:171–187.

    Article  PubMed  CAS  Google Scholar 

  • Honig, M. G., and Hume, R. I., 1989, Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing, Trends Neurosci. 12:333–335, 340–331.

    Article  PubMed  CAS  Google Scholar 

  • Johansen-Berg, H., Behrens, T. E., Robson, M. D., Drobnjak, I., Rushworth, M. F., Brady, J. M., Smith, S. M., Higham, D. J., and Matthews, P. M., 2004, Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex, Proc. Natl. Acad. Sci. USA 101:13335–13340.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G. D., Davidson, R. S., McNamee, K. C., Russell, G, Goodwin, D., and Holborow, E. J., 1982, Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy, J. Immunol. Methods 55:231–242.

    Article  PubMed  CAS  Google Scholar 

  • Krassioukov, A. V., Bygrave, M. A., Puckett, W. R., Bunge, R. P., and Rogers, K. A., 1998, Human sympathetic preganglionic neurons and motoneurons retrogradely labelled with DiI, J. Auton. Nerv. Syst. 70:123–128.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Sanborn, K. L., Cobb, N., Raymond, P. A., and Marrs, J. A., 1999, R-cadherin expression in the developing and adult zebrafish visual system, J. Comp. Neurol. 410:303–319.

    Article  PubMed  CAS  Google Scholar 

  • López-Bendito, G., Chan, C. H., Mallamaci, A., Parnavelas, J., and Molnár, Z., 2002, Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus, J. Comp. Neurol. 451:153–169.

    Article  PubMed  CAS  Google Scholar 

  • Lübke, J., 1993, Photoconversion of diaminobenzidine with different fluorescent neuronal markers into a light and electron microscopic dense reaction product, Microsc. Res. Tech. 24:2–14.

    Article  PubMed  Google Scholar 

  • Lukas, J. R., Aigner, M., Denk, M., Heinzl, H., Burian, M., and Mayr, R., 1998, Carbocyanine postmortem neuronal tracing. Influence of different parameters on tracing distance and combination with immunocytochemistry, J. Histochem. Cytochem. 46:901–910.

    PubMed  CAS  Google Scholar 

  • Ma, L., Harada, T., Harada, C., Romero, M., Hebert, J. M., McConnell, S. K., and Parada, L. F., 2002, Neurotrophin-3 is required for appropriate establishment of thalamocortical connections, Neuron 36:623–634.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M., 1971, Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study: I. The primordial neocortical organization, Z. Anat. Entwicklungsgesch 134:117–145.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M., 1983, Structural organization of the human cerebral cortex prior to the appearance of the cortical plate, Anat. Embryol. 168:21–40.

    Article  PubMed  CAS  Google Scholar 

  • McConnell, S. K., Ghosh, A., and Shatz, C. J., 1989, Subplate neurons pioneer the first axon pathway from the cerebral cortex, Science 245:978–982.

    Article  PubMed  CAS  Google Scholar 

  • Métin, C., Denizot, J. P., and Ropert, N., 2000, Intermediate zone cells express calciumpermeable AMPA receptors and establish close contact with growing axons, J. Neurosci. 20:696–708.

    PubMed  Google Scholar 

  • Métin, C., and Godement, P., 1996, The ganglionic eminence may be an intermediate target for corticofugal and thalamocortical axons, J. Neurosci. 16:3219–3235.

    PubMed  Google Scholar 

  • Meyer, G., and Gonzalez-Hernandez, T., 1993, Developmental changes in layer 1 of the human neocortex during prenatal life: a DiI-tracing and AChE and NADPH-d histochemistry study, J. Comp. Neurol. 338:317–336.

    Article  PubMed  CAS  Google Scholar 

  • Miklossy, J., Clarke, S., and Van der Loos, H., 1991, The long distance effects of brain lesions: visualization of axonal pathways and their terminations in the human brain by the Nauta method, J. Neuropathol. Exp. Neurol. 50:595–614.

    PubMed  CAS  Google Scholar 

  • Miklossy, J., and Van der Loos, H., 1991, The long-distance effects of brain lesions: visualization of myelinated pathways in the human brain using polarizing and fluorescence microscopy, J. Neuropathol. Exp. Neurol. 50:1–15.

    PubMed  CAS  Google Scholar 

  • Miller, B., Chou, L., and Finlay, B. L., 1993, The early development of thalamocortical and corticothalamic projections, J. Comp. Neurol. 335:16–41.

    Article  PubMed  CAS  Google Scholar 

  • Molnár, Z., Adams, R., and Blakemore, C., 1998a, Mechanisms underlying the early establishment of thalamocortical connections in the rat, J. Neurosci. 18:5723–5745.

    PubMed  Google Scholar 

  • Molnár, Z., Adams, R., Goffinet, A. M., and Blakemore, C., 1998b, The role of the first postmitotic cortical cells in the development of thalamocortical innervation in the reeler mouse, J. Neurosci. 18:5746–5765.

    PubMed  Google Scholar 

  • Molnár, Z., and Blakemore, C., 1991, Lack of regional specificity for connections formed between thalamus and cortex in coculture, Nature 351:475–477.

    Article  PubMed  Google Scholar 

  • Molnár, Z., and Blakemore, C., 1995, How do thalamic axons find their way to the cortex? Trends Neurosci. 18:389–397.

    Article  PubMed  Google Scholar 

  • Molnár, Z., and Cordery, P., 1999, Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat, J. Comp. Neurol. 413:1–25.

    Article  PubMed  Google Scholar 

  • Molnár, Z., López-Bendito, G., Small, J., Partridge, L. D., Blakemore, C., and Wilson, M. C., 2002, Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity, J. Neurosci. 22:10313–10323.

    PubMed  Google Scholar 

  • Mufson, E. J., Brady, D. R., and Kordower, J. H., 1990, Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI, Neurobiol. Aging 11:649–653.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W. J., and Gygax, P. A., 1951, Silver impregnation of degenerating axon terminals in the central nervous system: (1) technic. (2) chemical notes, Stain Technol. 26:5–11.

    PubMed  CAS  Google Scholar 

  • Papadopoulos, G. C., and Dori, I., 1993, DiI labeling combined with conventional immunocytochemical techniques for correlated light and electron microscopic studies, J. Neurosci. Methods 46:251–258.

    Article  PubMed  CAS  Google Scholar 

  • Pautler, R. G., Silva, A. C., and Koretsky, A. P., 1998, In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging, Magn. Reson. Med. 40:740–748.

    PubMed  CAS  Google Scholar 

  • Pavlidis, M., Stupp, T., Naskar, R., Cengiz, C., and Thanos, S., 2003, Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI, Invest. Ophthalmol. Vis. Sci. 44:5196–5205.

    Article  PubMed  Google Scholar 

  • Qu, J., Zhou, X., Zhang, L., Ni, H., Ashwell, K., and Lu, F., 2002, A preliminary study on development of human visual system in fetus by DiI-tracing, Zhonghua Yan Ke Za Zhi 38:517–519.

    PubMed  Google Scholar 

  • Sandell, J. H., and Masland, R. H., 1988, Photoconversion of some fluorescent markers to a diaminobenzidine product, J. Histochem. Cytochem. 36:555–559.

    PubMed  CAS  Google Scholar 

  • Skaliora, I., Adams, R., and Blakemore, C., 2000, Morphology and growth patterns of developing thalamocortical axons, J. Neurosci. 20:3650–3662.

    PubMed  CAS  Google Scholar 

  • Sparks, D. L., Lue, L. F., Martin, T. A., and Rogers, J., 2000, Neural tract tracing using Di-I: a review and a new method to make fast Di-I faster in human brain, J. Neurosci. Methods 103:3–10.

    Article  PubMed  CAS  Google Scholar 

  • Spires, T. L., Molnár, Z., Kind, P. C., Cordery, P. M., Upton, A. L., Blakemore, C., and Hannan, A. J., 2005, Activity-dependent regulation of synapse and dendritic spine morphology in developing barrel cortex requires phospholipase C-β1 signalling, Cereb. Cortex 15(4):385–393.

    Article  PubMed  Google Scholar 

  • Tardif, E., and Clarke, S., 2001, Intrinsic connectivity of human auditory areas: a tracing study with DiI, Eur. J. Neurosci. 13:1045–1050.

    Article  PubMed  CAS  Google Scholar 

  • Voelker, C. C., Garin, N., Taylor, J. S., Gahwiler, B. H., Hornung, J. P., and Molnár, Z., 2004, Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer 5 pyramidal neurons in vivo and in vitro, Cereb. Cortex 14:1276–1286.

    Article  PubMed  Google Scholar 

  • Voigt, T., 1989, Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes, J. Comp. Neurol. 289:74–88.

    Article  PubMed  CAS  Google Scholar 

  • Wouterlood, F. G., and Mugnaini, E., 1984, Cartwheel neurons of the dorsal cochlear nucleus: a Golgi-electron microscopic study in rat, J. Comp. Neurol. 227:136–157.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, N., Higashi, S., and Toyama, K., 1997, Stop and branch behaviors of geniculocortical axons: a time-lapse study in organotypic cocultures, J. Neurosci. 17:3653–3663.

    PubMed  CAS  Google Scholar 

  • Zaborszky, L., and Heimer, L., 1989, Combinatios of Tracer Techniques, Especially HRP and PHA-L, with Transmitter Identification for Correlated Light and Electron Microscopic Studies, New York: Plenum Press.

    Google Scholar 

  • Zec, N., Filiano, J. J., and Kinney, H. C., 1997, Anatomic relationships of the human arcuate nucleus of the medulla: a DiI-labeling study, J. Neuropathol. Exp. Neurol. 56:509–522.

    PubMed  CAS  Google Scholar 

  • Zec, N., and Kinney, H. C., 2003, Anatomic relationships of the human nucleus of the solitary tract in the medulla oblongata: a DiI labeling study, Auton. Neurosci. 105:131–144.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Molnár, Z., Blakey, D., Bystron, I., Carney, R.S.E. (2006). Tract-Tracing in Developing Systems and in Postmortem Human Material Using Carbocyanine Dyes. In: Zaborszky, L., Wouterlood, F.G., Lanciego, J.L. (eds) Neuroanatomical Tract-Tracing 3. Springer, Boston, MA . https://doi.org/10.1007/0-387-28942-9_12

Download citation

Publish with us

Policies and ethics