Skip to main content

Electrophysiology

  • Chapter
Cochlear Implants

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 819 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas, P. J., C. M. Miller, A. Matsuoka and J. T. Rubinstein. 1997. The neurophysiologic effects of simulated auditory prosthesis stimulation. Fourth quarterly progress report. NIH contract NO1-DC-6-2111. Neural Prosthesis Program, NIH, Bethesda, MD.

    Google Scholar 

  • Aitkin, L. M. 1985. The auditory midbrain. Clifton, New Jersey, Human Press.

    Google Scholar 

  • Anderson, D. J. 1973. Quantitative model for the effects of stimulus frequency upon synchronization of auditory nerve discharges. Journal of the Acoustical Society of America 54: 361–364.

    ADS  Google Scholar 

  • Au, D., I. Bruce, L. Irlicht and G. M. Clark. 1995. Cross-fiber interspike interval probability distribution in acoustic stimulation: a computer modeling study. Annals of Otology, Rhinology and Laryngology 104: 346–349.

    Google Scholar 

  • Bi, Q. 1989. A closed-form solution for removing the dead-time effects from the poststimulus time histograms. Journal of the Acoustical Society of America 85: 2504–2513.

    Article  ADS  Google Scholar 

  • Black, R. C. and G. M. Clark. 1977. Electrical transmission line properties of the cat cochlea. Proceedings of the Australian Physiological and Pharmacological Society 8: 137.

    Google Scholar 

  • Black, R. C. and G. M. Clark. 1978. Electrical network properties and distribution of potentials in the cat cochlea. Proceedings of the Australian Physiological and Pharmacological Society 9: 71P.

    Google Scholar 

  • Black, R. C. and G. M. Clark. 1980. Differential electrical excitation of the auditory nerve. Journal of the Acoustical Society of America 67(3): 868–874.

    Article  ADS  Google Scholar 

  • Black, R. C., G. M. Clark and J. F. Patrick. 1981a. Current distribution measurements within the human cochlea. IEEE Transactions on Biomedical Engineering 28: 721–724.

    Google Scholar 

  • Black, R. C., G. M. Clark, R. K. Shepherd, S. J. O’Leary and C. W. Walters. 1983a. Intracochlear electrical stimulation of normal and deaf cats investigated using brainstem response audiometry. Acta Oto-Laryngologica-supplement 399: 5–17.

    Google Scholar 

  • Black, R. C., G. M. Clark, Y. C. Tong and J. F. Patrick. 1983b. Current distributions in cochlea stimulation. Annals of the New York Academy of Sciences 405: 137–145.

    ADS  Google Scholar 

  • Black, R. C. and P. Hannaker. 1979. Dissolution of smooth platinum electrodes in biological fluids. In: Gildenberg, L., ed. Applied neurophysiology. Basel, Karger: 366–374.

    Google Scholar 

  • Black, R. C., A. C. Steel and G. M. Clark. 1981b. Frequency discrimination and the spiral ganglion cell population in cats. Proceedings of the Australian Physiological and Pharmacological Society 12: 173P.

    Google Scholar 

  • Blamey, P. J., P. W. Dawson, S. J. Dettman, et al. 1992. Speech perception, production and language results in a group of children using the 22-electrode cochlear implant. Journal of the Oto-Laryngological Society of Australia 1: 105–109.

    Google Scholar 

  • Bliss, T. V. and T. Lomo. 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology 232: 331–356.

    Google Scholar 

  • Bogdanski, D. F. and R. Galambos. 1960. In: Rasmussen, G. L. and W. F. Windle, ed. Neural mechanisms of auditory and vestibular systems. Springfield, IL, Charles C. Thomas: 143–148.

    Google Scholar 

  • Bollman, J. H., B. Sakmann and J. G. G. Borst. 2000. Calcium senstitivity of glutamate release in a calyx-type terminal. Science 289: 953–957.

    Google Scholar 

  • Born, D. E. and E. W. Rubel. 1988. Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. Journal of Neuroscience 8: 901–919.

    Google Scholar 

  • Bosher, S. K. and R. L. Warren. 1968. Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proceedings of the Royal Society of London 171B: 227.

    ADS  Google Scholar 

  • Boudreau, J. C. and C. Tsuchitani. 1968. Binaural interaction in the cat superior olive S segment. Journal of Neurophysiology 31(3): 442–454.

    Google Scholar 

  • Boudreau, J. C. and C. Tsuchitani. 1970. Cat superior olive S-segment cell discharge to tonal stimulation. In: Neff, W. D., ed. Contributions to sensory physiology. New York, Academic 4: 143–213.

    Google Scholar 

  • Boulanger, L. and M. Poo. 1999. Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation. Nature Neuroscience 2: 346–351.

    Google Scholar 

  • Brawer, J. R. and D. K. Morest. 1975. Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. Journal of Comparative Neurology 160: 491–506.

    Article  Google Scholar 

  • Britt, R. and A. Starr. 1976a. Synaptic events and discharge patterns of cochlear nucleus cells. II. frequency-modulated tones. Division of Neurosurgery, Stanford University: 179–194.

    Google Scholar 

  • Britt, R. and A. Starr. 1976b. Synaptic events and discharge patterns of cochlear nucleus. I. Steady-frequency tone bursts. Division of Neurosurgery, Stanford University: 162–178.

    Google Scholar 

  • Brown, M., R. Shepherd, W. Webster, R. Martin and G. Clark. 1992. Cochleotopic selectivity of a multi-channel scala tympani electrode array using the 2-deoxyglucose technique. Hearing Research 59: 224–240.

    Article  Google Scholar 

  • Brownell, W. E., C. R. Bader, D. Bertrand and Y. de Ribaupierre. 1985. Evoked mechanical responses of isolated cochlear outer hair cells. Science 227: 194–196.

    ADS  Google Scholar 

  • Bruce, I. C., L. S. Irlicht and G. M. Clark. 1998a. A mathematical analysis of spatiotemporal summation of auditory nerve firings. Information Sciences: Applications 111: 303–334.

    MATH  Google Scholar 

  • Bruce, I. C., L. S. Irlicht, S. Dynes, E. Javel and G. M. Clark. 1997a. A stochastic model of the electrically stimulated nerve designed for the analysis of large-scale population. In: Popelka, G. R., ed. Abstracts of the Twentieth Midwinter Research Meeting of the Association of Research in Otolaryngology. Des Moines, Association for Research in Otolaryngology: 57.

    Google Scholar 

  • Bruce, I. C., L. S. Irlicht, M. W. White, S. J. O’Leary and G. M. Clark. 2000. Renewal-process approximation of a stochastic threshold model for electrical neural stimulation. Journal of Computational Neuroscience 9: 119–132.

    Article  MATH  Google Scholar 

  • Bruce, I. C., L. S. Irlicht, M. White, et al. 1997b. An improved model of electrical stimulation of the auditory nerve. In: Clark, G. M., ed. Cochlear implants. XVI World Congress of Otorhinolaryngology Head and Neck Surgery. Bologna, Monduzzi Editore:125–130.

    Google Scholar 

  • Bruce, I. C., L. S. Irlicht, M. W. White, et al. 1999a. A stochastic model of the electrically stimulated auditory nerve: pulse-train response. IEEE Transactions on Biomedical Engineering 46: 630–637.

    Google Scholar 

  • Bruce, I. C., L. S. Irlicht, M. W. White, et al. 1997c. Electrical stimulation of the auditory nerve: prediction of psychophysical performance by a model including stochastic aspects of neural response. In: Popelka, G. R., ed. Abstracts of the Twentieth Midwinter Research Meeting of the Association of Research in Otolaryngology. Des Moines, Association for Research in Otolaryngology: 81.

    Google Scholar 

  • Bruce, I. C., M. White, L. Irlicht, S. J. O’Leary and G. M. Clark. 1998b. Advances in computational modeling of cochlear implant physiology and perception. In: Greenberg, S., and M. Slaney, eds. Proceedings of the NATO Advanced Study Institute on Computational Hearing. July 1–July 12 1998, Il Ciocco (Tuscany), Italy: 31–36.

    Google Scholar 

  • ai]Bruce, I. C., M. W. White, L. S. Irlicht, S. J. O’Leary and G. M. Clark. 1999c. Advances in relating cochlear implant physiology and psychophysics. Program and Abstracts of 1999 Conference on Implantable Auditory Prostheses: 5.

    Google Scholar 

  • Bruce, I. C., M. W. White, L. S. Irlicht, S. J. O’Leary and G. M. Clark. 1999d. The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE Transactions on Biomedical Engineering 46: 1393–404.

    Google Scholar 

  • Bruce, I. C., M. W. White, L. Irlicht, et al. 1999b. A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE Transactions on Biomedical Engineering 46: 617–629.

    Google Scholar 

  • Brugge, J. F., N. A. Dubrovsky, L. M. Aitkin and D. J. Anderson. 1969. Sensitivity of single neurons in auditory cortex of cat to binaural tonal stimulation: effects of varying interaural time and intensity. Journal of Neurophysiology 32: 1005–1024.

    Google Scholar 

  • Brugge, J. F. and M. M. Merzenich. 1973. Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. Journal of Neurophysiology 36: 1138–1158.

    Google Scholar 

  • Burkitt, A. N. 2000. Interspike interval variability for balanced networks with reversal potentials for large numbers of inputs. Neurocomputing 32–33: 313–321.

    Google Scholar 

  • Burkitt, A. N. 2001. Balanced neurons: analysis of leaky integrate-and-fire neurons with reversal potentials. Biological Cybernetics 85: 247–255.

    Article  MATH  Google Scholar 

  • Burkitt, A. N. and G. M. Clark. 1998. New method for analyzing the synchronization of synaptic input and spike output in neural systems. In: Downs, T., M. Frean and M. Gallagher, eds. Proceedings of the Ninth Australian Conference on Neural Networks (ACNN’ 98). Brisbane, University of Queensland: 94–98.

    Google Scholar 

  • Burkitt, A. N. and G. M. Clark. 1999a. Analysis of integrate and fire neurons: synchronization of synaptic input and spike output. Neural Computation 11: 871–901.

    Article  Google Scholar 

  • Burkitt, A. N. and G. M. Clark. 1999b. The dependence of synchronization upon stimulus frequency for integrate and fire neurons. Proceedings of the Australian Neuroscience Society 10: 173.

    Google Scholar 

  • Burkitt, A. N. and G. M. Clark. 1999c. Modeling the response of neurons to auditory stimuli: differences between acoustical and electrical stimulation. In: Lithgow, B. and I. Cosic, eds. Biomedical Research in the 3rd Millennium. Proceedings of the Inaugural Conference of the Victorian chapter of the IEEE Engineering in Medicine and Biology Society. Caulfield, Victoria, Monash University: 46–49.

    Google Scholar 

  • Burkitt, A. N. and G. M. Clark. 2000. Calculation of interspike intervals for integrate and fire neurons with Poisson distribution of synaptic inputs. Neural Computation 12: 1789–1820.

    Article  Google Scholar 

  • Busby, P. A., L. A. Whitford, P. J. Blamey, L. M. Richardson and G. M. Clark. 1994. Pitch perception for different modes of stimulation using the Cochlear multiple-electrode prosthesis. Journal of the Acoustical Society of America 95: 2658–2669.

    Article  ADS  Google Scholar 

  • Butler, R. A., I. T. Diamond and W. D. Neff. 1957. Role of auditory cortex in discrimination of changes in frequency. Journal of Neurophysiology 20: 108–120.

    Google Scholar 

  • Caird, D. and R. Klinke. 1983. Processing of binaural stimuli by cat superior olivary complex neurons. Experimental Brain Research 52: 385–399.

    Article  Google Scholar 

  • Caleo, M., C. Lodovichi and L. Maffei. 1999. Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity. European Journal of Neuroscience 11:2979–2984.

    Article  Google Scholar 

  • Calford, M. B., W. R. Webster and M. M. Semple. 1983. Measurement of frequency selectivity of single neurons in the central auditory pathway. Hearing Research 11: 395–401.

    Article  Google Scholar 

  • Cant, N. B. 1981. The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience 6: 2643–2655.

    Article  Google Scholar 

  • Carney, L. H. 1994. Spatiotemporal encoding of sound level: models for normal encoding and recruitment of loudness. Hearing Research 76: 31–44.

    Article  Google Scholar 

  • Carney, L. H. and M. Friedman. 1998. Spatiotemporal tuning of low-frequency cells in the anteroventral cochlear nucleus. Journal of Neuroscience 18: 1096–1104.

    Google Scholar 

  • Caspary, D. M., P. M. Backoff, P. G. Finlayson and P. S. Palombi. 1994. Inhibitory inputs modulate discharge rate within receptive fields of anteroventral cochlear nucleus neurons. Journal of Neurophysiology 72: 2124–2133.

    Google Scholar 

  • Charlet de Sauvage, R., Y. Cazals and J.-P. Erre. 1983. Acoustically derived auditory nerve action potential evoked by electrical stimulation: an estimation of the waveform of single unit contribution. Journal of the Acoustical Society of America 73: 616–627.

    Article  ADS  Google Scholar 

  • Clarey, J. and G. M. Clark. 2001. Inhibition underlies the encoding of short voice onset times in the ventral cochlear nucleus. Proceedings of the Australian Neuroscience Society 12: 219.

    Google Scholar 

  • Clarey, J., A. G. Paolini and G. M. Clark. 2001. Brainstem encoding of short voice onset times in natural speech. Proceedings of the Australian Neuroscience Society, Brisbane 12: 218.

    Google Scholar 

  • Clark, G. M. 1969a. Hearing due to electrical stimulation of the auditory system. Medical Journal of Australia 1: 1346–1348.

    Google Scholar 

  • Clark, G. M. 1969b. Middle ear and neural mechanisms in hearing and the management of deafness. PhD dissertation. University of Sydney.

    Google Scholar 

  • Clark, G. M. 1969c. Responses of cells in the superior olivary complex of the cat to electrical stimulation of the auditory nerve. Experimental Neurology 24: 124–136.

    Article  Google Scholar 

  • Clark, G. M. 1970a. A neurophysiological assessment of the surgical treatment of perceptive deafness. International Audiology 9: 103–109.

    Google Scholar 

  • Clark, G. M. 1970b. The surgical treatment of perceptive deafness. An experimental study. Australian and New Zealand Journal of Surgery 39: 319.

    Google Scholar 

  • Clark, G. M. 1987. The University of Melbourne-Nucleus multi-electrode cochlear implant. Advances in Oto-Rhino-Laryngology. Vol. 38. Basel, Karger.

    Google Scholar 

  • Clark, G. M. 1995. Cochlear implants: future research directions. Annals of Otology, Rhinology and Laryngology 104: 22–27.

    Google Scholar 

  • Clark, G. M. 1996. Electrical stimulation of the auditory nerve: the coding of frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people. Clinical and Experimental Pharmacology and Physiology 23: 766–776.

    Google Scholar 

  • Clark, G. M. 1997. Electrical stimulation of the auditory nerve with a cochlear implant and the temporal coding of sound frequencies: a brief review. Australian Journal of Oto-Laryngology 2: 543–546.

    Google Scholar 

  • Clark, G. M. 1998a. Cochlear implants. In: Wright, A. and H. Ludman, eds. Diseases of the ear. London, Edward Arnold: 149–163.

    Google Scholar 

  • Clark, G. M. 1998b. Cochlear implants in the second and third millennia. In: Mannell, R. H. and J. Robert-Ribes, eds. Proceedings of ICSLP’ 98 Fifth International Conference on Spoken Language Processing. Canberra, Australian Speech Science and Technology Association: 1–16.

    Google Scholar 

  • Clark, G. M. 1998c. Research advances for cochlear implants. Auris Nasus Larynx 25: 73–87.

    Article  Google Scholar 

  • Clark, G. M. 1999a. The Bionic Ear in the second and third millennia. Proceedings of the Australian Neuroscience Society 10: 4.

    Google Scholar 

  • Clark, G. M. 1999b. The Bionic Ear towards 2000 and beyond. Taralye Bulletin 17: 4–10.

    Google Scholar 

  • Clark, G. M. 1999c. Cochlear implants in the third millennium. American Journal of Otology 20: 4–8.

    Google Scholar 

  • Clark, G. M. 2001. Editorial. Cochlear implants: climbing new mountains. The Graham Fraser Memorial Lecture 2001. Cochlear Implants International 2(2): 75–97.

    Article  Google Scholar 

  • Clark, G. M., R. C. Black, D. J. Dewhurst, I. C. Forster, J. F. Patrick and Y. C. Tong. 1977. A multiple-electrode hearing prosthesis for cochlear implantation in deaf patients. Medical Progress through Technology 5: 127–140.

    Google Scholar 

  • Clark, G. M., P. J. Blarney, P. A. Busby, et al. 1987. A multiple-electrode intracochlear implant for children. Archives of Otolaryngology 113: 825–828.

    Google Scholar 

  • Clark, G. M., T. D. Carter, C. L. Maffi and R. K. Shepherd. 1995. Temporal coding of frequency: neuron firing probabilities for acoustic and electric stimulation of the auditory nerve. Annals of Otology, Rhinology and Laryngology 104: 109–111.

    Google Scholar 

  • Clark, G. M. and C. W. Dunlop. 1969. A technique for a wide approach to the medulla and bullae of the cat. Journal of Auditory Research 9: 189–193.

    Google Scholar 

  • Clark, G. M., L. Irlicht and T. D. Carter. 1996. A neural model for the time/period coding of frequency for acoustic and electric stimulation. Proceedings of the Australian Neuroscience Society 7: 115.

    Google Scholar 

  • Clark, G. M., H. G. Kranz and H. Minas. 1973. Behavioral thresholds in the cat to frequency modulated sound and electrical stimulation of the auditory nerve. Experimental Neurology 41: 190–200.

    Article  Google Scholar 

  • Clark, G. M. and D. Lawrence. 2000. Technical features of the Nucleus, Med-El and Clarion cochlear implants. Australian Journal of Oto-Laryngology 3: 516–522.

    Google Scholar 

  • Clark, G. M., J. M. Nathar, H. G. Kranz and J. S. Maritz. 1972. A behavioral study on electrical stimulation of the cochlea and central auditory pathways of the cat. Experimental Neurology 36: 350–361.

    Article  Google Scholar 

  • Clark, G. M., R. K. Shepherd, B. K.-H. G. Franz, et al. 1988. The histopathology of the human temporal bone and auditory central nervous system following cochlear implantation in a patient. Correlation with psychophysics and speech perception results. Acta Oto-Laryngologica-supplement 448: 1–65.

    Google Scholar 

  • Clark, G. M., R. K. Shepherd, J. F. Patrick, R. C. Black and Y. C. Tong. 1983. Design and fabrication of the banded electrode array. Annals of the New York Academy of Sciences 405: 191–201.

    ADS  Google Scholar 

  • Clark, G. M. and Y C. Tong. 1990. Electrical stimulation, physiological and behavioural stimulation. In: Clark, G., Y. Tong and J. Patrick, eds. Cochlear prostheses. London, Chuchill Livingstone: 15–32.

    Google Scholar 

  • Clopton, B. M. and I. Glass. 1984. Unit responses at cochlear nucleus to electrical stimulation through a cochlear prosthesis. Hearing Research 14: 1–11.

    Article  Google Scholar 

  • Colombo, J. and C. Parkins. 1987. A model of electrical excitation of the mammalian auditory-nerve neuron. Hearing Research 31: 287–312.

    Article  Google Scholar 

  • Conel, J. L. 1939–1967. The postnatal development of human cerebral cortex. Cambridge, Harvard University Press: I–VIII.

    Google Scholar 

  • Contreras, D., A. Destexhe, T. J. Sejnowski and M. Steriade. 1996. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274: 771–774.

    Article  ADS  Google Scholar 

  • Delgutte, B. 1984. Speech coding in the auditory nerve II. Processing schemes for vowel-like sounds. Journal of the Acoustical Society of America 75: 879–886.

    ADS  Google Scholar 

  • Delgutte, B. and N. Y. S. Kiang. 1984. Speech coding in the auditory nerve I. Vowel-like sounds. Journal of the Acoustical Society of America 75: 866–878.

    ADS  Google Scholar 

  • Derksen, H. E. and A. A. Verveen. 1966. Fluctuations of resting neural membrane potential. Science 151: 1388–1389.

    ADS  Google Scholar 

  • Diamond, D. M. and N. M. Weinberger. 1984. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response. II. Secondary field (AII). Behavioral Neuroscience 98: 189–210.

    Google Scholar 

  • Dinse, H. R., K. Kruger, A. C. Akhavan, F. Spengler, G. Schoner and C. E. Schreiner. 1997. Low-frequency oscillations of visual, auditory and somatosensory cortical neurons evoked by sensory stimulation. International Journal of Psychophysiology 26: 205–227.

    Article  Google Scholar 

  • Dobie, R. A. and J. Kimm. 1980. Brainstem responses to electrical stimulation of the cochlear. Archives of Otolaryngology 106: 573–577.

    Google Scholar 

  • Dowell, R. C., P. J. Blamey and G. M. Clark. 1995. Potential and limitations of cochlear implants in children. Annals of Otology, Rhinology and Laryngology 104(suppl 166): 324–327.

    Google Scholar 

  • Dowell, R. C., G. M. Clark, S. J. Dettman and P. W. Dawson. 1986. Results for children and adolescents using the multichannel cochlear prosthesis. Australian Journal of Audiology (suppl 5): 13.

    Google Scholar 

  • Dowell, R. C., L. F. A. Martin, P. J. Blamey and A. M. Brown. 1985. Assessment of implant patient speech discrimination. In: Schindler, R. and M. Merzenich, eds. Cochlear implants. New York, Raven Press: 465–468.

    Google Scholar 

  • Dowell, R. C., P. M. Seligman, P. J. Blamey and G. M. Clark. 1987. Speech perception using a two-formant 22-electrode cochlear prosthesis in quiet and in noise. Acta Oto-Laryngologica 104(5–6): 439–446.

    Google Scholar 

  • Dowell, R. C., L. A. Whitford, P. M. Seligman, B. K.-H. Franz and G. M. Clark. 1990. Preliminary results with a miniature speech processor for the 22-electrode/Cochlear hearing prosthesis. In: Sacristan, T., ed. Otorhinolaryngology, Head and Neck Surgery. Amsterdam, Kugler and Ghedini: 1167–1173.

    Google Scholar 

  • Dynes, S. B. and B. Delgutte. 1992. Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hearing Research 58(1): 79–90.

    Article  Google Scholar 

  • Eddington, D. K. 1980. Speech discrimination in deaf subjects with cochlear implants. Journal of the Acoustical Society of America 68: 885–891.

    Article  ADS  Google Scholar 

  • Eggermont, J. J. 1992. Stimulus induced and spontaneous rhythmic firing of single units in cat primary auditory cortex. Hearing Research 61: 1–11.

    Article  Google Scholar 

  • Eggermont, J. J. 1996. Differential maturation rates for response parameters in cat primary auditory cortex. Auditory Neuroscience 2: 309–327.

    Google Scholar 

  • Eggermont, J. J., C. W. Ponton, M. Don, M. D. Waring and B. Kwong. 1997. Maturational delays in cortical evoked potentials in cochlear implant users. Acta Otolaryngologica 117: 161–163.

    Google Scholar 

  • Ehrenberger, K., D. Felix and K. Svozil. 1999. Stochastic resonance in cochlear signal transduction. Acta Oto-Laryngologica 119(2): 166–170.

    Google Scholar 

  • Erulkar, S. D., R. A. Butler and G. L. Gerstein. 1968. Excitation and inhibition in cochlear nucleus. II. Frequency modulated tones. Journal of Neurophysiology 31: 537–548.

    Google Scholar 

  • Evans, B. M., P. Dallos and R. Hallworth. 1989. Asymmetries in motile responses of outer hair cells in simulated in vivo conditions. In: J. P. Wilson, ed. Cochlear mechanisms. New York, Plenum: 205–206.

    Google Scholar 

  • Evans, E. F. 1975. Cochlear nerve and cochlear nucleus. In: Keidel, W. D. and W. D. Neff, eds. Handbook of sensory physiology. Auditory system, part 2. New York, Springer-Verlag: 1–108.

    Google Scholar 

  • Evans, E. F. 1978. Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons. Audiology 17: 369–420.

    Google Scholar 

  • Evans, E. F. 1981. The dynamic range problem: place and time coding at the level of cochlear nerve and nucleus. In: Syka, J. and L. Aitkin, eds. Neuronal mechanisms of hearing. New York, Plenum: 69–85.

    Google Scholar 

  • Evans, E. F. and P. G. Nelson. 1973. The responses of single neurones in the cochlear nucleus of the cat as a function of their locations and the anaesthetic state. Experimental Brain Research 17: 402–427.

    Google Scholar 

  • Evans, E. F. and A. R. Palmer. 1975. Responses of units in the cochlear nerve and nucleus of the cat to signals in the presence of bandstop noise. Journal of Physiology 252: 60–62.

    Google Scholar 

  • Evans, E. F. and I. C. Whitfield. 1964. Classification of unit responses in the auditory cortex of the unanaesthetised and unrestrained cat. Journal of Physiology 171: 476–493.

    Google Scholar 

  • Fitzgerald, J. V., A. N. Burkitt, G. M. Clark and A. G. Paolini. 2001. Delay analysis in the auditory brainstem of the rat: comparison with click latency. Hearing Research 159: 85–100.

    Article  Google Scholar 

  • Fitzgerald, J. V., A. G. Paolini, A. N. Burkitt and G. M. Clark. 2000. Delay analysis in an investigation of auditory temporal coding. Proceedings of the Australian Neuroscience Society 11: 216.

    Google Scholar 

  • Frankenhauser, B. and A. Huxley. 1964. The action potential in the myelinated nerve fiber of Xenopus laevis as computed on the basis of voltage clamp data. Journal of Physiology 171: 302–315.

    Google Scholar 

  • Friauf, E. and K. Kandler. 1990. Auditory projections to the inferior colliculus of the rat are present by birth. Neuroscience Letters 120: 58–61.

    Article  Google Scholar 

  • Friauf, E., S. K. McConnell and C. J. Shatz. 1990. Functional synaptic circuits in the subplate during fetal and early postnatal development of cat visual cortex. Journal of Neurophysiology 66: 2601–2613.

    Google Scholar 

  • Friauf, E. and C. J. Shatz. 1991. Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. Journal of Neurophysiology 66: 2059–2071.

    Google Scholar 

  • Frijns, J. H., S. L. de Snoo and R. Schoonhoven. 1995. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Research 87(1–2): 170–186.

    Google Scholar 

  • Frijns, J. H., S. L. de Snoo and J. H. ten Kate. 1996. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Research 95: 33–48.

    Article  Google Scholar 

  • Galambos, R., J. Schwartzkopff and A. Rupert. 1959. Microelectrode study of superior olivary nuclei. American Journal of Physiology 197(3): 527–536.

    Google Scholar 

  • Galuske, R. A. W., D.-K. Kim and W. Singer. 1999. The role of neurotrophins in developmental cortical plasticity. Restorative Neurology and Neuroscience 15: 115–124.

    Google Scholar 

  • Gao, W. J., D. E. Newman, A. B. Wormington and S. I. Pallas. 1999. Development of inhibitory circuitry in visual and auditory cortex of postnatal ferrets: immunocytochemical localization of GABAergic neurons. Journal of Comparative Neurology 409: 261–273.

    Article  Google Scholar 

  • Gaumond, R. P., C. E. Molnar and D. O. Kim. 1982. Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability. Journal of Neurophysiology 48: 856–873.

    Google Scholar 

  • Geisler, C.D. 1981. A model for discharge patterns of primary auditory-nerve fibers. Brain Research 212: 198–201.

    Article  Google Scholar 

  • Geisler, C. D., W. H. Rhode and D. W. Hazelton. 1969. Responses of inferior colliculus neurons in the cat to binaural acoustic stimuli having wide-band spectra. Journal of Neurophysiology 32: 960–974.

    Google Scholar 

  • Gerstein, G. L. and B. Mandelbrot. 1964. Random walk models for the spike activity of a single neuron. Journal of Biophysics 4: 41–68.

    Google Scholar 

  • Girzon, G. and D. K. Eddington. 1987. A three dimensional, electro-anatomical model of the implanted cochlea. Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society. New York, IEEE 4: 1904–1905.

    Google Scholar 

  • Glattke, T. 1974. Electrical stimulation of the auditory nerve in animals. In: Merzenich, M., R. Schindler and F. Sooy, eds. Proceedings of the First International Conference on Electrical Stimulation of the Acoustic Nerve as a Treatment for Profound Sensorineural Deafness in Man. San Francisco, Velo-Bind: 105–121.

    Google Scholar 

  • Goldberg, J. M. and P. B. Brown. 1969. Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. Journal of Neurophysiology 32: 613–636.

    Google Scholar 

  • Goldberg, J. M. and W. D. Neff. 1961. Frequency discrimination after bilateral section of the brachium of the inferior colliculus. Journal of Comparative Neurology 116: 265–290.

    Article  Google Scholar 

  • Greenwood, D. D. and J. M. Goldberg. 1970. Response of neurons in the cochlear nuclei to variations in noise bandwidth and to tone-noise combinations. Journal of the Acoustical Society of America 47: 1022–1040.

    ADS  Google Scholar 

  • Greenwood, D. D. and N. Maruyama. 1965. Excitatory and inhibitory response areas of auditory nucleus. Journal of Neurophysiology 28: 863–892.

    Google Scholar 

  • Hall, J. L. 1965. Binaural interaction in the accessory superior-olivary nucleus of the cat. Journal of the Acoustical Society of America 37(5): 814–823.

    Article  ADS  Google Scholar 

  • Hardie, N. A., A. Martsi-McClintock, L. M. Aitkin and R. K. Shepherd. 1998. Neonatal sensorineural hearing loss affects synaptic density in the auditory midbrain. Neuroreport 9: 2019–2022.

    Google Scholar 

  • Hardie, N. A. and R. K. Shepherd. 1999. Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hearing Research 128: 147–165.

    Article  Google Scholar 

  • Hartmann, R., R. K. Shepherd, S. Heid and R. Klinke. 1997. Response of the primary auditory cortex to electrical stimulation of the auditory nerve in the congenitally deaf white cat. Hearing Research 112: 115–133.

    Article  Google Scholar 

  • Hartmann, R., G. Topp and R. Klinke. 1984a. Discharge patterns of cat primary auditory fibres with electrical stimulation of the cochlea. Hearing Research 13: 47–62.

    Article  Google Scholar 

  • Hartmann, R., G. Topp and R. Klinke. 1984b. Electrical stimulation of the cat cochlea-discharge pattern of single auditory fibres. Advances in Audiology 1: 18–29.

    Google Scholar 

  • Hill, A. V. 1936. Excitation and accommodation in nerves. Proceedings of the Royal Society 119:305–355.

    Google Scholar 

  • Hind, J. E., J. M. Goldberg, D. D. Greenwood and J. E. Rose. 1963. Some discharge characteristics of single neurons in the inferior colliculus of the cat. II. Timing of the discharges and observations on binaural stimulation. Journal of Neurophysiology 26: 321–341.

    Google Scholar 

  • Hinojosa, R., R. Blough and E. Mhoon. 1987. Profound sensorineural deafness: a histopathologic study. Annals of Otology, hinology and Laryngology 96(suppl 128): 43–46.

    Google Scholar 

  • Hodgkin, A. and A. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117: 500–544.

    Google Scholar 

  • Hohn, N. and A. N. Burkitt. 2001a. Modeling the neural response to speech: stochastic resonance and coding vowel-like stimuli. In: Lithgow, B. and I. E. Cosic, eds. Biomedical Research in 2001. Proceedings of the 2nd Conference of the Victorian Chapter of the IEEE Engineering in Medicine and Biology Society. Clayton, Monash University: 46–49.

    Google Scholar 

  • Hohn, N. and A. N. Burkitt. 2001b. Shot noise in the leaky integrate-and-fire neuron. Physical Review E63: 031902.

    ADS  Google Scholar 

  • Hong, R.S., J.T. Rubinstein, D. Wehner and D. Horn. Submitted. Dynamic range enhancement for cochlear implants. Otology and Neuro-Otology.

    Google Scholar 

  • Huttenlocher, P. R. and A. S. Dabholkar. 1997. Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology 387: 167–178.

    Article  Google Scholar 

  • Illing, R. B., M. Horvath and R. Laszig. 1997. Plasticity of the auditory brainstem: effects of cochlear ablation on GAP-43 immunoreactivity in the rat. Journal of Comparative Neurology 382: 116–138.

    Article  Google Scholar 

  • Irlicht, L. S., D. Au and G. M. Clark. 1995. New temporal coding scheme for auditory nerve stimulation. Annals of Otology, Rhinology and Laryngology 104(suppl 166): 358–360.

    Google Scholar 

  • Irlicht, L. S. and G. M. Clark. 1995a. Control strategies for nerves modeled by self-exciting point processes. Annals of Otology, Rhinology and Laryngology 104(suppl 166): 361–363.

    Google Scholar 

  • Irlicht, L. S. and G. M. Clark. 1995b. Control strategies for neurons modeled by self-exciting point processes. Journal of the Acoustical Society of America 98: 2927.

    Article  ADS  Google Scholar 

  • Irlicht, L. S. and G. M. Clark. 1996. Control strategies for neurons modeled by self-exciting point processes. Journal of the Acoustical Society of America 100: 3237–3247.

    Article  ADS  Google Scholar 

  • Irvine, D. R. F. 1986. The auditory brainstem. A review of the structure and function of auditory brainstem processing mechanisms. Berlin, Springer-Verlag.

    Google Scholar 

  • Ito, M. 1986. Long-term depression as a memory process in the cerebellus. Neuroscience Research 3: 531–539.

    Google Scholar 

  • Javel, E. and R. K. Shepherd. 2000. Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure. Hearing Research 140: 45–76.

    Article  Google Scholar 

  • Javel, E., Y. C. Tong, R. K. Shepherd and G. M. Clark. 1987. Responses of cat auditory fibres to biphasic electrical current pulses. Annals of Otology, Rhinology and Laryngology 96: 26–30.

    Google Scholar 

  • Jeffress, L. A. 1948. A place theory of sound localization. Physiological Psychology 41: 35–39.

    Google Scholar 

  • Jenison, R. L., S. Greenberg, K. R. Kluender and W. S. Rhode. 1991. A composite model of the auditory periphery for the processing of speech based on the filter response functions of single auditory-nerve fibers. Journal of the Acoustical Society of America 90: 773–786.

    Article  ADS  Google Scholar 

  • Johnson, D. and A. Swami. 1983. The transmission of signals by auditory-nerve fiber discharge patterns. Journal of the Acoustical Society of America 74: 493–501.

    Article  ADS  Google Scholar 

  • Johnson, D. H. 1980. The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. Journal of the Acoustical Society of America 68: 1115–1122.

    ADS  Google Scholar 

  • Johnson, D. H. 1996. Point process models of single-neuron discharges. Journal of Computational Neuroscience 3: 275–299.

    Article  Google Scholar 

  • Johnson, D. H. and N. Y. S. Kiang. 1976. Analysis of discharges recorded simultaneously from pairs of auditory nerve fibers. Journal of Biophysiology 16: 719–734.

    Google Scholar 

  • Johnstone, B. M., J. R. Johnstone and I. D. Pugsley. 1966. Membrane resistance in endolymphatic walls of the first turn of the guinea-pig cochlea. Journal of the Acoustical Society of America 40: 1398–1404.

    ADS  Google Scholar 

  • Jones, K. and A. Tubis. 1985. On the extraction of the signal-excitation function from a non-Poisson cochlear neural spike train. Journal of the Acoustical Society of America 78: 90–94.

    ADS  MATH  Google Scholar 

  • Jones, R. C., S. S. Stevens and M. H. Lurie. 1940. Three mechanisms of hearing by electrical stimulation. Journal of the Acoustical Society of America 12: 281–290.

    Article  ADS  Google Scholar 

  • Joris, P. X., L. H. Carney, P. H. Smith and T. C. T. Yin. 1994a. Enhancement of neural synchronization in the anteroventral cochlear nucleus I. Responses to tones at the characteristic frequency. Journal of Neurophysiology 71: 1022–1036.

    Google Scholar 

  • Joris, P. X., P. H. Smith and T. C. T. Yin. 1994b. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. Journal of Neurophysiology 71(3): 1037–1051.

    Google Scholar 

  • Joris, P. X. and T. C. T. Yin. 1998. Envelope coding in the lateral superior olive. III. Comparison with afferent pathways. American Journal of Physiology 79: 253–269.

    Google Scholar 

  • Kaczmarek, L., M. Kossut and J. Skangiel-Kramska. 1997. Glutamate receptors in cortical plasticity: molecular and cellular biology. Physiology Review 77: 217–255.

    Google Scholar 

  • Kane, E. C. 1973. Octopus cells in the cochlear nucleus of the cat: heterotypic synapses upon homeotypic neurons. International Journal of Neuroscience 5: 251–279.

    Google Scholar 

  • Katsuki, Y. and Y. Kanno. 1962. Neural mechanism of the peripheral and central auditory system in monkeys. Journal of the Acoustical Society of America 34: 1396–1410.

    Article  ADS  Google Scholar 

  • Katz, B. 1939. Electric excitation of nerve. London, Oxford University.

    Google Scholar 

  • Kiang, N. Y.-S., D. K. Eddington and B. Delgutte. 1979. Fundamental considerations in designing auditory implants. Acta Oto-Laryngologica 87: 204–218.

    Google Scholar 

  • Kiang, N. Y.-S. and E. C. Moxon. 1972. Physiological considerations in artificial stimulation of the inner ear. Annals of Otology 81: 714–729.

    Google Scholar 

  • Kiang, N. Y.-S., R. F. Pfeiffer and W. B. Warr. 1965a. Stimulus coding in the auditory nerve and cochlear nucleus. Acta Otolaryngologica (Stockh) 59: 186–200.

    Google Scholar 

  • Kiang, N. Y.-S., R. F. Pfeiffer and W. B. Warr. 1965b. Stimulus coding in the cochlear nucleus. Annals of Otology Rhinology and Laryngology 74: 2–23.

    Google Scholar 

  • Kim, D. O., S. O. Chang and J. G. Sirianni. 1990. A population study of auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones. Journal of the Acoustical Society of America 87: 1648–1655.

    Article  ADS  Google Scholar 

  • Kim, D. O. and K. Parham. 1991. Auditory nerve spatial encoding of high-frequency pure tones: population response profiles derived from d’ measure associated with nearby places along the cochlea. Hearing Research 52: 167–180.

    Article  MATH  Google Scholar 

  • King, A. J. and A. R. Palmer. 1983. Cells responsive to free-field auditory stimuli in guinea-pig superior colliculus: distribution and response properties. Journal of Physiology 342: 361–381.

    Google Scholar 

  • Kitzes, L. M. 1984. Some physiological consequences of neonatal cochlear destruction in the inferior colliculus of the gerbil. Brain Research 306: 171–178.

    Article  Google Scholar 

  • Kitzes, L. M. and M. N. Semple. 1985. Single-unit responses in the inferior colliculus: effects of neonatal unilateral cochlear ablation. Journal of Neurophysiology 53: 1483–1500.

    Google Scholar 

  • Klinke, R., A. Kral, S. Heid, J. Tillein and R. Hartmann. 1999. Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285(5434): 1729–1733.

    Article  Google Scholar 

  • Knudsen, E. I. and M. Konishi. 1978. A neural map of auditory space in the owl. Science 200: 795–797.

    ADS  Google Scholar 

  • Koppl, C. 1997. Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. Journal of Neuroscience 17: 3312–3321.

    Google Scholar 

  • Korte, M. and J. P. Rauschecker. 1993. Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. Journal of Neurophysiology 70: 1717–1721.

    Google Scholar 

  • Kral, A., R. Hartmann, J. Tillein, S. Heid and R. Klinke. 2001a. Auditory developmental plasticity in cats: a sensitive period of 6 months. Association for Research in Otolaryngology 24: 128.

    Google Scholar 

  • Kral, A., R. Hartmann, J. Tillein, S. Heid and R. Klinke. 2001b. Delayed maturation and sensitive periods in the auditory cortex. Audiology and Neuro-Otology 6: 346–362.

    Article  Google Scholar 

  • Kral, A., J. Tillein, R. Hartmann and R. Klinke. 1999. Monitoring of anaesthesia in neurophysiological experiments. Neuroreport 10: 781–787.

    Google Scholar 

  • Kranz, H. G. 1971. The role of the place and volley principles in pitch perception. MA preliminary dissertation. Melbourne, University of Melbourne.

    Google Scholar 

  • Kuhlmann, L., A. N. Burkitt, A. G. Paolini and G. M. Clark. 2002. Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input. Journal of Computational Neuroscience 12: 55–73.

    Article  Google Scholar 

  • Kuwada, S. and T. C. Yin. 1983. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. Journal of Neurophysiology 50: 981–999.

    Google Scholar 

  • Kuwada, S., T. C. Yin, J. Syka, T. J. Buunen and R. E. Wickesberg. 1984. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. IV. Comparison of monaural and binaural response properties. Journal of Neurophysiology 51: 1306–1325.

    Google Scholar 

  • Laird, R. K. 1979. The bioengineering development of a sound encoder for an implantable hearing prosthesis for the profoundly deaf. Master of Engineering science thesis. University of Melbourne.

    Google Scholar 

  • Leake, R A., R. L. Snyder, S. J. Rebescher, C. M. Moore and M. Vollmer. 2000. Plasticity in central representations in the inferior colliculus induced by chronic single vs. two channel electrical stimulation by a cochlear implant after neonatal deafness. Hearing Research 147: 221–241.

    Article  Google Scholar 

  • Lee, D. S., J. S. Lee, S. H. Oh, et al. 2001. Cross-modal plasticity and cochlear implants. Nature 409: 149–150.

    Article  ADS  Google Scholar 

  • Levänen, S., V. Jousmäki and R. Hari. 1998. Vibration-induced auditory cortex activation in a congenitally deaf adult. Current Biology 8: 869–872.

    Google Scholar 

  • Levitan, I. B. and L. K. Kaczmarek. 1997. The neuron: cell and molecular biology. New York, Oxford University Press: 543.

    Google Scholar 

  • Liberman, M. C. 1978. Auditory-nerve response from cats raised in a low-noise chamber. Journal of the Acoustical Society of America 63: 442–455.

    ADS  Google Scholar 

  • Liberman, M. C. and L. W. Dodds. 1984. Single-neuron labeling and chronic cochlear pathology. II. Stereocilia damage and alterations of spontaneous discharge rates. Hearing Research 16: 43–53.

    Google Scholar 

  • Litvak, L. 2002. Towards a better speech processor for cochlear implants: auditory nerve responses to high rate electric pulse trains. PhD thesis. Massachesetts Institute of Technology. Lorente de No, R. 1981. The primary acoustic nuclei. New York, Raven Press.

    Google Scholar 

  • Lukies, P. M., Y C. Tong and G. M. Clark. 1987. Current distributions produced by the banded electrode array: an experimental study conducted with a tank model. Annals of Otology, Rhinology and Laryngology 96(suppl 128): 24.

    Google Scholar 

  • Lukies, P. M., Y C. Tong, G. M. Clark and P. A. Busby. 1986. Modeling studies on current distributions produced by an intracochlear electrode array. Journal of the Acoustical Society of America 80(suppl 1): S30.

    Google Scholar 

  • Manis, P. B. and S. O. Marx. 1991. Outward currents in isolated ventral cochlear nucleus neurons. Journal of Neuroscience 11: 2865–2880.

    Google Scholar 

  • Mark, K. E. and M. I. Miller. 1992. Bayesian model selection and minimum description length estimation of auditory-nerve discharge rates. Journal of the Acoustical Society of America 91: 989–1002.

    ADS  Google Scholar 

  • Marsalek, P., C. Koch and J. Maunsell. 1997. On the relationship between synaptic input and spike output jitter in individual neurons. Proceedings of the National Academy of Science USA 94: 735–740.

    Article  ADS  Google Scholar 

  • Marschark, M. 1998. Memory for language in deaf adults and children. Scandinavian Audiology Supplementum 49: 87–92.

    Google Scholar 

  • Matsuoka, A. J., P. J. Abbas, J. T. Rubinstein and C. A. Miller. 1997. Temporal properties of the electrical evoked compound action potentials with pulse train stimulation. Conference on Implantable Auditory Prostheses, Asilomar, CA.

    Google Scholar 

  • McAnally, K. I., M. Brown and G. M. Clark. 1997. Comparison of current waveforms for the electrical stimulation of residual low frequency hearing. Acta Oto-Laryngologica 117: 831–835.

    Google Scholar 

  • McAnally, K. I. and G. M. Clark. 1994. Stimulation of residual hearing in the cat by pulsatile electrical stimulation of the cochlea. Acta Oto-Laryngologica 114(4): 366–372.

    Google Scholar 

  • McAnally, K. I., G. M. Clark and J. Syka. 1993. Hair cell mediated responses of the auditory nerve to sinusoidal electrical stimulation of the cochlea in the cat. Hearing Research 67: 55–68.

    Article  Google Scholar 

  • McDermott, H. J. and C. M. McKay. 1992. Place pitch perception with multiple cochlear implants: the use of concurrent activity of nearby electrodes to produce additional pitch percepts. Australian Journal of Audiology (suppl 5): 18.

    Google Scholar 

  • McKay, C. M., H. J. McDermott and G. M. Clark. 1991. Preliminary results with a six spectral maxima speech processor for the University of Melbourne/Nucleus multiple electrode cochlear implant. Journal of the Oto-Laryngological Society of Australia 6: 354–359.

    Google Scholar 

  • McMullen, N. T., B. Goldberger, C. M. Suter and E. M. Glaser. 1988. Neonatal deafening alters nonpyramidal dendrite orientation in auditory cortex: a computer microscopic study. Journal of Comparative Neurology 267: 92–106.

    Article  Google Scholar 

  • Meddis, R., M. J. Hewitt and T. M. Shackleton. 1990. Implementation details of a computation model of the inner hair-cell/auditory-nerve synapse. Journal of the Acoustical Society of America 87: 1813–1816.

    Article  ADS  Google Scholar 

  • Merzenich, M. M., R. P. Michelson and C. R. Pettit. 1973. Neural encoding of sound sensation evoked by electrical stimulation of the acoustic nerve. Annals of Otology 82: 486–503.

    Google Scholar 

  • Merzenich, M. M. and M. D. Reid. 1974. Representation of the cochlea within the inferior colliculus. Brain Research 77: 397–415.

    Article  Google Scholar 

  • Merzenich, M. M. and M. White. 1980. Coding considerations in design of cochlear pros-theses. Annals of Otology 89: 84–87.

    Google Scholar 

  • Merzenich, M. M., M. White, M. C. Vivion, P. A. Leake-Jones and S. Walsh. 1979. Some considerations of multichannel electrical stimulation of the auditory nerve in the profoundly deaf; interfacing electrode arrays with the auditory nerve array. Acta Oto-Laryngologica 87: 196–203.

    Google Scholar 

  • Middlebrooks, J. C. and E. I. Knudsen. 1984. A neural code for auditory space in the cat’s superior colliculus. Journal of Neuroscience 4: 2621–2634.

    Google Scholar 

  • Miller, R. K. 1971. Nonlinear volterra integral equations. Mathematics Lecture Note Series. New York, Benjamin.

    MATH  Google Scholar 

  • Mitzdorf, U. 1985. Current source density method and application in cat cerebral cortex: investigations of evoked potentials and EEG phenomena. Physiology Review 65: 37–100.

    Google Scholar 

  • Moller, A. R. 1971. Unit responses in the rat cochlear nucleus to tones of rapidly varying frequency and amplitude. Acta Physiologica Scandinavica 81: 540–556.

    Google Scholar 

  • Moore, B. C. J. 1997. An introduction to the psychology of hearing. San Diego, Academic Press.

    Google Scholar 

  • Moore, D. R. 1990a. Auditory brainstem of the ferret: bilateral cochlear lesions in infancy do not affect the number of neurons in the cochlear nucleus to the inferior colliculus. Brain Research. Developmental Brain Research 54: 125–130.

    Google Scholar 

  • Moore, D. R. 1990b. Auditory brainstem of the ferret: early cessation of developmental sensitivity of neurons in the cochlear nucleus to removal of the cochlea. Journal of Comparative Neurology 302: 810–823.

    Article  Google Scholar 

  • Moore, D. R., M. E. Hutchings, A. J. King and N. E. Kowalchuk. 1989. Auditory brain stem of the ferret: some effects of rearing with a unilateral ear plug on the cochlea, cochlear nucleus, and projections to the inferior colliculus. Journal of Neuroscience 9:1213–1222.

    Google Scholar 

  • Moore, D. R. and N. E. Kowalchuk. 1988. Auditory brainstem of the ferret: effects of unilateral cochlear lesions on cochlear nucleus volume and projections to the inferior colliculus. Journal of Comparative Neurology 272: 503–515.

    Article  Google Scholar 

  • Morse, R. P. and E. F. Evans. 1996. Enhancement of vowel coding for cochlear implants by addition of noise [see comments]. Nature Medicine 2(8): 928–932.

    Article  Google Scholar 

  • Morse, R. P. and E. F. Evans. 1999a. Additive noise can enhance temporal coding in a computational model of analogue cochlear implant stimulation. Hearing Research 133: 107–19.

    Google Scholar 

  • Morse, R. P. and E. F. Evans. 1999b. Preferential and non-preferential transmission of formant information by an analogue cochlear implant using noise: the role of the nerve threshold. Hearing Research 133: 120–32.

    Google Scholar 

  • Morse, R. P. and P. Roper. 2000. Enhanced coding in a cochlear-implant model using additive noise: aperiodic stochastic resonance with tuning. Physical Review E 61(2): 5683–5692.

    ADS  Google Scholar 

  • Mortimer, J. T. 1990. Electrical excitation of nerve. In: Agnew, W. F. and D. B. McCreery, eds. Neural prosthesis: fundamental studies. Englewood Cliffs, NJ, Prentice Hall: 68–83.

    Google Scholar 

  • Mostafapour, S. P., S. L. Cochran, N. M. Del Puerto and E. W. Rubel. 2000. Patterns of cell death in mouse anteroventral cochlear nucleus neurons after unilateral cochlea removal. Journal of Comparative Neurology 426: 561–571.

    Article  Google Scholar 

  • Moushegian, G., A. Rupert and M. A. Whitcomb. 1964a. Brain-stem neuronal response patterns to monaural and binaural. Journal of Neurophysiology 27: 1174–1191.

    Google Scholar 

  • Moushegian, G., A. Rupert and M. A. Whitcomb. 1964b. Medial superior-olivary-unit response patterns to monaural and binaural clicks. Journal of the Acoustical Society of America 36: 196–202.

    ADS  Google Scholar 

  • Moxon, E. C. 1967. Electric stimulation of the cat’s cochlea: a study of discharge rates in single auditory nerve fibers. M.Sc. dissertation. Cambridge, MA, MIT.

    Google Scholar 

  • Moxon, E. C. 1971. Neural and mechanical responses to electrical stimulation of the cat’s inner ear. Ph.D. dissertation. Cambridge, MA, MIT.

    Google Scholar 

  • Neely, S. T. and D. O. Kim. 1986. A model for active elements in cochlear biomechanics. Journal of the Acoustical Society of America 79: 1472–1480.

    Article  ADS  Google Scholar 

  • Neff, W. D. 1968. Localization and lateralization of sound in space. In: de Reuch, A. V. S., J. Knight and A. Churchill, eds. Ciba Foundation Symposium on Hearing Mechanisms in Vertebrates. London: 207–231.

    Google Scholar 

  • Neff, W. D., I. T. Diamond and J. H. Casseday. 1975. Behavioral studies of auditory discrimination: central nervous system. In: Keidel, W. D. and W. D. Neff, eds. Handbook of sensory physiology. Volume 2. Auditory system. Berlin, Springer-Verlag: 307–400.

    Google Scholar 

  • Neville, H. J. and D. Lawson. 1987a. Attention to central and peripheral visual space in a movement detection task. II. Congenitally deaf adults. Brain Research 405: 268–283.

    Google Scholar 

  • Neville, H. J. and D. Lawson. 1987b. Attention to central and peripheral visual space in a movement detection task. III. Separate effects of auditory deprivation and acquisition of a visual language. Brain Research 405: 284–294.

    Google Scholar 

  • Ni, D., R. K. Shepherd, H. L. Seldon, S. Xu and G. M. Clark. 1992. Cochlear pathology following chronic electrical stimulation of the auditory nerve. I: Normal hearing kittens. Hearing Research 62: 63–81.

    Article  Google Scholar 

  • Nordeen, K. W., H. P. Killackey and L. M. Kitzes. 1983. Ascending projections to the inferior colliculus following unilateral cochlear ablation in the neonatal gerbil, Meriones unguiculatus. Journal of Comparative Neurology 214: 144–153.

    Google Scholar 

  • Oertel, D. 1983. Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus. Journal of Neuroscience 3(10): 2043–53.

    Google Scholar 

  • Oertel, D., S. H. Wu and J. A. Hirsch. 1988. Electrical characteristics of cells and neuronal circuitry in the cochlear nuclei studies with intracellular recordings from brain slices. In: Edelman, G. M., ed. Auditory function: neurobiological bases of hearing. New York, Wiley: 313–336.

    Google Scholar 

  • O’Leary, S. J., R. C. Black and G. M. Clark. 1985. Current distributions in the cat cochlea. A modeling and electrophysiological study. Hearing Research 18: 273–281.

    Google Scholar 

  • O’Leary, S. J., L. S. Irlicht, I. C. Bruce, M. W. White and G. M. Clark. 1997. Prediction of variance in neural response to cochlear implant stimulation and its implications for perception. XVI World Congress of Otorhinolaryngology Head and Neck Surgery: 190–191.

    Google Scholar 

  • O’Leary, S. J., Y. C. Tong and G. M. Clark. 1992. Excitation and inhibition in responses of cochlear nucleus single units to electrical stimulation of the auditory nerve. Proceedings of the Australian Physiological and Pharmacological Society 21: 45P.

    Google Scholar 

  • Oonishi, S. and Y Katsuki. 1965. Functional organization and integrative mechanisms in the auditory cortex of the cat. Japanese Journal of Physiology 15: 342–365.

    Google Scholar 

  • Osberger, M. J. and L. Fisher. 1999. SAS-CIS preference study in postlingually deafened adults implanted with the CLARION cochlear implant. Annals of Otology, Rhinology, and Laryngology 108(suppl 177): 74–79.

    Google Scholar 

  • Osen, K. K., D. E. Lopez, T. A. Slyngstad, O. P. Ottersen and J. Storm-Mathisen. 1991. GABA-like and glycine-like immunoreactivities of the cochlear root nucleus in rat. Journal of Neurocytology 20: 17–25.

    Article  Google Scholar 

  • Palmer, A. R. and A. J. King. 1982. The representation of auditory space in the mammalian superior colliculus. Nature 299: 248–249.

    Article  ADS  Google Scholar 

  • Pandya, D. N. and E. H. Yeterian. 1985. Architecture and connections of cortical association areas. In: Peter, A. and E. G. Jones, eds. Cerebral cortex. New York, Plenum Press 4: 3–62.

    Google Scholar 

  • Paolini, A. G. and G. M. Clark. 1997. The effect of pulsatile intracochlear electrical stimulation on intracellularly recorded cochlear nucleus neurons. In: Clark, G. M., ed. Cochlear implants. XVI World Congress of Otorhinolaryngology Head and Neck Surgery. Bologna, Monduzzi Editore: 119–124.

    Google Scholar 

  • Paolini, A. G. and G. M. Clark. 1998a. Intracellular responses of onset neurones in the ventral cochlear nucleus to acoustic stimulation. Proceedings of the Australian Neuroscience Society 9: 51.

    Google Scholar 

  • Paolini, A. G. and G. M. Clark. 1998b. Intracellular responses of the rat anteroventral cochlear nucleus to intracochlear electrical stimulation. Brain Research Bulletin 46: 317–327.

    Article  Google Scholar 

  • Paolini, A. G. and G. M. Clark. 1999. Intracellular responses of onset chopper neurons in the ventral cochlear nucleus to tones: evidence for dual-component processing. Journal of Neurophysiology 81: 2347–2359.

    Google Scholar 

  • Paolini, A. G., G. M. Clark and A. N. Burkitt. 1997. Intracellular responses of the rat cochlear nucleus to sound and its role in temporal coding. Neuroreport 8: 3415–3421.

    Google Scholar 

  • Paolini, A. G., J. V Fitzgerald, A. N. Burkitt and G. M. Clark. 2001. Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat. Hearing Research 159: 101–116.

    Article  Google Scholar 

  • Paolini, A. G., J. V Fitzgerald and G. M. Clark. 2000. Responses of bushy cells to tones: implications for place and temporal sound coding. Proceedings of the Australian Neuroscience Society 11: 76.

    Google Scholar 

  • Paparella, M. M. and S. Sugiura. 1967. The pathology of suppurative labyrinthitis. Annals of Otology Rhinology and Laryngology 76(3): 554–586.

    Google Scholar 

  • Parasnis, I. 1998. Cognitive diversity in deaf people: implication for communication and education. Scandinavian Audiology Supplementum 49: 109–115.

    Google Scholar 

  • Patuzzi, R. and P. M. Sellick. 1984. The modulation of the sensitivity of the mammalian cochlea by low frequency tones III. Basilar membrane motion. Hearing Research 13: 19–27.

    Google Scholar 

  • Perkel, D., G. Gerstein and G. Moore. 1967. Neuronal spike trains and stochastic point processes. I. The single spike train. Journal of Biophysics 7: 391–418.

    Google Scholar 

  • Pfingst, B. E., P. A. Burnett and D. Sutton. 1983. Intensity discrimination with cochlear implants. Journal of the Acoustical Society of America 73(4): 1283–92.

    Article  ADS  Google Scholar 

  • Pfingst, B. E. and N. L. Rush. 1985. Discrimination of simultaneous frequency and level changes in electrical stimuli. Annals of Otology, Rhinology and Laryngology 96(suppl 128): 34–37.

    Google Scholar 

  • Phillips, D. P. and S. E. Hall. 1987. Responses of single neurons in cat auditory cortex to time-varying stimuli: linear amplitude modulations. Experimental Brain Research 67: 479–492.

    Article  Google Scholar 

  • Pizzorusso, T., N. Berardi, F. M. Rossi, et al. 1999. TrkA activation in the rat visual cortex by antirat trkA IgG prevents the effect of monocular deprivation. European Journal of Neuroscience 11: 204–212.

    Article  Google Scholar 

  • Ponton, C. W., J. J. Eggermont, M. Don, et al. 2000a. Maturation of the mismatch negativity: effects of profound deafness and cochlear implant use. Audiology and Neuro-Otology 5: 167–185.

    Article  Google Scholar 

  • Ponton, C. W., J. J. Eggermont, B. Kwong and M. Don. 2000b. Maturation of human central auditory system activity: evidence from multi-channel evoked potentials. Clinical Neurophysiology 111: 220–236.

    Article  Google Scholar 

  • Ponton, C. W., J. K. Moore and J. J. Eggermont. 1999. Prolonged deafness limits auditory system developmental plasticity: evidence from an evoked potentials study in children with cochlear implants. Scandinavian Audiology 28(suppl 51): 13–22.

    Google Scholar 

  • Raggio, M. W. and C. E. Schreiner. 1999. Neural responses in cat primary auditory cortex to electrical stimulation. III. Activation patterns in short-and long-term deafness. Journal of Neurophysiology 82: 3506–3526.

    Google Scholar 

  • Rajan, R., D. R. F. Irvine, L. Z. Wise and P. Heil. 1993. Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. Journal of Comparative Neurology 338: 17–49.

    Article  Google Scholar 

  • Rauschecker, J. P. and M. Korte. 1993. Auditory compensation for early blindness in cat cerebral cortex. Journal of Neuroscience 13: 4538–4548.

    Google Scholar 

  • Recanzone, G. H., C. E. Schreiner and M. M. Merzenich. 1993. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience 13: 87–103.

    Google Scholar 

  • Redd, E. E., T. Pongstaporn and D. K. Ryugo. 2000. The effects of congenital deafness on auditory nerve synapses and globular bushy cells in cats. Hearing Research 147: 160–174.

    Article  Google Scholar 

  • Rhode, W. S. 1971. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. Journal of the Acoustical Society of America 49: 1218–1231.

    Article  ADS  Google Scholar 

  • Rhode, W. S. and S. Greenberg. 1994. Lateral suppression and inhibition in the cochlear nucleus of the cat. Journal of Neurophysiology 71: 493–514.

    Google Scholar 

  • Robblee, L. S., J. McHardy and J. M. Marston. 1980. Electrical stimulation with Pt electrodes. V. The effect of protein on Pt dissolution. Biomaterials 1: 135–139.

    Article  Google Scholar 

  • Roberts, L. A., R. K. Shepherd, A. G. Paolini, G. M. Clark and A. N. Burkitt. 2000. Effects of a sensorineural hearing loss on the refractory properties of auditory nerve fibres. Proceedings of the Twentieth Annual Meeting of the Australian Neuroscience Society 11: 144.

    Google Scholar 

  • Robertson, D., G. K. Yates and I. M. Winter. 1990. Primary afferent dynamic ranges and cochlear mechanics. In: Rowe, M. and L. M. Aitkin eds. Information processing in mammalian auditory and tactile systems. New York, Wiley-Liss: 61–71.

    Google Scholar 

  • Rose, J. E., J. F. Brugge, D. J. Anderson and J. E. Hind. 1967. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. Journal of Neurophysiology 30: 769–93.

    Google Scholar 

  • Rose, J. E., J. F. Brugge, D. J. Anderson and J. E. Hind. 1969. Time structure of discharges in single auditory nerve fibers of the squirrel monkey in response to complex periodic sounds. Journal of Neurophysiology 32: 386–401.

    Google Scholar 

  • Rose, J. E., R. Galambos and J. R. Hughes. 1959. Microelectrode studies of the cochlear nuclei of the cat. Bulletin of John Hopkins Hospital 104: 211–251.

    Google Scholar 

  • Rose, J. E., D. D. Greenwood, G. J.M. and J. E. Hind. 1963. Some discharge characteristics of single neurons in the inferior colliculus of the cat. I. Tonotopical organization, relation of spike-counts to tone intensity, and firing patterns of single elements. Journal of Neurophysiology 26: 294–320.

    Google Scholar 

  • Rose, J. E., N. B. L. Gross, C. D. Geisler and J. E. Hind. 1966. Some neural mechanisms in the inferior colliculus of the cat which may be relevant to localization of a sound source. Journal of Neurophysiology 29: 288–314.

    Google Scholar 

  • Rothman, J. S. and E. D. Young. 1996. Enhancement of neural synchronization in computational models of ventral cochlear ucleus bushy cells. Auditory Neuroscience 2: 47–62.

    Google Scholar 

  • Rothman, J. S., E. D. Young and P. B. Manis. 1993. Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus-implications of a computational model. Journal of Neurophysiology 70: 2562–2583.

    Google Scholar 

  • Rubinstein, J. T. 1991. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. II. Passive myelineated axon. Biophysical Journal 60: 538–555.

    ADS  Google Scholar 

  • Rubinstein, J. T. 1993. Axon termination conditions for electrical stimulation. IEEE Trans-actions on Biomedical Engineering 40: 654–663.

    Google Scholar 

  • Rubinstein, J. T. 1995. Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophysical Journal 68: 779–785.

    ADS  Google Scholar 

  • Rubinstein, J. T., A. J. Matsuoka, P. J. Abbas and C. A. Miller. 1997. The neurophysiology effects of simulated auditory prosthesis stimulation. Second quarterly progress report. NIH contract NO1-DC-6-2111. Neural Prosthesis Program, NIH, Bethesda, MD.

    Google Scholar 

  • Rubinstein, J. T., B. S. Wilson, C. C. Finley and P. J. Abbas. 1999. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hearing Research 127: 108–118.

    Article  Google Scholar 

  • Ruggero, M. A. 1980. Systematic errors in indirect estimates of basilar membrane travel times. Journal of the Acoustical Society of America 67: 707–710.

    Article  ADS  Google Scholar 

  • Runge-Samuelson, C. 2002. Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains. PhD thesis. University of Iowa.

    Google Scholar 

  • Rupert, A., G. Moushegian and R. Galambos. 1963. Unit responses to sound from auditory nerve of the cat. Journal of Neurophysiology 26: 449–465.

    Google Scholar 

  • Russell, I. J., A. R. Cody and G. P. Richardson. 1986. The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea grown in vitro. Hearing Research 22: 199–216.

    Article  Google Scholar 

  • Ryugo, D. K. and S. Sento. 1991. Synaptic connections of the auditory nerve in cats: relationship between endbulbs of Held and spherical bushy cells. Journal of Comparative Neurology 305: 35–48.

    Article  Google Scholar 

  • Sachs, M. B. 1967. Auditory nerve fiber responses to two-tone stimuli. PhD dissertation. Cambridge, MA, MIT.

    Google Scholar 

  • Sachs, M. B. and E. D. Young. 1979. Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. Journal of the Acoustical Society of America 66: 470–479.

    Article  ADS  Google Scholar 

  • Sachs, M. B. and E. D. Young. 1980. Effects of nonlinearities on speech encoding in the auditory nerve. Journal of the Acoustical Society of America 68: 858–875.

    Article  ADS  Google Scholar 

  • Saint-Marie, R. L., C. G. Benson, E. M. Ostapoff and D. K. Morest. 1991. Glycine immunoreactive projections from the dorsal to the anteroventral cochlear nucleus. Hearing Research 51: 11–28.

    Google Scholar 

  • Santos-Sacchi, J. 1989. Asymmetry in voltage-dependent movements of isolated outer hair cells from the organ of Corti. Journal of Neuroscience 9: 2954–2962.

    Google Scholar 

  • Schindler, R. A., M. M. Merzenich, M. W. White and B. Bjorkroth. 1977. Multi electrode intracochlear implants-nerve survival and stimulation patterns. Archives of Otolaryngology 103: 691–699.

    Google Scholar 

  • Schoonhoven, R., V. F. Prijs and J. H. M. Frijns. 1997. Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibers. Hearing Research 113: 247–260.

    Article  Google Scholar 

  • Schuknecht, H. 1953. Techniques for study of cochlear function and pathology in experimental animals. Acta Oto-Laryngologica 58: 377.

    Google Scholar 

  • Schuknecht, H. and W. D. Neff. 1952. Hearing losses after apical lesions in the cochlea. Acta Oto-Laryngologica 42: 263–274.

    Google Scholar 

  • Seldon, H. L., A. Kawano and G. M. Clark. 1996. Does age at cochlear implantation affect the distribution of 2-deoxyglucose label in cat inferior collicullus? Hearing Research 95: 108–119.

    Article  Google Scholar 

  • Semple, M. N. and L. M. Aitkin. 1979. Representation of sound frequency and laterality by units in central nucleus of cat inferior colliculus. Journal of Neurophysiology 42: 1626–1639.

    Google Scholar 

  • Sermasi, E., D. Tropea and L. Domenici. 1999. A new form of synaptic plasticity is transiently expressed in the developing rat visual cortex: a modulatory role for visual experience and brain-derived neurotropic factor. Neuroscience 91: 163–173.

    Article  Google Scholar 

  • Serviere, J. and W. R. Webster. 1981. A combined electrophysiological and 2-deoxyglucose study of the frequency organization of the inferior colliculus of the cat. Neuroscience Letters 27(2): 113–118.

    Article  Google Scholar 

  • Shepherd, G. M., ed. 1998. The synaptic organization of the brain. 4th ed. Oxford, Oxford University Press.

    Google Scholar 

  • Shepherd, R. K., J. H. Baxi and N. A. Hardie. 1999. Response of inferior colliculus to electrical stimulation of the auditory nerve in neonatally deafened cats. Journal of Neurophysiology 82: 1363–1380.

    Google Scholar 

  • Shepherd, R. K., G. M. Clark and R. C. Black. 1983a. Chronic electrical stimulation of the auditory nerve in cats. Physiological and histopathological results. Acta Oto-Laryngologica-supplement 399: 19–31.

    Google Scholar 

  • Shepherd, R. K., G. M. Clark, R. C. Black and J. F. Patrick. 1983b. The histopathological effects of chronic electrical stimulation of the cat cochlea. Journal of Laryngology and Otology 97: 333–341.

    Google Scholar 

  • Shepherd, R. K. and N. A. Hardie. 2001. Deafness-induced changes in the auditory path-way: implications for cochlear implants. Audiology and Neuro-Otology 6: 305–318.

    Google Scholar 

  • Shepherd, R. K., S. Hatsushika and G. M. Clark. 1993. Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation. Hearing Research 66: 108–120.

    Article  Google Scholar 

  • Shepherd, R. K. and E. Javel. 1997a. Electrical stimulation of the auditory nerve single fibre responses in normal and pathological cochleae. Proceedings of the Australian Neuroscience Society 8: 82.

    Google Scholar 

  • Shepherd, R. K. and E. Javel. 1997b. Electrical stimulation of the auditory nerve: I. Correlation of physiological responses with cochlear status. Hearing Research 108: 112–144.

    Article  Google Scholar 

  • Shepherd, R. K., J. Xu, R. E. Millard and G. M. Clark. 1994. Chronic electrical stimulation of the auditory nerve at high stimulus rates: preliminary results. Australian Journal of Oto-Laryngology 1: 453.

    Google Scholar 

  • Shower, E. G. and R. Biddulph. 1931. Differential pitch sensitivity of the ear. Journal of the Acoustical Society of America 2: 275–287.

    Google Scholar 

  • Silverstein, H., D. G. Davies and W. L. Griffin. 1969. Cochlear aqueduct obstruction. Changes in perilymph biochemistry. Annals of Otology, Rhinology and Laryngology 78: 532–541.

    Google Scholar 

  • Simmons, F. B. and T. J. Glattke. 1972. Comparison of electrical and acoustical stimulation of the cat ear. Annals of Otology, Rhinology and Laryngology 81: 731–738.

    Google Scholar 

  • Sinex, D. G. and C. D. Geisler. 1981. Auditory-nerve fiber responses to frequency-modulated tones. Hearing Research: 127–148.

    Google Scholar 

  • Smith, C. A., O. H. Lowry and M. L. Wu. 1954. The electrolytes of the labyrinthine fluids. Laryngoscope 64: 141.

    Google Scholar 

  • Smith, D. W., C. C. Finley, C. van den Honert, V. B. Olszyk and K. E. Konrad. 1994. Behavioral and electrophysiological responses to electrical stimulation in the cat. I. Absolute thresholds. Hearing Research 81: 1–10.

    Article  Google Scholar 

  • Smith, K. J. and W. I. McDonald. 1999. The pathophysiology of multiple sclerosis: the mechanisms underlying the production of symptoms and the natural history of the disease. Philosophical Transactions of the Royal Society of London Series B 354: 1649–1673.

    Article  Google Scholar 

  • Smith, P. H. and W. S. Rhode. 1987. Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. Journal of Comparative Neurology 266: 360–375.

    Article  Google Scholar 

  • Snyder, D. L. and M. I. Miller. 1991. Random point processes in time and space. New York, Springer.

    MATH  Google Scholar 

  • Snyder, R. L., S. Rebscher and R. Beitel. 1995. Temporal resolution of neurons in cat inferior colliculus to intracochlear electrical stimulation: effects of neonatal deafening and chronic stimulation. Journal of Neurophysiology 73: 449–467.

    Google Scholar 

  • Snyder, R. L., S. J. Rebscher, K. Cao, P. A. Leake and K. Kelly. 1990. Chronic intracochlear electrical stimulation in the neonatally deafened cat. I. Expansion of central representation. Hearing Research 50: 7–34.

    Article  Google Scholar 

  • Snyder, R. L., S. J. Rebscher, P. Leake, K. Kelly and K. Cao. 1991. Chronic intracochlear electrical stimulation in the neonatally deafened cat. II. Temporal properties of neurons in the inferior colliculus. Hearing Research 56: 246–264.

    Article  Google Scholar 

  • Snyder, R. L., D. G. Sinex, J. D. McGee and E. W. Walsh. 2000a. Acute spiral ganglion lesions change the tuning and tonotopic organization of cat inferior colliculus neurons. Hearing Research 147: 200–220.

    Article  Google Scholar 

  • Snyder, R. L., M. Vollmer, C. M. Moore, S. J. Rebscher, P. A. Leake and R. E. Beitel. 2000b. Responses of inferior colliculus neurons to amplitude-modulated intracochlear electrical pulses in deaf cats. Journal of Neurophysiology 84(1): 166–183.

    Google Scholar 

  • Spelman, F. A., B. E. Pfingst, J. M. Miller, M. Hassul, W. E. Powers and B. M. Clopton. 1980. Biophysical measurements in the implanted cochlea. Otolaryngology and Head and Neck Surgery 88(2): 183–7.

    Google Scholar 

  • Starr, A. and R. Britt. 1970. Intracellular recordings from cat cochlear nucleus during tone stimulation. Journal of Neurophysiology 33(1): 137–147.

    Google Scholar 

  • Stein, R. B. 1965. A theoretical analysis of neuronal variability. Journal of Biophysics 5: 173–194.

    Google Scholar 

  • Steriade, M. 1997. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cerebral Cortex 7: 583–604.

    Article  Google Scholar 

  • Steriade, M. 1999. Coherent oscillations and short-term plasticity in corticothalamic networks. Trends in Neuroscience 22: 337–345.

    Article  Google Scholar 

  • Sterkers, O., G. Saumon and P. Tran Ba Huy. 1984. Electrochemical heterogeneity of the cochlear endolymph: effect of acetazolamide. American Journal of Physiology 246: 47.

    Google Scholar 

  • Stevens, S. S. and H. Davis. 1938. Hearing: its psychology and physiology. New York, John Wiley: 315–316.

    Google Scholar 

  • Strominger, N. L. 1969. Localization of sound in space after unilateral and bilateral ablation of auditory cortex. Experimental Neurology 25: 521–533.

    Article  Google Scholar 

  • Stypulkowski, P. H. and C. van den Honert. 1984. Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hearing Research 14: 205–223.

    Article  Google Scholar 

  • Suga, N. 1963. Single unit activity in cochlear nucleus and inferior colliculus of echolocating bats. Journal of Physiology 172: 449–474.

    Google Scholar 

  • Suga, N. 1965. Analysis of frequency-modulated sounds by auditory neurones of echolocating bats. Journal of Physiology 179: 26–53.

    Google Scholar 

  • Tasaki, I. 1954. Nerve impulses in individual auditory nerve fibres of the guinea pig. Journal of Neurophysiology 17: 97–122.

    Google Scholar 

  • Tong, Y. C., R. C. Black, G. M. Clark, et al. 1979. A preliminary report on a multiple-channel cochlear implant operation. Journal of Laryngology and Otology 93: 679–695.

    Google Scholar 

  • Tong, Y C, P. J. Blamey, R. C. Dowell and G. M. Clark. 1983. Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant. Journal of the Acoustical Society of America 74: 73–80.

    Article  ADS  Google Scholar 

  • Tong, Y C. and G. M. Clark. 1985. Absolute identification of electric pulse rates and electrode positions by cochlear implant patients. Journal of the Acoustical Society of America 77: 1881–1888.

    Article  ADS  Google Scholar 

  • Tong, Y C, G. M. Clark, P. J. Blamey, P. A. Busby and R. C. Dowell. 1982. Psychophysical studies for two multiple-channel cochlear implant patients. Journal of the Acoustical Society of America 71: 153–160.

    Article  ADS  Google Scholar 

  • Tong, Y C, G. M. Clark and H. H. Lim. 1987. Estimation of the effective spread of neural excitation produced by a bipolar pair of scala tympani electrodes. Annals of Otology, Rhinology and Laryngology 96(suppl 128): 37–38.

    Google Scholar 

  • Tong, Y C, J. B. Millar, G. M. Clark, L. F. Martin, P. A. Busby and J. F. Patrick. 1980. Psychophysical and speech perception studies on two multiple-channel cochlear implant patients. Journal of Laryngology and Otology 94: 1241–1256.

    Google Scholar 

  • Truy, E., M. P. Deiber, L. Cinotti, F. Mauguiere, J. C. Froment and A. Morgon. 1995. Auditory cortex activity changes in long-term sensorineural deprivation during crude cochlear electrical stimulation: evaluation by positron emission tomography. Hearing Research 86(1–2): 34–42.

    Google Scholar 

  • Tsuchitani, C. and J. C. Boudreau. 1967. Encoding of stimulus frequency and intensity by cat superior olive. Journal of the Acoustical Society of America 42(4): 794–805.

    Article  ADS  Google Scholar 

  • Tsuchitani, C. and J. C. Boudreau. 1969. Stimulus level of dichotically presented tones and cat superior olive S-segment cell discharge. Journal of the Acoustical Society of America 46: 979–88.

    Article  ADS  Google Scholar 

  • Tuckwell, H. C. 1988a. Introduction to theoretical neurobiology. Vol. 1. Linear cable theory and dendritic structure. Cambridge, Cambridge University Press.

    MATH  Google Scholar 

  • Tuckwell, H. C. 1988b. Introduction to theoretical neurobiology. Vol. 2. Nonlinear and stochastic theories. Cambridge, Cambridge University Press.

    Google Scholar 

  • van den Honert, C. and P. Stypulkowski. 1984. Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hearing Research 14: 225–243.

    Google Scholar 

  • van den Honert, C. and P. H. Stypulkowski. 1987. Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hearing Research 29: 195–206.

    Google Scholar 

  • Verveen, A. A. 1960. On the fluctuation of threshold of the nerve fibre. In: Tower, D. B., ed. Structure and function of the cerebral cortex. The Netherlands, Elsevier: 282–288.

    Google Scholar 

  • von Békésy, G. 1951. The coarse pattern of the electrical resistance in the cochlea of the guinea pig (electroanatomy of the cochlea). Journal of the Acoustical Society of America 23: 18–28.

    ADS  Google Scholar 

  • von Békésy, G. 1960. Experiments in hearing. New York, McGraw Hill.

    Google Scholar 

  • Wang, X., M. M. Merzenich, R. Beitel and C. E. Schreiner. 1995. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. Journal of Neurophysiology 74: 2685–2706.

    Google Scholar 

  • Webster, W. R., J. I. Serviere, et al. 1985. Uncrossed and crossed inhibition in the inferior colliculus. Journal of Neuroscience 5: 1820–1832.

    Google Scholar 

  • Weinberger, N. M., W. Hopkins and D. M. Diamond. 1984. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response. I. Primary field (AI). Behavioral Neuroscience 98: 171–188.

    Article  Google Scholar 

  • Wever, E. G. and C. W. Bray. 1930. Auditory nerve impulses. Science 71: 215.

    ADS  Google Scholar 

  • Whitfield, I. C. 1979. Periodicity, pulse interval and pitch. Audiology 18: 507–512.

    Google Scholar 

  • Whitfield, I. C. and E. F. Evans. 1965. Responses of auditory cortical neurons to stimuli of changing frequency. Journal of Neurophysiology 28: 655–672.

    Google Scholar 

  • Wickesberg, R. E., D. Whitlon and D. Oertel. 1994. In vitro modulation of somatic glycine-like immunoreactivity in presumed glycinergic neurons. Journal of Comparative Neurology 339: 311–327.

    Article  Google Scholar 

  • Williams, A. J., G. M. Clark and G. V Stanley. 1974. Behavioural responses in the cat to simple patterns of electrical stimulation of the terminal auditory nerve fibres. Proceedings of the Australian Physiological and Pharmacological Society 5(2): 252.

    Google Scholar 

  • Williams, A. J., G. M. Clark and G. V Stanley. 1976. Pitch discrimination in the cat through electrical stimulation of the terminal auditory nerve fibers. Physiological Psychology 4: 23–27.

    Google Scholar 

  • Wilson, B. S. 1997. The future of cochlear implants. British Journal of Audiology 31: 205–225.

    Google Scholar 

  • Wilson, B. S., C. C. Finley and D. T. Lawson. 1988. Speech processors for cochlear prostheses. Proceedings IEEE 76: 1143–1153.

    Google Scholar 

  • Wilson, B. S., C. C. Finley, D. T. Lawson and M. Zerbi. 1997a. Speech processors for auditory prostheses. Eleventh quarterly progress report. NIH contract NO1-DC-2-2401. Neural Prosthesis Program, NIH, Bethesda, MD.

    Google Scholar 

  • Wilson, B. S., C. C. Finley, D. T. Lawson and M. Zerbi. 1997b. Temporal representations with cochlear implants. American Journal of Otology 18: S30–S34.

    Google Scholar 

  • Wilson, B. S., C. C. Finley, D. T. Lawson, M. Zerbi and C. van den Honert. 1997c. Speech processors for auditory prostheses. Seventh quarterly progress report. NIH contract NO1-DC-5-2103. Neural Prosthesis Program, NIH, Bethesda, MD.

    Google Scholar 

  • Wilson, B. S., C. C. Finley, M. Zerbi and D. T. Lawson. 1994. Speech processors for auditory prostheses. Seventh quarterly progress report. NIH contract NO1-DC-2-2401. Neural Prosthesis Program, NIH, Bethesda, MD.

    Google Scholar 

  • Wise, L. Z. and D. R. Irvine. 1985. Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: implications for auditory spatial representation. Journal of Neurophysiology 54: 185–211.

    Google Scholar 

  • Wu, S. H. and D. Oertel. 1986. Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. Journal of Neuroscience 6: 2691–2706.

    Google Scholar 

  • Yaka, R., U. Yiono and Z. Wollberg. 1999. Auditory activation of cortical visual areas in cats after early visual deprivation. European Journal of Neuroscience 11: 1301–1312.

    Article  Google Scholar 

  • Yin, T. C., J. C. Chan and D. R. Irvine. 1986. Effects of interaural time delays of noise stimuli on low-frequency cells in the cat’s inferior colliculus. I. Responses to wideband noise. Journal of Neurophysiology 55: 280–300.

    Google Scholar 

  • Yin, T. C. and S. Kuwada. 1983. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. III. Effects of changing frequency. Journal of Neurophysiology 50: 1020–1042.

    Google Scholar 

  • Young, E. D. and M. B. Sachs. 1979. Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. Journal of the Acoustical Society of America 66: 1381–1403.

    ADS  Google Scholar 

  • Young, S. R. and E. W. Rubel. 1986. Embryogenesis of arborization pattern and topography of individual axons in N. laminaris of the chicken brain stem. Journal of Comparative Neurology 254: 425–459.

    Article  Google Scholar 

  • Yukawa, K., S. O’Leary, M. Clarke and G. M. Clark. 2001. Histopathology of thebrainstem of a binaural cochlear implant subject. Program and abstracts of the Third International Congress of Asia Pacific Symposium on Cochlear Implant and Related Sciences. Osaka, Japan: 48.

    Google Scholar 

  • Zeng, F. G., Q.-J. Fu and R. Morse. 2000. Human hearing enhanced by noise. Brain Research 869: 251–255.

    Article  Google Scholar 

  • Zhou, R., P. J. Abbas and J. G. Assouline. 1995. Electrically evoked auditory brainstem response in peripherally myelin-deficient mice. Hearing Research 88: 98–106.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2003). Electrophysiology. In: Clark, G. (eds) Cochlear Implants. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/0-387-21550-6_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-21550-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95583-4

  • Online ISBN: 978-0-387-21550-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics