Skip to main content
Top

2013 | OriginalPaper | Hoofdstuk

13. Cardiovascular Magnetic Resonance and Multidetector Computed Tomography

Auteurs : Gabriel Vorobiof, MD, FACC, Norman Elliot Lepor, MD, Mark Doyle, PhD, Hee-Won Kim, PhD, Gerald M. Pohost, MD, FAHA, FACC

Gepubliceerd in: Essential Cardiology

Uitgeverij: Springer New York

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The advanced imaging technologies, cardiovascular computed tomography (using X-ray), and cardiovascular magnetic resonance (using magnetic and radio frequency or RF fields) generally provide more comprehensive and frequently unique clinical information compared with other technologies. They are not used routinely, but rather for specific indications. Since they are more technically advanced, they are more expensive and require additional knowledge for proper acquisition and interpretation. The strength of CCT resides in its ability to provide excellent imaging quality of the large- and medium-sized coronary arteries using IV-administered contrast medium. While CCT utilizes X-rays, the radiation dose is drastically decreasing with improving technology. The strengths of CMR are the ability to visualize morphology, function, perfusion, viability, and metabolism without ionizing radiation, although sometimes requiring IV gadolinium contrast agent. These two technologies have received relatively recent Nobel prizes (one for CT and three for MRI), and both continue to improve with the advent of new software and hardware. This chapter provides a background for most of the commonly employed applications of computed tomography and magnetic resonance imaging of the heart.
Literatuur
1.
go back to reference Pohost GM, O’Rourke RA, editors. Basic principles of magnetic resonance. Principles and practice of cardiovascular imaging. Boston: Little, Brown; 1990. Pohost GM, O’Rourke RA, editors. Basic principles of magnetic resonance. Principles and practice of cardiovascular imaging. Boston: Little, Brown; 1990.
2.
go back to reference Cranney GB, Lotan CS, Dean L, et al. Left ventricular volume measurements using cardiac axis nuclear magnetic imaging: validation by calibrated ventricular angiography. Circulation. 1990;52:154–63.CrossRef Cranney GB, Lotan CS, Dean L, et al. Left ventricular volume measurements using cardiac axis nuclear magnetic imaging: validation by calibrated ventricular angiography. Circulation. 1990;52:154–63.CrossRef
3.
go back to reference Dell’Italia LI, Blackwell GC, Pearce WI, Pohost GM. Assessment of ventricular volumes using cine magnetic resonance in the intact dog. A comparison of measurement methods. Invest Radiol. 1994;2:162–6.CrossRef Dell’Italia LI, Blackwell GC, Pearce WI, Pohost GM. Assessment of ventricular volumes using cine magnetic resonance in the intact dog. A comparison of measurement methods. Invest Radiol. 1994;2:162–6.CrossRef
4.
go back to reference Benjelloun H, Cranney GB, Kirk KA, et al. Interstudy reproducibility of biplane cine nuclear magnetic resonance measurements of left ventricular function. Am J Cardiol. 1991;67:1413–9.PubMedCrossRef Benjelloun H, Cranney GB, Kirk KA, et al. Interstudy reproducibility of biplane cine nuclear magnetic resonance measurements of left ventricular function. Am J Cardiol. 1991;67:1413–9.PubMedCrossRef
5.
go back to reference Nagel E, Schneider U, Schalla S, et al. Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson. 2000;2:7–14.PubMedCrossRef Nagel E, Schneider U, Schalla S, et al. Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson. 2000;2:7–14.PubMedCrossRef
6.
go back to reference Bottini PB, Can AA, Prisant LM, et al. Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens. 1995;8:221–8.PubMedCrossRef Bottini PB, Can AA, Prisant LM, et al. Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens. 1995;8:221–8.PubMedCrossRef
7.
go back to reference Young AA, Kramer CM, Ferrari VA, et al. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation. 1994;90:854–67.PubMedCrossRef Young AA, Kramer CM, Ferrari VA, et al. Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation. 1994;90:854–67.PubMedCrossRef
8.
go back to reference Marcus JT, Gotte LW, DeWaal LK, et al. The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiovasc Magn Reson. 1999;1:1–6.PubMedCrossRef Marcus JT, Gotte LW, DeWaal LK, et al. The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiovasc Magn Reson. 1999;1:1–6.PubMedCrossRef
9.
go back to reference Schroeder S, Kopp AF, Kuettner A, et al. Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patients. Clin Imaging. 2002;26:106–11.PubMedCrossRef Schroeder S, Kopp AF, Kuettner A, et al. Influence of heart rate on vessel visibility in noninvasive coronary angiography using new multislice computed tomography: experience in 94 patients. Clin Imaging. 2002;26:106–11.PubMedCrossRef
10.
go back to reference Fayad ZA, Fuster V, Nikolaou K, Becker C. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation. 2002;106:2026–34.PubMedCrossRef Fayad ZA, Fuster V, Nikolaou K, Becker C. Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging: current and potential future concepts. Circulation. 2002;106:2026–34.PubMedCrossRef
11.
go back to reference Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation. 2003;107:917–22.PubMedCrossRef Morin RL, Gerber TC, McCollough CH. Radiation dose in ­computed tomography of the heart. Circulation. 2003;107:917–22.PubMedCrossRef
12.
go back to reference Becker CR, Knez A, Ohnesorge B, et al. Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. AJR Am J Roentgenol. 2000;175:423–4.PubMedCrossRef Becker CR, Knez A, Ohnesorge B, et al. Imaging of noncalcified coronary plaques using helical CT with retrospective ECG gating. AJR Am J Roentgenol. 2000;175:423–4.PubMedCrossRef
13.
go back to reference Fujita N, Duerinckx AJ, Higgins CB. Variation in left ventricular wall stress with cine magnetic resonance imaging: normal subjects versus dilated cardiomyopathy. Am Heart J. 1993;125(5 Pt 1):1337–44.PubMedCrossRef Fujita N, Duerinckx AJ, Higgins CB. Variation in left ventricular wall stress with cine magnetic resonance imaging: normal subjects versus dilated cardiomyopathy. Am Heart J. 1993;125(5 Pt 1):1337–44.PubMedCrossRef
14.
go back to reference Wu E, Judd RM, Vargas JD, et al. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet. 2001;357:21–8.PubMedCrossRef Wu E, Judd RM, Vargas JD, et al. Visualisation of presence, location, and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet. 2001;357:21–8.PubMedCrossRef
15.
go back to reference Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.PubMedCrossRef Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced ­magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.PubMedCrossRef
16.
go back to reference Wang Y, Qin L, Shi X, Zeng Y, Jing H, Schoepf UJ, et al. Adenosine-stress dynamic myocardial perfusion imaging with second-generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. AJR Am J Roentgenol. 2012;198(3):521–9.PubMedCrossRef Wang Y, Qin L, Shi X, Zeng Y, Jing H, Schoepf UJ, et al. Adenosine-stress dynamic myocardial perfusion imaging with second-­generation dual-source CT: comparison with conventional catheter coronary angiography and SPECT nuclear myocardial perfusion imaging. AJR Am J Roentgenol. 2012;198(3):521–9.PubMedCrossRef
17.
go back to reference van Rugge FP, van der Wall EE, Spanjersberg SJ, et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation. 1994;90:127–38.PubMedCrossRef van Rugge FP, van der Wall EE, Spanjersberg SJ, et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation. 1994;90:127–38.PubMedCrossRef
18.
go back to reference Chiu CW, So NMC, Lam WWM, et al. Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment- elevation acute coronary syndromes: feasibility study. Radiology. 2003;226:717–22.PubMedCrossRef Chiu CW, So NMC, Lam WWM, et al. Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment- elevation acute coronary syndromes: feasibility study. Radiology. 2003;226:717–22.PubMedCrossRef
19.
go back to reference Baer FM, Voth E, Theissen P, et al. Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J. 1994;15:218–25.PubMed Baer FM, Voth E, Theissen P, et al. Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J. 1994;15:218–25.PubMed
20.
go back to reference Wilke N, Jerosch-Herold M, Stillman AE, et al. Concepts of myocardial perfusion imaging in magnetic resonance imaging. Magn Reson Q. 1994;10:249–86.PubMed Wilke N, Jerosch-Herold M, Stillman AE, et al. Concepts of myocardial perfusion imaging in magnetic resonance imaging. Magn Reson Q. 1994;10:249–86.PubMed
21.
go back to reference Schmermund A, Beli MR, Lerman LO, et al. Quantitative evaluation of regional myocardial perfusion using fast x-ray computed tomography. Herz. 1997;22:29–39.PubMedCrossRef Schmermund A, Beli MR, Lerman LO, et al. Quantitative evaluation of regional myocardial perfusion using fast x-ray computed tomography. Herz. 1997;22:29–39.PubMedCrossRef
22.
go back to reference Bastarrika G, Ramos-Duran L, Rosenblum MA, Kang DK, Rowe GW, Schoepf UJ. Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest Radiol. 2010;45(6):306–13.PubMed Bastarrika G, Ramos-Duran L, Rosenblum MA, Kang DK, Rowe GW, Schoepf UJ. Adenosine-stress dynamic myocardial CT perfusion imaging: initial clinical experience. Invest Radiol. 2010;45(6):306–13.PubMed
23.
go back to reference Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol. 2009;54(12):1072–84.PubMedCrossRef Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol. 2009;54(12):1072–84.PubMedCrossRef
24.
go back to reference Vorobiof G, Achenbach S, Narula J. Minimizing radiation dose for coronary CT angiography. Cardiol Clin. 2012;30(1):9–17.PubMedCrossRef Vorobiof G, Achenbach S, Narula J. Minimizing radiation dose for coronary CT angiography. Cardiol Clin. 2012;30(1):9–17.PubMedCrossRef
25.
go back to reference Kopp AF, Schroeder S, Kuettner A, et al. Non-invasive coronary angiography with high resolution multi-detector-row computed tomography. Eur Heart J. 2002;23:1714–25.PubMed Kopp AF, Schroeder S, Kuettner A, et al. Non-invasive coronary angiography with high resolution multi-detector-row computed tomography. Eur Heart J. 2002;23:1714–25.PubMed
26.
go back to reference Schmermund A, Bailey KR, Rumberger JA, et al. An algorithm for noninvasive identification of angiographic three-vessel and/or left main coronary artery disease in symptomatic patients on the basis of cardiac risk and electron-beam computed tomographic calcium scores. J Am Coll Cardiol. 1999;33:444–52.PubMedCrossRef Schmermund A, Bailey KR, Rumberger JA, et al. An algorithm for noninvasive identification of angiographic three-vessel and/or left main coronary artery disease in symptomatic patients on the basis of cardiac risk and electron-beam computed tomographic calcium scores. J Am Coll Cardiol. 1999;33:444–52.PubMedCrossRef
27.
go back to reference Callister TQ, Raggi P, Cooil B, et al. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med. 1998;339:1972–8.PubMedCrossRef Callister TQ, Raggi P, Cooil B, et al. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med. 1998;339:1972–8.PubMedCrossRef
28.
go back to reference Woo P, Mao S, Wang S, Detrano RC. Left ventricular size determined by electron beam computed tomography predicts significant coronary artery disease and events. Am J Cardiol. 1997;79:1236–8.PubMedCrossRef Woo P, Mao S, Wang S, Detrano RC. Left ventricular size determined by electron beam computed tomography predicts significant coronary artery disease and events. Am J Cardiol. 1997;79:1236–8.PubMedCrossRef
29.
go back to reference Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc. 1999;74:243–52.PubMedCrossRef Rumberger JA, Brundage BH, Rader DJ, Kondos G. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc. 1999;74:243–52.PubMedCrossRef
30.
go back to reference O’Rourke RA, Brungate BH, Froelicher VF, et al. American College of Cardiology/American Heart Association expert consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol. 2000;36:326–40.PubMedCrossRef O’Rourke RA, Brungate BH, Froelicher VF, et al. American College of Cardiology/American Heart Association expert consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol. 2000;36:326–40.PubMedCrossRef
31.
go back to reference Detrano RC, Wong ND, Doherty TM, et al. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults. Circulation. 1999;99:2633–8.PubMedCrossRef Detrano RC, Wong ND, Doherty TM, et al. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults. Circulation. 1999;99:2633–8.PubMedCrossRef
32.
go back to reference Budoff MI, Shavelle DM, Lamont DH, et al. Usefulness of electron beam computed tomography scanning for distinguishing ischemic from nonischemic cardiomyopathy. J Am Coll Cardiol. 1998;32:1173–8.PubMedCrossRef Budoff MI, Shavelle DM, Lamont DH, et al. Usefulness of electron beam computed tomography scanning for distinguishing ischemic from nonischemic cardiomyopathy. J Am Coll Cardiol. 1998;32:1173–8.PubMedCrossRef
33.
go back to reference Yamaguchi H, Nishiyama S, Nakanishi S, Nishimura S. Electrocardiographic, echocardiographic and ventriculographic characterization of hypertrophic non-obstructive cardiomyopathy. Eur Heart J. 1983;4(Suppl F):105–19.PubMedCrossRef Yamaguchi H, Nishiyama S, Nakanishi S, Nishimura S. Electrocardiographic, echocardiographic and ventriculographic characterization of hypertrophic non-obstructive cardiomyopathy. Eur Heart J. 1983;4(Suppl F):105–19.PubMedCrossRef
34.
go back to reference Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–8.PubMedCrossRef Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–8.PubMedCrossRef
35.
go back to reference Fujita N, Chazoulliers AE, Hartialia JJ. Quantification of mitral regurgitation by velocity encoding cine nuclear magnetic resonance imaging. J Am Coll Cardiol. 1994;23:951–2.PubMedCrossRef Fujita N, Chazoulliers AE, Hartialia JJ. Quantification of mitral regurgitation by velocity encoding cine nuclear magnetic resonance imaging. J Am Coll Cardiol. 1994;23:951–2.PubMedCrossRef
36.
go back to reference Friedrich MG, Strohm O, Schuiz-Menger I, et al. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation. 1998;97:1802–9.PubMedCrossRef Friedrich MG, Strohm O, Schuiz-Menger I, et al. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation. 1998;97:1802–9.PubMedCrossRef
37.
go back to reference Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40:1267–74.PubMedCrossRef Beer M, Seyfarth T, Sandstede J, et al. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with 31P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40:1267–74.PubMedCrossRef
go back to reference Detrano RC, Wong ND, Doherty TM, et al. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults. Circulation. 1999;99(20):2633–8.PubMedCrossRef Detrano RC, Wong ND, Doherty TM, et al. Coronary calcium does not accurately predict near-term future coronary events in high-risk adults. Circulation. 1999;99(20):2633–8.PubMedCrossRef
go back to reference Forder JR, Pohost GM. Cardiovascular nuclear magnetic resonance: basic and clinical applications. J Clin Invest. 2003;111:1630–9.PubMed Forder JR, Pohost GM. Cardiovascular nuclear magnetic resonance: basic and clinical applications. J Clin Invest. 2003;111:1630–9.PubMed
go back to reference Kim HW, Lee D, Pohost GM. 31P cardiovascular magnetic resonance spectroscopy: a unique approach to the assessment of the myocardium. Future Cardiol. 2009;5:523–7.PubMedCrossRef Kim HW, Lee D, Pohost GM. 31P cardiovascular magnetic resonance spectroscopy: a unique approach to the assessment of the myocardium. Future Cardiol. 2009;5:523–7.PubMedCrossRef
go back to reference Manning WJ, Pennell DJ. Cardiovascular magnetic resonance. New York: Churchill Livingstone; 2002. Manning WJ, Pennell DJ. Cardiovascular magnetic resonance. New York: Churchill Livingstone; 2002.
go back to reference Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med. 1993;328:828–32.PubMedCrossRef Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med. 1993;328:828–32.PubMedCrossRef
go back to reference Martin ET, Fuisz AR, Pohost GM. Imaging cardiac structure and pump function. Cardiol Clin. 1998;16:135–60.PubMedCrossRef Martin ET, Fuisz AR, Pohost GM. Imaging cardiac structure and pump function. Cardiol Clin. 1998;16:135–60.PubMedCrossRef
go back to reference Ohnesorge BM, Becker CR, Flohr TG, Reiser MF. Multislice CT cardiac imaging. Berlin: Springer; 2002.CrossRef Ohnesorge BM, Becker CR, Flohr TG, Reiser MF. Multislice CT ­cardiac imaging. Berlin: Springer; 2002.CrossRef
go back to reference O’Rourke RA, Brundage BH, Froelicher VF, et al. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol. 2000;36:326–40.PubMedCrossRef O’Rourke RA, Brundage BH, Froelicher VF, et al. American College of Cardiology/American Heart Association Expert Consensus document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol. 2000;36:326–40.PubMedCrossRef
go back to reference Pohost GM, Hung L, Doyle M. Clinical use of cardiovascular magnetic resonance; special review, clinician update. Circulation. 2003;108:647–53.PubMedCrossRef Pohost GM, Hung L, Doyle M. Clinical use of cardiovascular magnetic resonance; special review, clinician update. Circulation. 2003;108:647–53.PubMedCrossRef
Metagegevens
Titel
Cardiovascular Magnetic Resonance and Multidetector Computed Tomography
Auteurs
Gabriel Vorobiof, MD, FACC
Norman Elliot Lepor, MD
Mark Doyle, PhD
Hee-Won Kim, PhD
Gerald M. Pohost, MD, FAHA, FACC
Copyright
2013
Uitgeverij
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6705-2_13