Skip to main content
Top
Gepubliceerd in: Netherlands Heart Journal 4/2013

01-04-2013 | Review Article

Cardiopulmonary interactions during mechanical ventilation in critically ill patients

Auteurs: T. G. V. Cherpanath, W. K. Lagrand, M. J. Schultz, A. B. J. Groeneveld

Gepubliceerd in: Netherlands Heart Journal | Uitgave 4/2013

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Cardiopulmonary interactions induced by mechanical ventilation are complex and only partly understood. Applied tidal volumes and/or airway pressures largely mediate changes in right ventricular preload and afterload. Effects on left ventricular function are mostly secondary to changes in right ventricular loading conditions. It is imperative to dissect the several causes of haemodynamic compromise during mechanical ventilation as undiagnosed ventricular dysfunction may contribute to morbidity and mortality.
Literatuur
1.
go back to reference International consensus conferences in intensive care medicine. Ventilator-associated lung injury in ARDS. This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societé de Réanimation de Langue Française, and was approved by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 1999;160:2118–24.CrossRef International consensus conferences in intensive care medicine. Ventilator-associated lung injury in ARDS. This official conference report was cosponsored by the American Thoracic Society, The European Society of Intensive Care Medicine, and The Societé de Réanimation de Langue Française, and was approved by the ATS Board of Directors, July 1999. Am J Respir Crit Care Med. 1999;160:2118–24.CrossRef
2.
go back to reference Bouferrache K, Vieillard-Baron A. Acute respiratory distress syndrome, mechanical ventilation, and right ventricular function. Curr Opin Crit Care. 2011;17:30–5.CrossRef Bouferrache K, Vieillard-Baron A. Acute respiratory distress syndrome, mechanical ventilation, and right ventricular function. Curr Opin Crit Care. 2011;17:30–5.CrossRef
3.
go back to reference Abu-Hilal MA, Mookadam F. Pulsus paradoxus: historical and clinical perspectives. Int J Cardiol. 2010;138:229–32.CrossRef Abu-Hilal MA, Mookadam F. Pulsus paradoxus: historical and clinical perspectives. Int J Cardiol. 2010;138:229–32.CrossRef
4.
go back to reference Wilson DJ. Braces, wheelchairs, and iron lungs: the paralyzed body and the machinery of rehabilitation in the polio epidemics. J Med Humanit. 2005;26:173–90.CrossRef Wilson DJ. Braces, wheelchairs, and iron lungs: the paralyzed body and the machinery of rehabilitation in the polio epidemics. J Med Humanit. 2005;26:173–90.CrossRef
5.
go back to reference Poe G. An artificial respirator. Scientific American; 1907. p. 515. Poe G. An artificial respirator. Scientific American; 1907. p. 515.
6.
go back to reference Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis. 1974;110:556–65.PubMed
7.
go back to reference The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef
8.
go back to reference Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.CrossRef Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA. 2012;308:1651–9.CrossRef
9.
go back to reference Determann R, Royakkers A, Wolthuis EK, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1.CrossRef Determann R, Royakkers A, Wolthuis EK, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1.CrossRef
10.
go back to reference Gajic O, Frutos-Vivar F, Esteban A, et al. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31:922–6.CrossRef Gajic O, Frutos-Vivar F, Esteban A, et al. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31:922–6.CrossRef
11.
go back to reference Gajic O, Dara DI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24.CrossRef Gajic O, Dara DI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–24.CrossRef
12.
go back to reference Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116:9S–15S.CrossRef Slutsky AS. Lung injury caused by mechanical ventilation. Chest. 1999;116:9S–15S.CrossRef
13.
go back to reference Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18:319–21.CrossRef Lachmann B. Open up the lung and keep the lung open. Intensive Care Med. 1992;18:319–21.CrossRef
14.
go back to reference Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA. 2008;299:637–45.CrossRef Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome. JAMA. 2008;299:637–45.CrossRef
15.
go back to reference Cournand A, Motley HL, Werko L, et al. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol. 1948;152:162–74.CrossRef Cournand A, Motley HL, Werko L, et al. Physiological studies of the effects of intermittent positive pressure breathing on cardiac output in man. Am J Physiol. 1948;152:162–74.CrossRef
16.
go back to reference Jardin F, Delorme G, Hardy A, et al. Reevaluation of haemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72:966–70.CrossRef Jardin F, Delorme G, Hardy A, et al. Reevaluation of haemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72:966–70.CrossRef
17.
go back to reference Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.CrossRef Vieillard-Baron A, Loubieres Y, Schmitt JM, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.CrossRef
18.
go back to reference Pinsky MR. Hemodynamic effects of artificial ventilation. In: Shoemaker WC, Ayres SM, Grenvik A, et al, editors. Textbook of critical care. Philadelphia: Saunders; 1995. p. 911–22. Pinsky MR. Hemodynamic effects of artificial ventilation. In: Shoemaker WC, Ayres SM, Grenvik A, et al, editors. Textbook of critical care. Philadelphia: Saunders; 1995. p. 911–22.
19.
go back to reference Jardin F, Vieillard-Baron A. Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med. 2007;33:444–7.CrossRef Jardin F, Vieillard-Baron A. Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med. 2007;33:444–7.CrossRef
20.
go back to reference Guyton AC, Jones CE, Coleman TG. Mean circulatory pressure, mean systemic pressure, and mean pulmonary pressure and their effects on venous return. In: Guyton AC, Jones CE, Coleman TG, editors. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders; 1973. p. 205–21. Guyton AC, Jones CE, Coleman TG. Mean circulatory pressure, mean systemic pressure, and mean pulmonary pressure and their effects on venous return. In: Guyton AC, Jones CE, Coleman TG, editors. Circulatory physiology: cardiac output and its regulation. Philadelphia: Saunders; 1973. p. 205–21.
21.
go back to reference Jardin F. Acute leftward septal shift by lung recruitment maneuver. Intensive Care Med. 2005;31:1148–9.CrossRef Jardin F. Acute leftward septal shift by lung recruitment maneuver. Intensive Care Med. 2005;31:1148–9.CrossRef
22.
go back to reference Dessap AM, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35:1850–8.CrossRef Dessap AM, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med. 2009;35:1850–8.CrossRef
23.
go back to reference Romand JA, Shi W, Pinsky MR. Cardiopulmonary effects of positive pressure ventilation during acute lung injury. Chest. 1995;108:1041–8.CrossRef Romand JA, Shi W, Pinsky MR. Cardiopulmonary effects of positive pressure ventilation during acute lung injury. Chest. 1995;108:1041–8.CrossRef
24.
go back to reference Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. 2005;9:607–21.CrossRef Luecke T, Pelosi P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. 2005;9:607–21.CrossRef
25.
go back to reference Whittenberger JL, McGregor M, Berglund E, et al. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol. 1960;15:878–82.CrossRef Whittenberger JL, McGregor M, Berglund E, et al. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol. 1960;15:878–82.CrossRef
26.
go back to reference Shekerdemian L, Bohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80:475–80.CrossRef Shekerdemian L, Bohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80:475–80.CrossRef
27.
go back to reference Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.CrossRef Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction. J Appl Physiol. 2005;98:390–403.CrossRef
28.
go back to reference Jardin F, Gueret P, Dubourg O, et al. Two-dimensional echocardiographic evaluation of right ventricular size and contractility in cute respiratory failure. Crit Care Med. 1985;13:952–6.CrossRef Jardin F, Gueret P, Dubourg O, et al. Two-dimensional echocardiographic evaluation of right ventricular size and contractility in cute respiratory failure. Crit Care Med. 1985;13:952–6.CrossRef
29.
go back to reference Miranda DR, Klompe L, Mekel J, et al. Open lung ventilation does not increase right ventricular outflow impedance: an echo-doppler study. Crit Care Med. 2006;34:2555–60.CrossRef Miranda DR, Klompe L, Mekel J, et al. Open lung ventilation does not increase right ventricular outflow impedance: an echo-doppler study. Crit Care Med. 2006;34:2555–60.CrossRef
30.
go back to reference Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med. 2001;29:1154–8.CrossRef Schmitt JM, Vieillard-Baron A, Augarde R, et al. Positive end-expiratory pressure titration in acute respiratory distress syndrome patients: impact on right ventricular outflow impedance evaluated by pulmonary artery Doppler flow velocity measurements. Crit Care Med. 2001;29:1154–8.CrossRef
31.
go back to reference Smeding L, Lust E, Plötz FB, et al. Clinical implications of heart-lung interactions during mechanical ventilation: an update. Neth J Med. 2010;68:56–61.PubMed Smeding L, Lust E, Plötz FB, et al. Clinical implications of heart-lung interactions during mechanical ventilation: an update. Neth J Med. 2010;68:56–61.PubMed
32.
go back to reference Jardin F, Farcot JC, Boisante L, et al. Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med. 1981;304:387–92.CrossRef Jardin F, Farcot JC, Boisante L, et al. Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med. 1981;304:387–92.CrossRef
33.
go back to reference Pinsky M, Vincent JL, de Smet JM. Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis. 1991;143:25–31.CrossRef Pinsky M, Vincent JL, de Smet JM. Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis. 1991;143:25–31.CrossRef
34.
go back to reference Calvin JE, Driedger AA, Sibbald JE. Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis. 1981;124:121–8.PubMed Calvin JE, Driedger AA, Sibbald JE. Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis. 1981;124:121–8.PubMed
35.
go back to reference Grace MP, Greenbaum DM. Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med. 1982;10:358–60.CrossRef Grace MP, Greenbaum DM. Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med. 1982;10:358–60.CrossRef
36.
go back to reference Winter MM, Romeih S, Bouma BJ, et al. Is cardiac CT a reproducible alternative for cardiac MR in adult patients with a systemic right ventricle? Neth Heart J. 2012;20:456–62.CrossRef Winter MM, Romeih S, Bouma BJ, et al. Is cardiac CT a reproducible alternative for cardiac MR in adult patients with a systemic right ventricle? Neth Heart J. 2012;20:456–62.CrossRef
37.
go back to reference Vieillard-Baron A, Schmitt JM, Augarde R, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29:1551–5.CrossRef Vieillard-Baron A, Schmitt JM, Augarde R, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29:1551–5.CrossRef
38.
go back to reference Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002;20:1017–28.CrossRef Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002;20:1017–28.CrossRef
39.
go back to reference Vieillard-Baron A, Charron C, Caille V, et al. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132:1440–6.CrossRef Vieillard-Baron A, Charron C, Caille V, et al. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132:1440–6.CrossRef
40.
go back to reference Cornet AD, Hofstra JJ, Swart E, et al. Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS. Intensive Care Med. 2010;36:758–64.CrossRef Cornet AD, Hofstra JJ, Swart E, et al. Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS. Intensive Care Med. 2010;36:758–64.CrossRef
41.
go back to reference Boerlage-van Dijk K, Meregalli PG, Planken RN, et al. Percutaneous left ventricular partitioning device for chronic heart failure. Neth Heart J. 2012;20:513–5.CrossRef Boerlage-van Dijk K, Meregalli PG, Planken RN, et al. Percutaneous left ventricular partitioning device for chronic heart failure. Neth Heart J. 2012;20:513–5.CrossRef
42.
go back to reference Berkenstadt H, Margalit M, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.CrossRef Berkenstadt H, Margalit M, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–9.CrossRef
43.
go back to reference Marx G, Cope T, McCrossan L, et al. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol. 2004;21:132–8.CrossRef Marx G, Cope T, McCrossan L, et al. Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol. 2004;21:132–8.CrossRef
44.
go back to reference Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103:419–28.CrossRef Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103:419–28.CrossRef
45.
go back to reference Reuter DA, Felbinger TW, Schmidt C, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28:392–8.CrossRef Reuter DA, Felbinger TW, Schmidt C, et al. Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med. 2002;28:392–8.CrossRef
46.
go back to reference Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variations to assess fluid responsiveness in patients with reduced left ventricular function. Crit Care Med. 2003;31:1399–404.CrossRef Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variations to assess fluid responsiveness in patients with reduced left ventricular function. Crit Care Med. 2003;31:1399–404.CrossRef
47.
go back to reference Rudiger A, Singer M. Mechanism of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.CrossRef Rudiger A, Singer M. Mechanism of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.CrossRef
48.
go back to reference Kortekaas KA, Lindeman JH, Versteegh MI, et al. Preexisting heart failure is an underestimated risk factor in cardiac surgery. Neth Heart J. 2012;20:202–7.CrossRef Kortekaas KA, Lindeman JH, Versteegh MI, et al. Preexisting heart failure is an underestimated risk factor in cardiac surgery. Neth Heart J. 2012;20:202–7.CrossRef
Metagegevens
Titel
Cardiopulmonary interactions during mechanical ventilation in critically ill patients
Auteurs
T. G. V. Cherpanath
W. K. Lagrand
M. J. Schultz
A. B. J. Groeneveld
Publicatiedatum
01-04-2013
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Netherlands Heart Journal / Uitgave 4/2013
Print ISSN: 1568-5888
Elektronisch ISSN: 1876-6250
DOI
https://doi.org/10.1007/s12471-013-0383-1

Andere artikelen Uitgave 4/2013

Netherlands Heart Journal 4/2013 Naar de uitgave