Skip to main content
Top

2012 | OriginalPaper | Hoofdstuk

2. Cardiac Development and Congenital Heart Disease

Auteurs : Jamie L. Lohr, MD, Cindy M. Martin, MD, Daniel J. Garry, MD, PhD

Gepubliceerd in: Coronary Heart Disease

Uitgeverij: Springer US

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The heart is a dynamic organ that pumps more than two billion beats in the average lifetime. It is the first organ to develop during embryogenesis and requires a complex interaction of signaling factors, transcriptional networks, and microRNAs to regulate discrete stages of cardiac specification, differentiation, chamber formation, and growth. Spontaneous genetic mutations in humans and engineered molecular mutations in model systems have improved our understanding of cardiac development in both the human and nonprimate heart. While congenital heart disease (CHD) is relatively common and can be life-threatening, emerging therapies including catheter-based interventions, surgical repair, cellular repair, and cell therapy are improving survival and resulting in increased numbers of adults living with heart disease. Better understanding the mechanisms that govern cardiac development can clarify the pathology of CHD and help develop new therapies for this patient population.
Literatuur
1.
go back to reference Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003;258:1–19.PubMedCrossRef Brand T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003;258:1–19.PubMedCrossRef
2.
go back to reference Chinn A, Fitzsimmons J, Shepard TH, Fantel AG. Congenital heart disease among spontaneous abortuses and stillborn fetuses: prevalence and associations. Teratology. 1989;40(5):475–82.PubMedCrossRef Chinn A, Fitzsimmons J, Shepard TH, Fantel AG. Congenital heart disease among spontaneous abortuses and stillborn fetuses: prevalence and associations. Teratology. 1989;40(5):475–82.PubMedCrossRef
3.
go back to reference Moore KL, Persaud TVN, editors. The developing human: clinically oriented embryology. In: The cardiovascular system. Philadelphia, PA: Saunders; 2008. p. 285–337. Moore KL, Persaud TVN, editors. The developing human: clinically oriented embryology. In: The cardiovascular system. Philadelphia, PA: Saunders; 2008. p. 285–337.
4.
5.
go back to reference Martinsen BJ, Lohr JL. Cardiac development. In: Iaizzo P, editor. Handbook of cardiac anatomy, physiology and devices. New York: Springer Science; 2009. p. 23–32.CrossRef Martinsen BJ, Lohr JL. Cardiac development. In: Iaizzo P, editor. Handbook of cardiac anatomy, physiology and devices. New York: Springer Science; 2009. p. 23–32.CrossRef
6.
go back to reference Manner J, Perez-Pomares JM, Macias D, Munoz-Chapuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001;169:89–103.PubMedCrossRef Manner J, Perez-Pomares JM, Macias D, Munoz-Chapuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001;169:89–103.PubMedCrossRef
7.
8.
go back to reference Van Wijk B, van den Berg G, Abu-Issa R, et al. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein and fibroblast growth factor. Circ Res. 2009;105:431–41.PubMedCrossRef Van Wijk B, van den Berg G, Abu-Issa R, et al. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein and fibroblast growth factor. Circ Res. 2009;105:431–41.PubMedCrossRef
9.
go back to reference Linask KK. Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function. Birth Defects Res C Embryo Today. 2003;69:14–24.PubMedCrossRef Linask KK. Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function. Birth Defects Res C Embryo Today. 2003;69:14–24.PubMedCrossRef
10.
go back to reference Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.PubMedCrossRef Hoffman JIE, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39(12):1890–900.PubMedCrossRef
11.
go back to reference Martinsen BJ, Groebner NJ, Frasier AJ, Lohr JL. Expression of cardiac neural crest and heart genes isolated by modified differential display. Gene Expr Patterns. 2003;3:407–11.PubMedCrossRef Martinsen BJ, Groebner NJ, Frasier AJ, Lohr JL. Expression of cardiac neural crest and heart genes isolated by modified differential display. Gene Expr Patterns. 2003;3:407–11.PubMedCrossRef
12.
go back to reference Hildreth V, Webb S, Bradshaw L, Brown NA, Anderson RH, Henderson DJ. Cells migrating from the neural crest contribute to the innervation of the venous pole of the heart. J Anat. 2008;212:1–11.PubMed Hildreth V, Webb S, Bradshaw L, Brown NA, Anderson RH, Henderson DJ. Cells migrating from the neural crest contribute to the innervation of the venous pole of the heart. J Anat. 2008;212:1–11.PubMed
13.
go back to reference Larsen W. Development of the heart. In: Schmitt WR, Otway M, Bowman-Schulman E, editors. Human embryology. New York: Churchill Livingstone; 1997. p. 151–87. Larsen W. Development of the heart. In: Schmitt WR, Otway M, Bowman-Schulman E, editors. Human embryology. New York: Churchill Livingstone; 1997. p. 151–87.
14.
go back to reference Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009;105:408–21.PubMedCrossRef Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009;105:408–21.PubMedCrossRef
15.
go back to reference Moorman AFM, de Jong F, Denyn M, Lamers WH. Development of the cardiac conduction system. Circ Res. 1998;82:629–44.PubMedCrossRef Moorman AFM, de Jong F, Denyn M, Lamers WH. Development of the cardiac conduction system. Circ Res. 1998;82:629–44.PubMedCrossRef
16.
go back to reference Jongbloed MR, Mahtab EA, Blom NA, Schalij MJ, Gittenberger-de Groot AC. Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Sci World J. 2008;8:239–69.CrossRef Jongbloed MR, Mahtab EA, Blom NA, Schalij MJ, Gittenberger-de Groot AC. Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Sci World J. 2008;8:239–69.CrossRef
17.
go back to reference Bergmann O, Bhardwaj RD, Bernard S. et al Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.PubMedCrossRef Bergmann O, Bhardwaj RD, Bernard S. et al Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.PubMedCrossRef
18.
go back to reference Hsieh P, Segers V, Davis ME. et al Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4.PubMedCrossRef Hsieh P, Segers V, Davis ME. et al Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4.PubMedCrossRef
19.
go back to reference Downs K, Davies T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development. 1993;118:1255–66.PubMed Downs K, Davies T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development. 1993;118:1255–66.PubMed
21.
go back to reference Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ. Embryonic expression of an NKX2-5/Cre gene using Rosa26 reporter mice. Genesis. 2001;31:176–80.PubMedCrossRef Moses KA, DeMayo F, Braun RM, Reecy JL, Schwartz RJ. Embryonic expression of an NKX2-5/Cre gene using Rosa26 reporter mice. Genesis. 2001;31:176–80.PubMedCrossRef
23.
go back to reference Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA. 1980;77:7380–4.PubMedCrossRef Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA. 1980;77:7380–4.PubMedCrossRef
24.
go back to reference Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981;27:223–31.PubMedCrossRef Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell. 1981;27:223–31.PubMedCrossRef
25.
go back to reference Thomas KR, Folger KR, Capecchi MR. High frequency targeting of genes to specific sites in the mammalian genome. Cell. 1986;44(3):419–28.PubMedCrossRef Thomas KR, Folger KR, Capecchi MR. High frequency targeting of genes to specific sites in the mammalian genome. Cell. 1986;44(3):419–28.PubMedCrossRef
27.
go back to reference Nagy A, Mar L, Watts G. Creation and use of a Cre recombinase transgenic database. In: Kuhn R, Wurst W, editors. Gene knockout protocols. 2nd ed. New York, NY: Humana Press; 2009. p. 365–78.CrossRef Nagy A, Mar L, Watts G. Creation and use of a Cre recombinase transgenic database. In: Kuhn R, Wurst W, editors. Gene knockout protocols. 2nd ed. New York, NY: Humana Press; 2009. p. 365–78.CrossRef
28.
go back to reference Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pleuripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91:189–201.PubMedCrossRef Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pleuripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91:189–201.PubMedCrossRef
29.
go back to reference Ma YD, Lugus JJ, Park C, Choi K. Differentiation of mouse embryonic stem cells into blood. Current Protoc Stem Cell Biol ( Published On Line). 2008; 6:1F.4.1–1F.4.19. Ma YD, Lugus JJ, Park C, Choi K. Differentiation of mouse embryonic stem cells into blood. Current Protoc Stem Cell Biol ( Published On Line). 2008; 6:1F.4.1–1F.4.19.
30.
go back to reference Robbins J, Doetschman T, Jones WK, Sanchez A. Embryonic stem cells as a model for cardiogenesis. Trends Cardiovasc Med. 1992;2(2):44–50.PubMedCrossRef Robbins J, Doetschman T, Jones WK, Sanchez A. Embryonic stem cells as a model for cardiogenesis. Trends Cardiovasc Med. 1992;2(2):44–50.PubMedCrossRef
31.
go back to reference Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281(5373):108–11.PubMedCrossRef Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281(5373):108–11.PubMedCrossRef
32.
go back to reference McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2,5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42(9):1650–5.PubMedCrossRef McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E. NKX2,5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003;42(9):1650–5.PubMedCrossRef
33.
go back to reference Basson CT, Huang T, Lin RC, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A. 1999;96(6):2919–24.PubMedCrossRef Basson CT, Huang T, Lin RC, et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations. Proc Natl Acad Sci U S A. 1999;96(6):2919–24.PubMedCrossRef
34.
go back to reference Kitajima S, Takagi A, Inoue T, Sagay I. Mesp1 and Mesp 2 are essential for the development of cardiac mesoderm. Development. 2000;27:3215–26. Kitajima S, Takagi A, Inoue T, Sagay I. Mesp1 and Mesp 2 are essential for the development of cardiac mesoderm. Development. 2000;27:3215–26.
35.
go back to reference Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006;126:1037–48.PubMedCrossRef Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006;126:1037–48.PubMedCrossRef
37.
38.
go back to reference Yutzey KE, Kirby ML. Wherefore heart thou? Embryonic origins of cardiogenic mesoderm. Dev Dyn. 2002;223:307–20.PubMedCrossRef Yutzey KE, Kirby ML. Wherefore heart thou? Embryonic origins of cardiogenic mesoderm. Dev Dyn. 2002;223:307–20.PubMedCrossRef
39.
go back to reference Ferdous A, Caprioli A, Iacovino M, et al. NKx2-5 transactivates the Ets-related protein 71 gene and specifies are endothelial.endocardial fate in the developing embryo. Proc Natl Acad Sci USA. 2009;106:814–9.PubMedCrossRef Ferdous A, Caprioli A, Iacovino M, et al. NKx2-5 transactivates the Ets-related protein 71 gene and specifies are endothelial.endocardial fate in the developing embryo. Proc Natl Acad Sci USA. 2009;106:814–9.PubMedCrossRef
40.
go back to reference Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development. 1993;118:719–29.PubMed Bodmer R. The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development. 1993;118:719–29.PubMed
41.
go back to reference Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995;9(13):1654–66.PubMedCrossRef Lyons I, Parsons LM, Hartley L, et al. Myogenic and morphogenetic defects in heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 1995;9(13):1654–66.PubMedCrossRef
42.
go back to reference Kuo CT, Morrisey EE, Anandappa R, et al. Gata4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048–60.PubMedCrossRef Kuo CT, Morrisey EE, Anandappa R, et al. Gata4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048–60.PubMedCrossRef
43.
go back to reference Molkentin J, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor Gata 4for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11:1061–72.PubMedCrossRef Molkentin J, Lin Q, Duncan SA, Olson EN. Requirement of the transcription factor Gata 4for heart tube formation and ventral morphogenesis. Genes Dev. 1997;11:1061–72.PubMedCrossRef
44.
go back to reference Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5:877–89.PubMedCrossRef Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003;5:877–89.PubMedCrossRef
45.
go back to reference Bu L, Jiang X, Martin-Puig S, et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009;460:113–7.PubMedCrossRef Bu L, Jiang X, Martin-Puig S, et al. Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature. 2009;460:113–7.PubMedCrossRef
46.
go back to reference Watanabe Y, Miyagawa-Tomita S, Vinvent SD, Kelly RG, Moon AM, Buckingham ME. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res. 2010;106:495–503.PubMedCrossRef Watanabe Y, Miyagawa-Tomita S, Vinvent SD, Kelly RG, Moon AM, Buckingham ME. Role of mesodermal FGF8 and FGF10 overlaps in the development of the arterial pole of the heart and pharyngeal arch arteries. Circ Res. 2010;106:495–503.PubMedCrossRef
47.
go back to reference Schleiffarth JR, Person AD, Martinsen BJ, et al. Wnt5a is required for cardiac outflow septation in mice. Pediatr Res. 2007;61(4):386–91.PubMedCrossRef Schleiffarth JR, Person AD, Martinsen BJ, et al. Wnt5a is required for cardiac outflow septation in mice. Pediatr Res. 2007;61(4):386–91.PubMedCrossRef
48.
go back to reference Dyer LA, Kirby ML. The role of the second heart field in cardiac development. Dev Biol. 2009;336(2):137–44.PubMedCrossRef Dyer LA, Kirby ML. The role of the second heart field in cardiac development. Dev Biol. 2009;336(2):137–44.PubMedCrossRef
49.
go back to reference Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol. 2001;235(1):62–73.PubMedCrossRef Garg V, Yamagishi C, Hu T, Kathiriya IS, Yamagishi H, Srivastava D. Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol. 2001;235(1):62–73.PubMedCrossRef
50.
go back to reference McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell. 2003;114:61–73.PubMedCrossRef McGrath J, Somlo S, Makova S, Tian X, Brueckner M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell. 2003;114:61–73.PubMedCrossRef
51.
go back to reference Raya A, Izpisua-Belmonte JC. Insights into the establishment of left-right asymmetries in vertebrates. Birth Defects Res C Embryo Today. 2008;84:81–94.PubMedCrossRef Raya A, Izpisua-Belmonte JC. Insights into the establishment of left-right asymmetries in vertebrates. Birth Defects Res C Embryo Today. 2008;84:81–94.PubMedCrossRef
52.
go back to reference Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev. 2005;122:3–25.PubMedCrossRef Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev. 2005;122:3–25.PubMedCrossRef
53.
go back to reference Liu C, Liu W, Lu MF, Brown NA, Martin JF. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development. 2001;128:2039–48.PubMed Liu C, Liu W, Lu MF, Brown NA, Martin JF. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development. 2001;128:2039–48.PubMed
54.
go back to reference Galli D, Dominguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME. Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development. 2008;135(6):1157–67.PubMedCrossRef Galli D, Dominguez JN, Zaffran S, Munk A, Brown NA, Buckingham ME. Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed. Development. 2008;135(6):1157–67.PubMedCrossRef
55.
go back to reference Kioussi C, Briata P, Baek SH. et al Identification of a Wnt/Dvl/beta-catenin—Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111(5):673–85.PubMedCrossRef Kioussi C, Briata P, Baek SH. et al Identification of a Wnt/Dvl/beta-catenin—Pitx2 pathway mediating cell-type-specific proliferation during development. Cell. 2002;111(5):673–85.PubMedCrossRef
56.
go back to reference Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997;276(5317):1404–7.PubMedCrossRef Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997;276(5317):1404–7.PubMedCrossRef
57.
go back to reference Biben C, Harvey RP. Homeodomain factor Nkx2-5 controls left-right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 1997;11(11):1357–69.PubMedCrossRef Biben C, Harvey RP. Homeodomain factor Nkx2-5 controls left-right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 1997;11(11):1357–69.PubMedCrossRef
58.
go back to reference Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHand. Nat Genet. 1997;16(2):154–60. Erratum in: Nat Genet. 1997;16(4)410.PubMedCrossRef Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHand. Nat Genet. 1997;16(2):154–60. Erratum in: Nat Genet. 1997;16(4)410.PubMedCrossRef
59.
go back to reference Tsuchihashi T, Maeda J, Shin CH. et al Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev Biol. 2010;351(1):62–9.PubMedCrossRef Tsuchihashi T, Maeda J, Shin CH. et al Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev Biol. 2010;351(1):62–9.PubMedCrossRef
60.
go back to reference Firulli AB, Firulli BA, Wang J, Rogers RH, Conway SJ. Gene replacement strategies to test the functional redundancy of basic helix-loop-helix transcription factor. Pediatr Cardiol. 2010;31(3):438–48.PubMedCrossRef Firulli AB, Firulli BA, Wang J, Rogers RH, Conway SJ. Gene replacement strategies to test the functional redundancy of basic helix-loop-helix transcription factor. Pediatr Cardiol. 2010;31(3):438–48.PubMedCrossRef
61.
go back to reference Bruneau BG, Nemer G, Schmitt JP. et al A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106:709–21.PubMedCrossRef Bruneau BG, Nemer G, Schmitt JP. et al A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 2001;106:709–21.PubMedCrossRef
62.
go back to reference Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm, to heart tissue by defined factors. Nature. 2009;459(7247):708–11.PubMedCrossRef Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm, to heart tissue by defined factors. Nature. 2009;459(7247):708–11.PubMedCrossRef
63.
go back to reference Cordes KR, Srivastava D, Ivey KN. MicroRNAs in cardiac development. Pediatr Cardiol. 2010;31:349–56.PubMedCrossRef Cordes KR, Srivastava D, Ivey KN. MicroRNAs in cardiac development. Pediatr Cardiol. 2010;31:349–56.PubMedCrossRef
64.
go back to reference Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 2010;1:36–41.CrossRef Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell. 2010;1:36–41.CrossRef
65.
go back to reference Epstein JA, Parmacek MS. Recent advances in cardiac development with therapeutic implications for adult cardiovascular disease. Circulation. 2005;112:592–7.PubMedCrossRef Epstein JA, Parmacek MS. Recent advances in cardiac development with therapeutic implications for adult cardiovascular disease. Circulation. 2005;112:592–7.PubMedCrossRef
66.
67.
go back to reference Zhou B, von Gise A, Ma Q, Rivera-Feliciano J, Pu WT. Pu Wt. Nkx2-5 and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun. 2008;375(3):450–3.PubMedCrossRef Zhou B, von Gise A, Ma Q, Rivera-Feliciano J, Pu WT. Pu Wt. Nkx2-5 and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun. 2008;375(3):450–3.PubMedCrossRef
68.
go back to reference Watt AJ, Battle MA, Li J, Duncan SA. GATA4 is essential for the formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 2004;101(34):12573–8.PubMedCrossRef Watt AJ, Battle MA, Li J, Duncan SA. GATA4 is essential for the formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 2004;101(34):12573–8.PubMedCrossRef
69.
go back to reference Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006;127(6):1137–50.PubMedCrossRef Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell. 2006;127(6):1137–50.PubMedCrossRef
70.
go back to reference Wu SM, Chien KR, Mummery C. Origins and fates of cardiovascular progenitor cells. Cell. 2008;132:537–43.PubMedCrossRef Wu SM, Chien KR, Mummery C. Origins and fates of cardiovascular progenitor cells. Cell. 2008;132:537–43.PubMedCrossRef
71.
go back to reference Moretti A, Caron L, Nakano A, et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–65.PubMedCrossRef Moretti A, Caron L, Nakano A, et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–65.PubMedCrossRef
72.
73.
go back to reference Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support cardiac regeneration. Cell. 2003;114(6):763–76.PubMedCrossRef Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support cardiac regeneration. Cell. 2003;114(6):763–76.PubMedCrossRef
74.
go back to reference Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.PubMedCrossRef Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911–21.PubMedCrossRef
75.
go back to reference Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.PubMedCrossRef Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol. 2004;265:262–75.PubMedCrossRef
76.
go back to reference Martin CM, Russell JL, Ferdous A, Garry DJ. Molecular signatures define myogenic stem cell populations. Stem Cell Rev. 2006;2:37–46.PubMedCrossRef Martin CM, Russell JL, Ferdous A, Garry DJ. Molecular signatures define myogenic stem cell populations. Stem Cell Rev. 2006;2:37–46.PubMedCrossRef
77.
go back to reference Shi X, Garry DJ. Muscle stem cells in development, regeneration and disease. Genes Dev. 2006;20:1692–708.PubMedCrossRef Shi X, Garry DJ. Muscle stem cells in development, regeneration and disease. Genes Dev. 2006;20:1692–708.PubMedCrossRef
78.
go back to reference Qian L, Srivastava D. Monkeying around with cardiac progenitors: hope for the future. J Clin Invest. 2010;120(4):1034–6.PubMedCrossRef Qian L, Srivastava D. Monkeying around with cardiac progenitors: hope for the future. J Clin Invest. 2010;120(4):1034–6.PubMedCrossRef
79.
go back to reference Sadek H, Hannack B, Choe E, et al. Cardiogenic small molecules that enhance myocardial repair by stem cells. Proc Natl Acad Sci USA. 2009;105(16):6063–8.CrossRef Sadek H, Hannack B, Choe E, et al. Cardiogenic small molecules that enhance myocardial repair by stem cells. Proc Natl Acad Sci USA. 2009;105(16):6063–8.CrossRef
80.
go back to reference Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.PubMedCrossRef Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142(3):375–86.PubMedCrossRef
81.
go back to reference Blin G, Nury D, Stefanovic S, et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmocardial infracted nonhuman primates. J Clin Invest. 2010;120(4):1125–39.PubMedCrossRef Blin G, Nury D, Stefanovic S, et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmocardial infracted nonhuman primates. J Clin Invest. 2010;120(4):1125–39.PubMedCrossRef
82.
go back to reference Ferencz C, Rubin JD, McCarter RJ, et al. Congenital heart disease: prevalence at live birth. The Baltimore-Washington Infant Study. Am J Epidemiol. 1985;121(1):31–6.PubMed Ferencz C, Rubin JD, McCarter RJ, et al. Congenital heart disease: prevalence at live birth. The Baltimore-Washington Infant Study. Am J Epidemiol. 1985;121(1):31–6.PubMed
83.
go back to reference Hoffman JIE. Incidence, prevalence, and inheritance of congenital heart disease. In: Moller JH, Hoffman JIE, editors. Pediatric cardiovascular medicine. New York: Churchill Livingstone; 2000. p. 257–62. Hoffman JIE. Incidence, prevalence, and inheritance of congenital heart disease. In: Moller JH, Hoffman JIE, editors. Pediatric cardiovascular medicine. New York: Churchill Livingstone; 2000. p. 257–62.
84.
go back to reference Wren C, Richmond S, Donaldson L. Temporal variability in birth prevalence of cardiovascular malformations. Heart. 2000;83:414–9.PubMedCrossRef Wren C, Richmond S, Donaldson L. Temporal variability in birth prevalence of cardiovascular malformations. Heart. 2000;83:414–9.PubMedCrossRef
85.
go back to reference Lin AE. Chromosomal abnormality associated with congenital heart defect. Am J Med Genet. 1990;35(4):590–1.PubMedCrossRef Lin AE. Chromosomal abnormality associated with congenital heart defect. Am J Med Genet. 1990;35(4):590–1.PubMedCrossRef
86.
go back to reference Pierpont ME, Basson CT, Benson DW. et al Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38.PubMedCrossRef Pierpont ME, Basson CT, Benson DW. et al Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38.PubMedCrossRef
87.
go back to reference Song MS, Hu A, Dyhamenahali U. et al Extracardiac lesions and chromosomal abnormalities associated with major fetal heart defects: comparison of intrauterine, postnatal and postmortem diagnosis. Ultrasound Obstet Gynecol. 2009;33:552–9.PubMedCrossRef Song MS, Hu A, Dyhamenahali U. et al Extracardiac lesions and chromosomal abnormalities associated with major fetal heart defects: comparison of intrauterine, postnatal and postmortem diagnosis. Ultrasound Obstet Gynecol. 2009;33:552–9.PubMedCrossRef
88.
go back to reference Lin AE, Basson CT, Goldmuntz E, et al. Adults with genetic syndromes and cardiovascular abnormalities: clinical history and management. Genet Med. 2008;10(7):469–94.PubMedCrossRef Lin AE, Basson CT, Goldmuntz E, et al. Adults with genetic syndromes and cardiovascular abnormalities: clinical history and management. Genet Med. 2008;10(7):469–94.PubMedCrossRef
89.
go back to reference Gill HK, Splitt M, Sharland GK, Simpson JM. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detained fetal echocardiography. J Am Coll Cardiol. 2003;42(5):923–9.PubMedCrossRef Gill HK, Splitt M, Sharland GK, Simpson JM. Patterns of recurrence of congenital heart disease: an analysis of 6,640 consecutive pregnancies evaluated by detained fetal echocardiography. J Am Coll Cardiol. 2003;42(5):923–9.PubMedCrossRef
90.
go back to reference Ferencz C, Boughman JA, Neill CA, Brenner JI, Perry LW. Congenital cardiovascular malformations: questions on inheritance. Baltimore-Washington Infant Study Group. J Am Coll Cardiol. 1989;14(3):756–63.PubMedCrossRef Ferencz C, Boughman JA, Neill CA, Brenner JI, Perry LW. Congenital cardiovascular malformations: questions on inheritance. Baltimore-Washington Infant Study Group. J Am Coll Cardiol. 1989;14(3):756–63.PubMedCrossRef
91.
go back to reference Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PKA, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120:295–301.PubMedCrossRef Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PKA, Melbye M. Recurrence of congenital heart defects in families. Circulation. 2009;120:295–301.PubMedCrossRef
92.
go back to reference Calcagni G, Digilio MC, Sarkozy A, Dallapiccola B, Marino B. Familial recurrence of congenital heart disease, a review of the literature. Eur J Pediatr. 2007;166:111–6.PubMedCrossRef Calcagni G, Digilio MC, Sarkozy A, Dallapiccola B, Marino B. Familial recurrence of congenital heart disease, a review of the literature. Eur J Pediatr. 2007;166:111–6.PubMedCrossRef
93.
go back to reference Hinton Jr RB, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007;50(16):1590–5.PubMedCrossRef Hinton Jr RB, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007;50(16):1590–5.PubMedCrossRef
94.
go back to reference Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44(1):138–43.PubMedCrossRef Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004;44(1):138–43.PubMedCrossRef
95.
go back to reference Moller JH, Shumway SJ, Gott VL. The first open-heart repairs using extracorporeal circulation by cross-circulation: a 53-year follow-up. Ann Thorac Surg. 2009;88(3):1044–6.PubMedCrossRef Moller JH, Shumway SJ, Gott VL. The first open-heart repairs using extracorporeal circulation by cross-circulation: a 53-year follow-up. Ann Thorac Surg. 2009;88(3):1044–6.PubMedCrossRef
96.
go back to reference Stirling GR, Stanley PH, Lillehei CW. The effects of cardiac bypass and ventriculotomy upon right ventricular function with report of successful closure of ventricular septal defect by use of atriotomy. Surg Forum. 1957;8:433–8.PubMed Stirling GR, Stanley PH, Lillehei CW. The effects of cardiac bypass and ventriculotomy upon right ventricular function with report of successful closure of ventricular septal defect by use of atriotomy. Surg Forum. 1957;8:433–8.PubMed
97.
go back to reference Tucker EM, Pyles LA, Bass JL, Moller JH. Permanent pacemaker for atrioventricular conduction block after operative repair of perimembranous ventricular septal defect. J Am Coll Cardiol. 2007;50(12):1196–200.PubMedCrossRef Tucker EM, Pyles LA, Bass JL, Moller JH. Permanent pacemaker for atrioventricular conduction block after operative repair of perimembranous ventricular septal defect. J Am Coll Cardiol. 2007;50(12):1196–200.PubMedCrossRef
98.
go back to reference Roos-Hesselink JW, Meijboom FJ, Spitaels SEC, et al. Outcome of patients after surgical closure of ventricular septal defect at young age: longitudinal follow-up of 22–34 years. Eur Heart J. 2004;25:1057.PubMedCrossRef Roos-Hesselink JW, Meijboom FJ, Spitaels SEC, et al. Outcome of patients after surgical closure of ventricular septal defect at young age: longitudinal follow-up of 22–34 years. Eur Heart J. 2004;25:1057.PubMedCrossRef
99.
go back to reference Hirsch R, Lorber A, Shapira Y. et al Initial experience with the Amplatzer membranous septal occluder in adults. Acute Card Care. 2007;9(1):54–9.PubMedCrossRef Hirsch R, Lorber A, Shapira Y. et al Initial experience with the Amplatzer membranous septal occluder in adults. Acute Card Care. 2007;9(1):54–9.PubMedCrossRef
100.
go back to reference Zuo J, Xie J, Yi W, et al. Results of transcatheter closure of perimembranous ventricular septal defect. Am J Cardiol. 2010;106(7):1034–7.PubMedCrossRef Zuo J, Xie J, Yi W, et al. Results of transcatheter closure of perimembranous ventricular septal defect. Am J Cardiol. 2010;106(7):1034–7.PubMedCrossRef
101.
go back to reference Forsey J, Kenny D, Morgan G, et al. Early clinical experience with the new Amplatzer Ductal Occluder II for closure of the persistent arterial duct. Catheter Cardiovasc Interv. 2009;74(4):615–23.PubMedCrossRef Forsey J, Kenny D, Morgan G, et al. Early clinical experience with the new Amplatzer Ductal Occluder II for closure of the persistent arterial duct. Catheter Cardiovasc Interv. 2009;74(4):615–23.PubMedCrossRef
102.
go back to reference Bautista-Hernandez V, Hasan BS, Harrild DM, et al. Late pulmonary valve replacement in patients with pulmonary atresia and intact ventricular septum: a case-matched study. Ann Thorac Surg. 2011;91:555–60.PubMedCrossRef Bautista-Hernandez V, Hasan BS, Harrild DM, et al. Late pulmonary valve replacement in patients with pulmonary atresia and intact ventricular septum: a case-matched study. Ann Thorac Surg. 2011;91:555–60.PubMedCrossRef
103.
go back to reference Keane JF, Fyler DC, editors. Aortic outflow abnormalities. In: Nadas’ pediatric cardiology. Philadelphia, PA: Saunders; 2006. p. 581–602. Keane JF, Fyler DC, editors. Aortic outflow abnormalities. In: Nadas’ pediatric cardiology. Philadelphia, PA: Saunders; 2006. p. 581–602.
104.
go back to reference Toro-Salazar OH, Steinberger J, Thomas W, Rocchini AP, Carpenter B, Moller JH. Long-term follow-up of patients after coarctation of the aorta repair. Am J Cardiol. 2002;89(5):541–7.PubMedCrossRef Toro-Salazar OH, Steinberger J, Thomas W, Rocchini AP, Carpenter B, Moller JH. Long-term follow-up of patients after coarctation of the aorta repair. Am J Cardiol. 2002;89(5):541–7.PubMedCrossRef
105.
go back to reference Lillehei CW, Varco RL, Cohen M, et al. The first open heart corrections of tetralogy of Fallot. A 26–31 year follow-up of 106 patients. Ann Surg. 1986;104(4):490–502.CrossRef Lillehei CW, Varco RL, Cohen M, et al. The first open heart corrections of tetralogy of Fallot. A 26–31 year follow-up of 106 patients. Ann Surg. 1986;104(4):490–502.CrossRef
106.
go back to reference Al Habib HF, Jacobs JP, Mavroudis C, Tchervenkov CI, O’Brien SM, Mohammadi S, et al. Contemporary patterns of management of tetralogy of Fallot: data from the Society of Thoracic Surgeons Database. Ann Thorac Surg. 2010;90(3):813–9.PubMedCrossRef Al Habib HF, Jacobs JP, Mavroudis C, Tchervenkov CI, O’Brien SM, Mohammadi S, et al. Contemporary patterns of management of tetralogy of Fallot: data from the Society of Thoracic Surgeons Database. Ann Thorac Surg. 2010;90(3):813–9.PubMedCrossRef
107.
go back to reference Aboulhosn J, Child JS. Management after childhood repair of tetralogy of Fallot. Curr Treat Options Cardiovasc Med. 2006;8(6):474–83.PubMedCrossRef Aboulhosn J, Child JS. Management after childhood repair of tetralogy of Fallot. Curr Treat Options Cardiovasc Med. 2006;8(6):474–83.PubMedCrossRef
108.
go back to reference Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease. Circulation. 2008;118(23):e714–833.PubMedCrossRef Warnes CA, Williams RG, Bashore TM, et al. ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease. Circulation. 2008;118(23):e714–833.PubMedCrossRef
109.
go back to reference Tobler D, Williams WG, Jegatheeswaran A, et al. Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol. 2010;56(1):5864.CrossRef Tobler D, Williams WG, Jegatheeswaran A, et al. Cardiac outcomes in young adult survivors of the arterial switch operation for transposition of the great arteries. J Am Coll Cardiol. 2010;56(1):5864.CrossRef
110.
go back to reference Ye M, Coldren C, Liang X, et al. Deletion of ETS-1, a gene in the Jacobson syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet. 2010;19(4):648–56.PubMedCrossRef Ye M, Coldren C, Liang X, et al. Deletion of ETS-1, a gene in the Jacobson syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet. 2010;19(4):648–56.PubMedCrossRef
111.
go back to reference Grossfeld P, Ye M, Harvey R. Hypoplastic left heart syndrome: new genetic insights. J Am Coll Cardiol. 2009;53(12):1072–4.PubMedCrossRef Grossfeld P, Ye M, Harvey R. Hypoplastic left heart syndrome: new genetic insights. J Am Coll Cardiol. 2009;53(12):1072–4.PubMedCrossRef
112.
go back to reference Tweddell JS, Hoffman GM, Mussato KA, et al. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: lessons learned from 115 consecutive patients. Circulation. 2002;106(12 Suppl 1):I82–9.PubMed Tweddell JS, Hoffman GM, Mussato KA, et al. Improved survival of patients undergoing palliation of hypoplastic left heart syndrome: ­lessons learned from 115 consecutive patients. Circulation. 2002;106(12 Suppl 1):I82–9.PubMed
113.
go back to reference Sano S, Ishino K, Kawada M, Yoshizumi K, Takeuchi M, Ohtsuki S. Experience over five years using a shunt placed between the right ventricle and the pulmonary arteries during initial reconstruction of hypoplasia of the left heart. Cardiol Young. 2004;14 suppl 3:90–5.PubMed Sano S, Ishino K, Kawada M, Yoshizumi K, Takeuchi M, Ohtsuki S. Experience over five years using a shunt placed between the right ventricle and the pulmonary arteries during initial reconstruction of hypoplasia of the left heart. Cardiol Young. 2004;14 suppl 3:90–5.PubMed
114.
go back to reference Holzer R, Marshall A, Kreutzer J, et al. Hybrid procedures: adverse events and procedural characteristics-results of a multi-institutional registry. Congenit Heart Dis. 2010;5(3):233–42.PubMedCrossRef Holzer R, Marshall A, Kreutzer J, et al. Hybrid procedures: adverse events and procedural characteristics-results of a multi-institutional registry. Congenit Heart Dis. 2010;5(3):233–42.PubMedCrossRef
115.
117.
go back to reference Fan Y, Weng YG, Xiao YB, et al. Outcomes of ventricular assist device support in young patients with small body surface area. Eur J Cardiothorac Surg Epub. 2011;39:699–704.CrossRef Fan Y, Weng YG, Xiao YB, et al. Outcomes of ventricular assist device support in young patients with small body surface area. Eur J Cardiothorac Surg Epub. 2011;39:699–704.CrossRef
118.
go back to reference Silva JNA, Canter CE, Singh TP, et al. Outcomes of heart transplantation using donor hearts from infants with sudden infant death syndrome. J Heart Lung Transplant. 2010;29(11):1226–30.PubMedCrossRef Silva JNA, Canter CE, Singh TP, et al. Outcomes of heart transplantation using donor hearts from infants with sudden infant death syndrome. J Heart Lung Transplant. 2010;29(11):1226–30.PubMedCrossRef
119.
go back to reference Marelli AJ, Mackie AS, Ioneecu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.PubMedCrossRef Marelli AJ, Mackie AS, Ioneecu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.PubMedCrossRef
120.
go back to reference Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56:1149–57.PubMedCrossRef Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56:1149–57.PubMedCrossRef
121.
go back to reference Patel MS, Kogon BE. Care of the adult congenital heart disease patient in the United States: a summary of the current system. Pediatr Cardiol. 2010;31(4):511–4.PubMedCrossRef Patel MS, Kogon BE. Care of the adult congenital heart disease patient in the United States: a summary of the current system. Pediatr Cardiol. 2010;31(4):511–4.PubMedCrossRef
122.
go back to reference Yeung E, Kay J, Roosevelt GE, Brandon M, Yetman AT. Lapse of care as a predictor for morbidity in adults with congenital heart disease. Int J Cardiol. 2008;125:62–5.PubMedCrossRef Yeung E, Kay J, Roosevelt GE, Brandon M, Yetman AT. Lapse of care as a predictor for morbidity in adults with congenital heart disease. Int J Cardiol. 2008;125:62–5.PubMedCrossRef
123.
go back to reference Bernier M, Marelli AJ, Pilote L, et al. Atrial arrhythmias in adult patients with right versus left sided congenital heart disease anomalies. Am J Cardiol. 2010;106(4):547–51.PubMedCrossRef Bernier M, Marelli AJ, Pilote L, et al. Atrial arrhythmias in adult patients with right versus left sided congenital heart disease anomalies. Am J Cardiol. 2010;106(4):547–51.PubMedCrossRef
124.
go back to reference Li W, Somerville J. Infective endocarditis in the grown-up congenital heart (GUCH) population. Eur Heart J. 1998;19(1):166–73.PubMedCrossRef Li W, Somerville J. Infective endocarditis in the grown-up congenital heart (GUCH) population. Eur Heart J. 1998;19(1):166–73.PubMedCrossRef
125.
go back to reference Lamour JM, Addonizio LJ, Galantowicz ME, et al. Outcome after orthotopic cardiac transplantation in adults with congenital heart disease. Circulation. 1999;100:II200–5.PubMedCrossRef Lamour JM, Addonizio LJ, Galantowicz ME, et al. Outcome after orthotopic cardiac transplantation in adults with congenital heart disease. Circulation. 1999;100:II200–5.PubMedCrossRef
126.
go back to reference Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, et al. Cardiac transplantation after Fontan or Glenn procedure. J Am Coll Cardiol. 2004;44(10):2065–72.PubMedCrossRef Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, et al. Cardiac transplantation after Fontan or Glenn procedure. J Am Coll Cardiol. 2004;44(10):2065–72.PubMedCrossRef
127.
go back to reference Irving C, Parry G, O’Sullivan J, et al. Cardiac transplantation in adults with congenital heart disease. Heart. 2001;96(15):1217–22.CrossRef Irving C, Parry G, O’Sullivan J, et al. Cardiac transplantation in adults with congenital heart disease. Heart. 2001;96(15):1217–22.CrossRef
128.
go back to reference Kovacs AH, Harrison JL, Colman JM. Pregnancy and contraception in congenital heart disease: what women are not told. J Am Coll Cardiol. 2008;52:577–8.PubMedCrossRef Kovacs AH, Harrison JL, Colman JM. Pregnancy and contraception in congenital heart disease: what women are not told. J Am Coll Cardiol. 2008;52:577–8.PubMedCrossRef
129.
go back to reference Balint OH, Siu SC, Mason J, et al. Cardiac outcomes after pregnancy in women with congenital heart disease. Heart. 2010;96:1656–61.PubMedCrossRef Balint OH, Siu SC, Mason J, et al. Cardiac outcomes after pregnancy in women with congenital heart disease. Heart. 2010;96:1656–61.PubMedCrossRef
Metagegevens
Titel
Cardiac Development and Congenital Heart Disease
Auteurs
Jamie L. Lohr, MD
Cindy M. Martin, MD
Daniel J. Garry, MD, PhD
Copyright
2012
Uitgeverij
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1475-9_2