Skip to main content
Top

2017 | OriginalPaper | Hoofdstuk

11.  Capnografie

Auteur : Hans ter Haar

Gepubliceerd in: Mechanische beademing op de intensive care

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Kooldioxide dat vrijkomt bij de verbranding wordt via het bloed naar de longen vervoerd om daar te worden uitgeademd. De kooldioxideconcentratie kan gemeten en grafisch weergegeven worden. De weergave van de kooldioxideconcentratie als getalswaarde wordt capnometrie genoemd, de grafische weergave van de kooldioxideconcentratie wordt capnografie genoemd. Grafisch gezien onderscheiden we tijdgebaseerde capnografie, waarbij de kooldioxideconcentratie wordt uitgezet tegen de tijd, en volumegebaseerde (volumetrische) capnografie, waarbij de kooldioxideconcentratie wordt uitgezet tegen het uitgeademde volume. Instrumenttechnisch gezien onderscheiden we mainstream en sidestream capnografie: bij mainstream capnografie zit de opnemer dichtbij de tube, bij sidestream capnografie zit de opnemer in de beademingsmachine of in de monitor. Capnografie is in navolging van het gebruik op de operatiekamers volledig ingeburgerd op elke afdeling waar patiënten mechanisch beademd worden. Het vervult een belangrijke rol bij de bewaking van de luchtweg en het sturen van de therapie en het geeft informatie over aandoening en prognose.
Literatuur
1.
go back to reference Walsh BK, Crotwell DN, Restrepo RD. Capnography/capnometry during mechanical ventilation: 2011. Respir Care. 2011;56(4):503–9.CrossRefPubMed Walsh BK, Crotwell DN, Restrepo RD. Capnography/capnometry during mechanical ventilation: 2011. Respir Care. 2011;56(4):503–9.CrossRefPubMed
2.
go back to reference Hardman JG, Curran J, Mahajan RP. End-tidal carbon dioxide measurement and breathing system filters. Anaesthesia. 1997;52(7):646–8.CrossRefPubMed Hardman JG, Curran J, Mahajan RP. End-tidal carbon dioxide measurement and breathing system filters. Anaesthesia. 1997;52(7):646–8.CrossRefPubMed
3.
go back to reference Fletcher R, Werner O, Nordstrom L, Jonson B. Sources of error and their correction in the measurement of carbon dioxide elimination using the Siemens-Elema CO2 analyzer. Br J Anaesth. 1983;55(2):177–85.CrossRefPubMed Fletcher R, Werner O, Nordstrom L, Jonson B. Sources of error and their correction in the measurement of carbon dioxide elimination using the Siemens-Elema CO2 analyzer. Br J Anaesth. 1983;55(2):177–85.CrossRefPubMed
4.
go back to reference Kodali BS, Philip JH. Defining segments and phases of a time capnogram. Anesth Analg. 2000;91:973–7.CrossRef Kodali BS, Philip JH. Defining segments and phases of a time capnogram. Anesth Analg. 2000;91:973–7.CrossRef
5.
6.
go back to reference Tusman G, Suarez-Sipmann F, Böhm SH, et al. Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive Care Med. 2006;32:1863–71.CrossRefPubMed Tusman G, Suarez-Sipmann F, Böhm SH, et al. Monitoring dead space during recruitment and PEEP titration in an experimental model. Intensive Care Med. 2006;32:1863–71.CrossRefPubMed
7.
go back to reference Kodali BS, Kumar AY, Moseley HSL, Hallsworth RA. Terminology and the current limitations of time capnography: a brief review. J Clin Monit. 1995;11:175–82.CrossRef Kodali BS, Kumar AY, Moseley HSL, Hallsworth RA. Terminology and the current limitations of time capnography: a brief review. J Clin Monit. 1995;11:175–82.CrossRef
8.
go back to reference Fletcher R, Jonson B, Cumming G, Brew J. The concept of dead space with special reference to the single breath test for CO2. Br J Anaesth. 1981;53:77–88.CrossRefPubMed Fletcher R, Jonson B, Cumming G, Brew J. The concept of dead space with special reference to the single breath test for CO2. Br J Anaesth. 1981;53:77–88.CrossRefPubMed
9.
go back to reference Arnold JH, Thompson JE, Arnold LW. Single breath CO2 analysis: description and validation of a method. Crit Care Med. 1996;24(1):96–102.CrossRefPubMed Arnold JH, Thompson JE, Arnold LW. Single breath CO2 analysis: description and validation of a method. Crit Care Med. 1996;24(1):96–102.CrossRefPubMed
10.
go back to reference Sinha P, Flower O, Soni N. Dead space ventilation: a waste of breath. Intensive Care Med. 2011;37:735–46.CrossRefPubMed Sinha P, Flower O, Soni N. Dead space ventilation: a waste of breath. Intensive Care Med. 2011;37:735–46.CrossRefPubMed
11.
go back to reference Tusman G, Suarez-Sipmann F, Böhm SH, et al. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta Anaesthesiol Scand. 2011;55(5):597–606.CrossRefPubMed Tusman G, Suarez-Sipmann F, Böhm SH, et al. Capnography reflects ventilation/perfusion distribution in a model of acute lung injury. Acta Anaesthesiol Scand. 2011;55(5):597–606.CrossRefPubMed
12.
go back to reference Tusman G, Suarez-Sipmann F, Borges JB, et al. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4.CrossRefPubMed Tusman G, Suarez-Sipmann F, Borges JB, et al. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37:870–4.CrossRefPubMed
13.
go back to reference Enghoff H. Volumen inefficax: bemerkungen zur frage des schadlichen raumes. Upsala Läkarefören Förh. 1938;44:191–218. Enghoff H. Volumen inefficax: bemerkungen zur frage des schadlichen raumes. Upsala Läkarefören Förh. 1938;44:191–218.
14.
go back to reference Siddiki H, Kojicic M, Li G, et al. Bedside quantification of dead-space fraction using routine clinical data in patients with acute lung injury: secondary analysis of two prospective trials. Crit Care. 2010;14(4):R141.CrossRefPubMedPubMedCentral Siddiki H, Kojicic M, Li G, et al. Bedside quantification of dead-space fraction using routine clinical data in patients with acute lung injury: secondary analysis of two prospective trials. Crit Care. 2010;14(4):R141.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Thim T, Vinther NH, Krarup, et al. Initial assessment and treatment with the Airway, Breathing, Circulation, Disability, Exposure (ABCDE) approach. Int J Gen Med. 2012;5:117–21.CrossRefPubMedPubMedCentral Thim T, Vinther NH, Krarup, et al. Initial assessment and treatment with the Airway, Breathing, Circulation, Disability, Exposure (ABCDE) approach. Int J Gen Med. 2012;5:117–21.CrossRefPubMedPubMedCentral
17.
go back to reference Neumar RW, Otto CW, Link MS, et al. American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S729–67.CrossRefPubMed Neumar RW, Otto CW, Link MS, et al. American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122(18 Suppl 3):S729–67.CrossRefPubMed
18.
go back to reference Rudraraju P, Eisen LA. Confirmation of endotracheal tube position: a narrative review. J Intensive Care Med. 2009;24(5):283–92.CrossRefPubMed Rudraraju P, Eisen LA. Confirmation of endotracheal tube position: a narrative review. J Intensive Care Med. 2009;24(5):283–92.CrossRefPubMed
19.
go back to reference Poirier MP. Gonzalez Del-Rey JA, McAneney CM, DiGiulio GA. Utility of monitoring capnography, pulse oximetry, and vital signs in the detection of airway mishaps: a hyperoxemic animal model. Am J Emerg Med. 1998;16(4):350–2.CrossRefPubMed Poirier MP. Gonzalez Del-Rey JA, McAneney CM, DiGiulio GA. Utility of monitoring capnography, pulse oximetry, and vital signs in the detection of airway mishaps: a hyperoxemic animal model. Am J Emerg Med. 1998;16(4):350–2.CrossRefPubMed
20.
go back to reference Shibutani K, Muraoka M, Shirasaki S, et al. Do changes in end-tidal Pco 2 quantitatively reflect changes in cardiac output? Anesth Analg. 1994;79(5):829–33.CrossRefPubMed Shibutani K, Muraoka M, Shirasaki S, et al. Do changes in end-tidal Pco 2 quantitatively reflect changes in cardiac output? Anesth Analg. 1994;79(5):829–33.CrossRefPubMed
21.
go back to reference Kline JA, Israel EG, Michelson EA, et al. Diagnostic accuracy of a bedside D-dimer assay and alveolar dead-space measurement for rapid exclusion of pulmonary embolism: a multicenter study. JAMA. 2001;285(6):761–8.CrossRefPubMed Kline JA, Israel EG, Michelson EA, et al. Diagnostic accuracy of a bedside D-dimer assay and alveolar dead-space measurement for rapid exclusion of pulmonary embolism: a multicenter study. JAMA. 2001;285(6):761–8.CrossRefPubMed
22.
go back to reference Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988;318:607–11.CrossRefPubMed Falk JL, Rackow EC, Weil MH. End-tidal carbon dioxide concentration during cardiopulmonary resuscitation. N Engl J Med. 1988;318:607–11.CrossRefPubMed
23.
go back to reference Gudipati CV, Weil MH, Bisera J, et al. Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation. 1988;77(1):234–9.CrossRefPubMed Gudipati CV, Weil MH, Bisera J, et al. Expired carbon dioxide: a noninvasive monitor of cardiopulmonary resuscitation. Circulation. 1988;77(1):234–9.CrossRefPubMed
24.
go back to reference Sanders AB, Kern KB, Otto CW. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. A prognostic indicator for survival. JAMA. 1989;262:1347–51.PubMed Sanders AB, Kern KB, Otto CW. End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. A prognostic indicator for survival. JAMA. 1989;262:1347–51.PubMed
25.
go back to reference Dubin A, Murias G, Estenssoro E, et al. End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med. 2000;26:1619–23.CrossRefPubMed Dubin A, Murias G, Estenssoro E, et al. End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med. 2000;26:1619–23.CrossRefPubMed
26.
go back to reference Isserles SA, Breen PH. Can changes in end-tidal Pco 2 measure changes in cardiac output. Anesth Analg. 1991;73:808–14.CrossRefPubMed Isserles SA, Breen PH. Can changes in end-tidal Pco 2 measure changes in cardiac output. Anesth Analg. 1991;73:808–14.CrossRefPubMed
27.
go back to reference Romero PV, Rodriguez B, Oliveira D de, et al. Volumetric capnography and COPD staging. Int J Chron Obstruct Pulmon Dis. 2007;2(3):381–91. Romero PV, Rodriguez B, Oliveira D de, et al. Volumetric capnography and COPD staging. Int J Chron Obstruct Pulmon Dis. 2007;2(3):381–91.
28.
go back to reference Kars AH, Bogaard JM, Stijnen T, et al. Dead space and slope indices from the expiratory carbon dioxide tension-volume curve. Eur Respir J. 1997;10:1829–36.CrossRefPubMed Kars AH, Bogaard JM, Stijnen T, et al. Dead space and slope indices from the expiratory carbon dioxide tension-volume curve. Eur Respir J. 1997;10:1829–36.CrossRefPubMed
29.
go back to reference Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284–9.CrossRefPubMed Suter PM, Fairley B, Isenberg MD. Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292:284–9.CrossRefPubMed
30.
go back to reference Yang Y, Huang Y, Tang R, et al. Optimization of positive end-expiratory pressure by volumetric capnography variables in lavage-induced acute lung injury. Respiration. 2014;87:75–83.CrossRefPubMed Yang Y, Huang Y, Tang R, et al. Optimization of positive end-expiratory pressure by volumetric capnography variables in lavage-induced acute lung injury. Respiration. 2014;87:75–83.CrossRefPubMed
31.
go back to reference Böhm SH, Maisch S, Sandersleben A von, et al. The effects of lung recruitment on the phase III slope of volumetric capnography in morbidly obese patients. Anesth Analg. 2009;109:151–9. Böhm SH, Maisch S, Sandersleben A von, et al. The effects of lung recruitment on the phase III slope of volumetric capnography in morbidly obese patients. Anesth Analg. 2009;109:151–9.
32.
go back to reference Tusman G, Böhm SH, Suarez-Sipmann F, Turchetto E. Dead space analysis before and after lung recruitment. Can J Anesth. 2004;51:723–7.CrossRefPubMed Tusman G, Böhm SH, Suarez-Sipmann F, Turchetto E. Dead space analysis before and after lung recruitment. Can J Anesth. 2004;51:723–7.CrossRefPubMed
33.
go back to reference Maisch S, Reissmann H, Fuellekrug B, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106:175–81.CrossRefPubMed Maisch S, Reissmann H, Fuellekrug B, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106:175–81.CrossRefPubMed
34.
go back to reference Valta P, Uusaro A, Nunes S, et al. Acute respiratory distress syndrome: frequency, clinical course, and costs of care. Crit Care Med. 1999;27:2367–74.CrossRefPubMed Valta P, Uusaro A, Nunes S, et al. Acute respiratory distress syndrome: frequency, clinical course, and costs of care. Crit Care Med. 1999;27:2367–74.CrossRefPubMed
35.
go back to reference Kallet RH, Alonso JA, Pittet JF, Matthay MA. Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir Care. 2004;49:1008–14.PubMed Kallet RH, Alonso JA, Pittet JF, Matthay MA. Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir Care. 2004;49:1008–14.PubMed
36.
go back to reference Charron C, Repesse X, Bouferrache K, et al. Paco 2 and alveolar dead space are more relevant than Pao 2/Fio 2 ratio in monitoring the respiratory response to prone position in ARDS patients: a physiological study. Crit Care. 2011;15:R175.CrossRefPubMedPubMedCentral Charron C, Repesse X, Bouferrache K, et al. Paco 2 and alveolar dead space are more relevant than Pao 2/Fio 2 ratio in monitoring the respiratory response to prone position in ARDS patients: a physiological study. Crit Care. 2011;15:R175.CrossRefPubMedPubMedCentral
37.
go back to reference Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco 2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.CrossRefPubMed Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco 2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.CrossRefPubMed
38.
go back to reference Monge García IN, Cano AG, Romero MG, et al. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann of Intensive Care. 2012;2:9.CrossRef Monge García IN, Cano AG, Romero MG, et al. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann of Intensive Care. 2012;2:9.CrossRef
39.
go back to reference Verschuren F, Heinonen E, Clause D, et al. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004;30(11):2129–32.CrossRefPubMed Verschuren F, Heinonen E, Clause D, et al. Volumetric capnography as a bedside monitoring of thrombolysis in major pulmonary embolism. Intensive Care Med. 2004;30(11):2129–32.CrossRefPubMed
40.
go back to reference Walker RN, Heuberger RA. Predictive equations for energy needs for the critically ill. Respiratory Care. 2009;54(4):509–21.PubMed Walker RN, Heuberger RA. Predictive equations for energy needs for the critically ill. Respiratory Care. 2009;54(4):509–21.PubMed
42.
go back to reference Fung EB. Estimating energy expenditure in critically ill adults and children. AACN Clin Issues. 2000;11:480–97.CrossRefPubMed Fung EB. Estimating energy expenditure in critically ill adults and children. AACN Clin Issues. 2000;11:480–97.CrossRefPubMed
43.
go back to reference Siobal MS, Hammoudeh H, Snow M. Accuracy of resting energy expenditure calculated by a modification of the abbreviated Weir equation in mechanically ventilated adult ICU patients (Abstract). Respir Care. 2012;57(10):1721. Siobal MS, Hammoudeh H, Snow M. Accuracy of resting energy expenditure calculated by a modification of the abbreviated Weir equation in mechanically ventilated adult ICU patients (Abstract). Respir Care. 2012;57(10):1721.
44.
go back to reference Shimada Y, Yoshiya I, Tanaka K, et al. Evaluation of the progress and prognosis of adult respiratory distress syndrome. Simple respiratory physiologic measurement. Chest. 1979;76:180–6.PubMed Shimada Y, Yoshiya I, Tanaka K, et al. Evaluation of the progress and prognosis of adult respiratory distress syndrome. Simple respiratory physiologic measurement. Chest. 1979;76:180–6.PubMed
45.
go back to reference Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary deadspace fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346:1281–6.CrossRefPubMed Nuckton TJ, Alonso JA, Kallet RH, et al. Pulmonary deadspace fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346:1281–6.CrossRefPubMed
46.
go back to reference Cepkova M, Kapur V, Ren X, et al. Pulmonary dead space fraction and pulmonary artery systolic pressure as early predictors of clinical outcome in acute lung injury. Chest. 2007;132:836–42.CrossRefPubMed Cepkova M, Kapur V, Ren X, et al. Pulmonary dead space fraction and pulmonary artery systolic pressure as early predictors of clinical outcome in acute lung injury. Chest. 2007;132:836–42.CrossRefPubMed
47.
go back to reference Raurich JM, Vilar M, Colomar A, et al. Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care. 2010;55:282–7.PubMed Raurich JM, Vilar M, Colomar A, et al. Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care. 2010;55:282–7.PubMed
Metagegevens
Titel
Capnografiecapnografie
Auteur
Hans ter Haar
Copyright
2017
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-1590-1_11