Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2009

01-07-2009 | Original Article

Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions

Auteurs: Hiroshi Imamizu, Mitsuo Kawato

Gepubliceerd in: Psychological Research | Uitgave 4/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Humans can guide their actions toward the realization of their intentions. Flexible, rapid and precise realization of intentions and goals relies on the brain learning to control its actions on external objects and to predict the consequences of this control. Neural mechanisms that mimic the input–output properties of our own body and other objects can be used to support prediction and control, and such mechanisms are called internal models. We first summarize functional neuroimaging, behavioral and computational studies of the brain mechanisms related to acquisition, modular organization, and the predictive switching of internal models mainly for tool use. These mechanisms support predictive control and flexible switching of intentional actions. We then review recent studies demonstrating that internal models are crucial for the execution of not only immediate actions but also higher-order cognitive functions, including optimization of behaviors toward long-term goals, social interactions based on prediction of others’ actions and mental states, and language processing. These studies suggest that a concept of internal models can consistently explain the neural mechanisms and computational principles needed for fundamental sensorimotor functions as well as higher-order cognitive functions.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Baron-Cohen, S. (1997). Mindblindness: An essay on autism and theory of mind (learning, development and conceptual change). Cambridge: MIT Press. Baron-Cohen, S. (1997). Mindblindness: An essay on autism and theory of mind (learning, development and conceptual change). Cambridge: MIT Press.
go back to reference Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.PubMedCrossRef Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2(8), 561–567.PubMedCrossRef
go back to reference Blakemore, S. J., Frith, C. D., & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. Neuroreport, 12(9), 1879–1884.PubMedCrossRef Blakemore, S. J., Frith, C. D., & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. Neuroreport, 12(9), 1879–1884.PubMedCrossRef
go back to reference Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1(7), 635–640.PubMedCrossRef Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nature Neuroscience, 1(7), 635–640.PubMedCrossRef
go back to reference Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16(11), 3737–3744.PubMed Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16(11), 3737–3744.PubMed
go back to reference Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382(6588), 252–255.PubMedCrossRef Brashers-Krug, T., Shadmehr, R., & Bizzi, E. (1996). Consolidation in human motor memory. Nature, 382(6588), 252–255.PubMedCrossRef
go back to reference Bursztyn, L. L., Ganesh, G., Imamizu, H., Kawato, M., & Flanagan, J. R. (2006). Neural correlates of internal-model loading. Current Biology, 16(24), 2440–2445.PubMedCrossRef Bursztyn, L. L., Ganesh, G., Imamizu, H., Kawato, M., & Flanagan, J. R. (2006). Neural correlates of internal-model loading. Current Biology, 16(24), 2440–2445.PubMedCrossRef
go back to reference Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. Journal of Neuroscience, 21(16), 6283–6291.PubMed Clower, D. M., West, R. A., Lynch, J. C., & Strick, P. L. (2001). The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. Journal of Neuroscience, 21(16), 6283–6291.PubMed
go back to reference Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.PubMedCrossRef Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–1711.PubMedCrossRef
go back to reference Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. Neuroimage, 23(2), 744–751.PubMedCrossRef Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. Neuroimage, 23(2), 744–751.PubMedCrossRef
go back to reference Diedrichsen, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2007). Dissociating timing and coordination as functions of the cerebellum. Journal of Neuroscience, 27(23), 6291–6301.PubMedCrossRef Diedrichsen, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2007). Dissociating timing and coordination as functions of the cerebellum. Journal of Neuroscience, 27(23), 6291–6301.PubMedCrossRef
go back to reference Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7–8), 961–974.PubMedCrossRef Doya, K. (1999). What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Networks, 12(7–8), 961–974.PubMedCrossRef
go back to reference Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739.PubMedCrossRef Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739.PubMedCrossRef
go back to reference Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2001). Pediction of short- and long-term reward: A functional MRI study with a Markov decision problem. Paper presented at the Annual Meeting Society for Neuroscience. Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2001). Pediction of short- and long-term reward: A functional MRI study with a Markov decision problem. Paper presented at the Annual Meeting Society for Neuroscience.
go back to reference Ebner, T. J., & Pasalar, S. (2008). Cerebellum predicts the future motor state. Cerebellum, 7(4), 583–588.PubMedCrossRef Ebner, T. J., & Pasalar, S. (2008). Cerebellum predicts the future motor state. Cerebellum, 7(4), 583–588.PubMedCrossRef
go back to reference Flanagan, J. R., Nakano, E., Imamizu, H., Osu, R., Yoshioka, T., & Kawato, M. (1999). Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. Journal of Neuroscience, 19(20), RC34.PubMed Flanagan, J. R., Nakano, E., Imamizu, H., Osu, R., Yoshioka, T., & Kawato, M. (1999). Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. Journal of Neuroscience, 19(20), RC34.PubMed
go back to reference Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. Journal of Neuroscience, 17(4), 1519–1528.PubMed Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. Journal of Neuroscience, 17(4), 1519–1528.PubMed
go back to reference Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences of the USA, 103(7), 2458–2463.PubMedCrossRef Friederici, A. D., Bahlmann, J., Heim, S., Schubotz, R. I., & Anwander, A. (2006). The brain differentiates human and non-human grammars: Functional localization and structural connectivity. Proceedings of the National Academy of Sciences of the USA, 103(7), 2458–2463.PubMedCrossRef
go back to reference Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19, 1273–1302.PubMedCrossRef Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19, 1273–1302.PubMedCrossRef
go back to reference Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 355(1404), 1771–1788.CrossRef Frith, C. D., Blakemore, S. J., & Wolpert, D. M. (2000). Abnormalities in the awareness and control of action. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 355(1404), 1771–1788.CrossRef
go back to reference Frith, C. D., & Frith, U. (1999). Interacting minds—A biological basis. Science, 286(5445), 1692–1695.PubMedCrossRef Frith, C. D., & Frith, U. (1999). Interacting minds—A biological basis. Science, 286(5445), 1692–1695.PubMedCrossRef
go back to reference Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609.PubMedCrossRef Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(Pt 2), 593–609.PubMedCrossRef
go back to reference Gandolfo, F., Mussa-Ivaldi, F. A., & Bizzi, E. (1996). Motor learning by field approximation. Proceedings of the National Academy of Sciences of the USA, 93(9), 3843–3846.PubMedCrossRef Gandolfo, F., Mussa-Ivaldi, F. A., & Bizzi, E. (1996). Motor learning by field approximation. Proceedings of the National Academy of Sciences of the USA, 93(9), 3843–3846.PubMedCrossRef
go back to reference Ghahramani, Z., & Wolpert, D. M. (1997). Modular decomposition in visuomotor learning. Nature, 386(6623), 392–395.PubMedCrossRef Ghahramani, Z., & Wolpert, D. M. (1997). Modular decomposition in visuomotor learning. Nature, 386(6623), 392–395.PubMedCrossRef
go back to reference Gomi, H., Shidara, M., Takemura, A., Inoue, Y., Kawano, K., & Kawato, M. (1998). Temporal firing patterns of purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes (in process citation). Journal of Neurophysiology, 80(2), 818–831.PubMed Gomi, H., Shidara, M., Takemura, A., Inoue, Y., Kawano, K., & Kawato, M. (1998). Temporal firing patterns of purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes (in process citation). Journal of Neurophysiology, 80(2), 818–831.PubMed
go back to reference Graydon, F. X., Friston, K. J., Thomas, C. G., Brooks, V. B., & Menon, R. S. (2005). Learning-related fMRI activation associated with a rotational visuo-motor transformation. Brain Research Cognitive Brain Research, 22, 373–383.PubMedCrossRef Graydon, F. X., Friston, K. J., Thomas, C. G., Brooks, V. B., & Menon, R. S. (2005). Learning-related fMRI activation associated with a rotational visuo-motor transformation. Brain Research Cognitive Brain Research, 22, 373–383.PubMedCrossRef
go back to reference Grodd, W., Hulsmann, E., Lotze, M., Wildgruber, D., & Erb, M. (2001). Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Human Brain Mapping, 13(2), 55–73.PubMedCrossRef Grodd, W., Hulsmann, E., Lotze, M., Wildgruber, D., & Erb, M. (2001). Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Human Brain Mapping, 13(2), 55–73.PubMedCrossRef
go back to reference Haruno, M., & Kawato, M. (in press). Activity in the superior temporal sulcus highlights learning competence in an interaction game. Journal of Neuroscience. Haruno, M., & Kawato, M. (in press). Activity in the superior temporal sulcus highlights learning competence in an interaction game. Journal of Neuroscience.
go back to reference Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., et al. (2004). A neural correlate of reward-based behavioral learning in caudate nucleus: A functional magnetic resonance imaging study of a stochastic decision task. Journal of Neuroscience, 24(7), 1660–1665.PubMedCrossRef Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., et al. (2004). A neural correlate of reward-based behavioral learning in caudate nucleus: A functional magnetic resonance imaging study of a stochastic decision task. Journal of Neuroscience, 24(7), 1660–1665.PubMedCrossRef
go back to reference Haruno, M., Wolpert, D. M., & Kawato, M. (2001). Mosaic model for sensorimotor learning and control. Neural Computation, 13(10), 2201–2220.PubMedCrossRef Haruno, M., Wolpert, D. M., & Kawato, M. (2001). Mosaic model for sensorimotor learning and control. Neural Computation, 13(10), 2201–2220.PubMedCrossRef
go back to reference Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 1569–1579.PubMedCrossRef Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298(5598), 1569–1579.PubMedCrossRef
go back to reference Higuchi, S., Imamizu, H., Chaminade, T., & Kawato, M. (2004). Broca’s area during tool—use and linguistic processing. Paper presented at the Annual Meeting Society for Neuroscience. Higuchi, S., Imamizu, H., Chaminade, T., & Kawato, M. (2004). Broca’s area during tool—use and linguistic processing. Paper presented at the Annual Meeting Society for Neuroscience.
go back to reference Higuchi, S., Imamizu, H., & Kawato, M. (2007). Cerebellar activity evoked by common tool-use execution and imagery tasks: An fMRI study. Cortex, 43(3), 350–358.PubMedCrossRef Higuchi, S., Imamizu, H., & Kawato, M. (2007). Cerebellar activity evoked by common tool-use execution and imagery tasks: An fMRI study. Cortex, 43(3), 350–358.PubMedCrossRef
go back to reference Hoshi, E., Tremblay, L., Feger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493.PubMedCrossRef Hoshi, E., Tremblay, L., Feger, J., Carras, P. L., & Strick, P. L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 1491–1493.PubMedCrossRef
go back to reference Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. The Behavioral and Brain Sciences, 31(1), 1–22. (discussion 22–58).PubMedCrossRef Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. The Behavioral and Brain Sciences, 31(1), 1–22. (discussion 22–58).PubMedCrossRef
go back to reference Iacoboni, M., Koski, L. M., Brass, M., Bekkering, H., Woods, R. P., Dubeau, M. C., et al. (2001). Reafferent copies of imitated actions in the right superior temporal cortex. Proceedings of the National Academy of Sciences of the USA, 98(24), 13995–13999.PubMedCrossRef Iacoboni, M., Koski, L. M., Brass, M., Bekkering, H., Woods, R. P., Dubeau, M. C., et al. (2001). Reafferent copies of imitated actions in the right superior temporal cortex. Proceedings of the National Academy of Sciences of the USA, 98(24), 13995–13999.PubMedCrossRef
go back to reference Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007a). Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43(3), 338–349.PubMedCrossRef Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007a). Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43(3), 338–349.PubMedCrossRef
go back to reference Imamizu, H., & Kawato, M. (2008). Neural correlates of predictive and postdictive switching mechanisms for internal models. Journal of Neuroscience, 28(42), 10751–10765.PubMedCrossRef Imamizu, H., & Kawato, M. (2008). Neural correlates of predictive and postdictive switching mechanisms for internal models. Journal of Neuroscience, 28(42), 10751–10765.PubMedCrossRef
go back to reference Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., & Kawato, M. (2003). Modular organization of internal models of tools in the human cerebellum. Proceedings of the National Academy of Sciences of the USA, 100(9), 5461–5466.PubMedCrossRef Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., & Kawato, M. (2003). Modular organization of internal models of tools in the human cerebellum. Proceedings of the National Academy of Sciences of the USA, 100(9), 5461–5466.PubMedCrossRef
go back to reference Imamizu, H., Kuroda, T., Yoshioka, T., & Kawato, M. (2004). Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. Journal of Neuroscience, 24(5), 1173–1181.PubMedCrossRef Imamizu, H., Kuroda, T., Yoshioka, T., & Kawato, M. (2004). Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. Journal of Neuroscience, 24(5), 1173–1181.PubMedCrossRef
go back to reference Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403(6766), 192–195.PubMedCrossRef Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403(6766), 192–195.PubMedCrossRef
go back to reference Imamizu, H., Sugimoto, N., Osu, R., Tsutsui, K., Sugiyama, K., Wada, Y., et al. (2007b). Explicit contextual information selectively contributes to predictive switching of internal models. Experimental Brain Research, 181(3), 395–408.CrossRef Imamizu, H., Sugimoto, N., Osu, R., Tsutsui, K., Sugiyama, K., Wada, Y., et al. (2007b). Explicit contextual information selectively contributes to predictive switching of internal models. Experimental Brain Research, 181(3), 395–408.CrossRef
go back to reference Ito, M. (1984). The cerebellum and neural motor control. New York: Raven Press. Ito, M. (1984). The cerebellum and neural motor control. New York: Raven Press.
go back to reference Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixture of local experts. Neural Computation, 3, 79–87.CrossRef Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixture of local experts. Neural Computation, 3, 79–87.CrossRef
go back to reference Johansson, R. S., & Westling, G. (1988). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71. Johansson, R. S., & Westling, G. (1988). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71.
go back to reference Karniel, A., & Mussa-Ivaldi, F. A. (2002). Does the motor control system use multiple models and context switching to cope with a variable environment? Experimental Brain Research, 143(4), 520–524.CrossRef Karniel, A., & Mussa-Ivaldi, F. A. (2002). Does the motor control system use multiple models and context switching to cope with a variable environment? Experimental Brain Research, 143(4), 520–524.CrossRef
go back to reference Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.PubMedCrossRef Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9(6), 718–727.PubMedCrossRef
go back to reference Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57(3), 169–185.PubMedCrossRef Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-network model for control and learning of voluntary movement. Biological Cybernetics, 57(3), 169–185.PubMedCrossRef
go back to reference Kawato, M., Kuroda, T., Imamizu, H., Nakano, E., Miyauchi, S., & Yoshioka, T. (2003). Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Progress in Brain Research, 142, 171–188.PubMedCrossRef Kawato, M., Kuroda, T., Imamizu, H., Nakano, E., Miyauchi, S., & Yoshioka, T. (2003). Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Progress in Brain Research, 142, 171–188.PubMedCrossRef
go back to reference Kawato, M., & Samejima, K. (2007). Efficient reinforcement learning: Computational theories, neuroscience and robotics. Current Opinion in Neurobiology, 17(2), 205–212.PubMedCrossRef Kawato, M., & Samejima, K. (2007). Efficient reinforcement learning: Computational theories, neuroscience and robotics. Current Opinion in Neurobiology, 17(2), 205–212.PubMedCrossRef
go back to reference Kawawaki, D., Shibata, T., Goda, N., Doya, K., & Kawato, M. (2006). Anterior and superior lateral occipito-temporal cortex responsible for target motion prediction during overt and covert visual pursuit. Neuroscience Research, 54(2), 112–123.PubMedCrossRef Kawawaki, D., Shibata, T., Goda, N., Doya, K., & Kawato, M. (2006). Anterior and superior lateral occipito-temporal cortex responsible for target motion prediction during overt and covert visual pursuit. Neuroscience Research, 54(2), 112–123.PubMedCrossRef
go back to reference Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.PubMedCrossRef Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.PubMedCrossRef
go back to reference Kitazawa, S., Kimura, T., & Yin, P. B. (1998). Cerebellar complex spikes encode both destinations and errors in arm movements. Nature, 392(6675), 494–497.PubMedCrossRef Kitazawa, S., Kimura, T., & Yin, P. B. (1998). Cerebellar complex spikes encode both destinations and errors in arm movements. Nature, 392(6675), 494–497.PubMedCrossRef
go back to reference Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2(11), 1026–1031.PubMedCrossRef Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2(11), 1026–1031.PubMedCrossRef
go back to reference Krakauer, J. W., Ghilardi, M. F., Mentis, M., Barnes, A., Veytsman, M., Eidelberg, D., et al. (2004). Differential cortical and subcortical activations in learning rotations and gains for reaching: A PET study. Journal of Neurophysiology, 91(2), 924–933.PubMedCrossRef Krakauer, J. W., Ghilardi, M. F., Mentis, M., Barnes, A., Veytsman, M., Eidelberg, D., et al. (2004). Differential cortical and subcortical activations in learning rotations and gains for reaching: A PET study. Journal of Neurophysiology, 91(2), 924–933.PubMedCrossRef
go back to reference Kravitz, J. H., & Yaffe, F. L. (1972). Conditionned adaptation to prismatic displacement with a tone as the conditioal stimulus. Perception & Psychophysics, 12(3), 305–308. Kravitz, J. H., & Yaffe, F. L. (1972). Conditionned adaptation to prismatic displacement with a tone as the conditioal stimulus. Perception & Psychophysics, 12(3), 305–308.
go back to reference Maquet, P., Schwartz, S., Passingham, R., & Frith, C. (2003). Sleep-related consolidation of a visuomotor skill: Brain mechanisms as assessed by functional magnetic resonance imaging. Journal of Neuroscience, 23(4), 1432–1440.PubMed Maquet, P., Schwartz, S., Passingham, R., & Frith, C. (2003). Sleep-related consolidation of a visuomotor skill: Brain mechanisms as assessed by functional magnetic resonance imaging. Journal of Neuroscience, 23(4), 1432–1440.PubMed
go back to reference Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11(2), 194–201.PubMedCrossRef Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11(2), 194–201.PubMedCrossRef
go back to reference Miall, R. C. (2003). Connecting mirror neurons and forward models. Neuroreport, 14(17), 2135–2137.PubMedCrossRef Miall, R. C. (2003). Connecting mirror neurons and forward models. Neuroreport, 14(17), 2135–2137.PubMedCrossRef
go back to reference Miall, R. C., Keating, J. G., Malkmus, M., & Thach, W. T. (1998). Simple spike activity predicts occurrence of complex spikes in cerebellar Purkinje cells. Nature Neuroscience, 1(1), 13–15.PubMedCrossRef Miall, R. C., Keating, J. G., Malkmus, M., & Thach, W. T. (1998). Simple spike activity predicts occurrence of complex spikes in cerebellar Purkinje cells. Nature Neuroscience, 1(1), 13–15.PubMedCrossRef
go back to reference Miall, R. C., Reckess, G. Z., & Imamizu, H. (2001). The cerebellum coordinates eye and hand tracking movements. Nature Neuroscience, 4(6), 638–644.PubMedCrossRef Miall, R. C., Reckess, G. Z., & Imamizu, H. (2001). The cerebellum coordinates eye and hand tracking movements. Nature Neuroscience, 4(6), 638–644.PubMedCrossRef
go back to reference Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith predictor? Journal of Motor Behavior, 25, 203–216.PubMed Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith predictor? Journal of Motor Behavior, 25, 203–216.PubMed
go back to reference Middleton, F. A., & Strick, P. L. (1997). Dentate output channels: Motor and cognitive components. In C. I. de Zeeuw, P. Strata, & J. Voogd (Eds.), The cerebellum: From structure to control (pp. 553–566). Amsterdam: Elsevier Science BV. Middleton, F. A., & Strick, P. L. (1997). Dentate output channels: Motor and cognitive components. In C. I. de Zeeuw, P. Strata, & J. Voogd (Eds.), The cerebellum: From structure to control (pp. 553–566). Amsterdam: Elsevier Science BV.
go back to reference Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21(2), 700–712.PubMed Middleton, F. A., & Strick, P. L. (2001). Cerebellar projections to the prefrontal cortex of the primate. Journal of Neuroscience, 21(2), 700–712.PubMed
go back to reference Milner, T. E., Franklin, D. W., Imamizu, H., & Kawato, M. (2007). Central control of grasp: Manipulation of objects with complex and simple dynamics. Neuroimage, 36(2), 388–395.PubMedCrossRef Milner, T. E., Franklin, D. W., Imamizu, H., & Kawato, M. (2007). Central control of grasp: Manipulation of objects with complex and simple dynamics. Neuroimage, 36(2), 388–395.PubMedCrossRef
go back to reference Obayashi, S., Suhara, T., Kawabe, K., Okauchi, T., Maeda, J., Akine, Y., et al. (2001). Functional brain mapping of monkey tool use. Neuroimage, 14(4), 853–861.PubMedCrossRef Obayashi, S., Suhara, T., Kawabe, K., Okauchi, T., Maeda, J., Akine, Y., et al. (2001). Functional brain mapping of monkey tool use. Neuroimage, 14(4), 853–861.PubMedCrossRef
go back to reference O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28(9), 2252–2260.PubMedCrossRef O’Reilly, J. X., Mesulam, M. M., & Nobre, A. C. (2008). The cerebellum predicts the timing of perceptual events. Journal of Neuroscience, 28(9), 2252–2260.PubMedCrossRef
go back to reference Osu, R., Hirai, S., Yoshioka, T., & Kawato, M. (2004). Random presentation enables subjects to adapt to two opposing forces on the hand. Nature Neuroscience, 7(2), 111–112.PubMedCrossRef Osu, R., Hirai, S., Yoshioka, T., & Kawato, M. (2004). Random presentation enables subjects to adapt to two opposing forces on the hand. Nature Neuroscience, 7(2), 111–112.PubMedCrossRef
go back to reference Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: A computationally guided review. Neural Network, 19(3), 254–271.CrossRef Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: A computationally guided review. Neural Network, 19(3), 254–271.CrossRef
go back to reference Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Brain Research Cognitive Brain Research, 22(2), 129–151.PubMedCrossRef Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Brain Research Cognitive Brain Research, 22(2), 129–151.PubMedCrossRef
go back to reference Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A. M., Pardo, J. V., Fox, P. T., et al. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4(1), 8–26.PubMedCrossRef Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A. M., Pardo, J. V., Fox, P. T., et al. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4(1), 8–26.PubMedCrossRef
go back to reference Sasaki, K., Oka, H., Kawaguchi, S., Jinnai, K., & Yasuda, T. (1977). Mossy fibre and climbing fibre responses produced in the cerebellar cortex by stimulation of the cerebral cortex in monkeys. Experimental Brain Research, 29(3–4), 419–428. Sasaki, K., Oka, H., Kawaguchi, S., Jinnai, K., & Yasuda, T. (1977). Mossy fibre and climbing fibre responses produced in the cerebellar cortex by stimulation of the cerebral cortex in monkeys. Experimental Brain Research, 29(3–4), 419–428.
go back to reference Schmid, A., Rees, G., Frith, C., & Barnes, G. (2001). An fMRI study of anticipation and learning of smooth pursuit eye movements in humans. Neuroreport, 12(7), 1409–1414.PubMedCrossRef Schmid, A., Rees, G., Frith, C., & Barnes, G. (2001). An fMRI study of anticipation and learning of smooth pursuit eye movements in humans. Neuroreport, 12(7), 1409–1414.PubMedCrossRef
go back to reference Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13(3), 900–913.PubMed Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13(3), 900–913.PubMed
go back to reference Schultz, J., Imamizu, H., Kawato, M., & Frith, C. D. (2004). Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. Journal of Cognitive Neuroscience, 16(10), 1695–1705.PubMedCrossRef Schultz, J., Imamizu, H., Kawato, M., & Frith, C. D. (2004). Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. Journal of Cognitive Neuroscience, 16(10), 1695–1705.PubMedCrossRef
go back to reference Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277(5327), 821–825.PubMedCrossRef Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277(5327), 821–825.PubMedCrossRef
go back to reference Shidara, M., Kawano, K., Gomi, H., & Kawato, M. (1993). Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature, 365(6441), 50–52.PubMedCrossRef Shidara, M., Kawano, K., Gomi, H., & Kawato, M. (1993). Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature, 365(6441), 50–52.PubMedCrossRef
go back to reference Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.
go back to reference Tamada, T., Miyauchi, S., Imamizu, H., Yoshioka, T., & Kawato, M. (1999). Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. Neuroreport, 10(2), 325–331.PubMedCrossRef Tamada, T., Miyauchi, S., Imamizu, H., Yoshioka, T., & Kawato, M. (1999). Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. Neuroreport, 10(2), 325–331.PubMedCrossRef
go back to reference Tankersley, D., Stowe, C. J., & Huettel, S. A. (2007). Altruism is associated with an increased neural response to agency. Nature Neuroscience, 10(2), 150–151.PubMedCrossRef Tankersley, D., Stowe, C. J., & Huettel, S. A. (2007). Altruism is associated with an increased neural response to agency. Nature Neuroscience, 10(2), 150–151.PubMedCrossRef
go back to reference Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 358(1431), 593–602.CrossRef Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 358(1431), 593–602.CrossRef
go back to reference Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.PubMedCrossRef Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.PubMedCrossRef
go back to reference Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.PubMedCrossRef Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.PubMedCrossRef
Metagegevens
Titel
Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions
Auteurs
Hiroshi Imamizu
Mitsuo Kawato
Publicatiedatum
01-07-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-009-0235-1

Andere artikelen Uitgave 4/2009

Psychological Research 4/2009 Naar de uitgave