Skip to main content
Top
Gepubliceerd in:

2019 | OriginalPaper | Hoofdstuk

1. Biomoleculen

Auteur : Prof. dr. F.C. Schuit

Gepubliceerd in: Leerboek metabolisme en voeding

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Hoofdstuk 1 bespreekt de structuur en functie van de belangrijkste biomoleculen. Eerst bekijken we de koolhydraten (suikers), die goede brandstof zijn maar ook uitblinken als structuurgevende moleculen. De tweede groep zijn de lipiden (vetten), die met hun apolaire groepen grenzen vormen in een ‘levende waterwereld’ (biologische membranen). Vetten leveren tevens uitmuntende brandstof. De derde groep biomoleculen bestaat uit proteïnen (eiwitten), die opgebouwd zijn als een ketting van twintig soorten aminozuren. Proteïnen staan centraal in het uitvoeren van metabole functies, zoals enzymen, hormonen en receptoren. De vierde groep biomoleculen bestaat uit informatiedragende nucleïnezuren RNA (ribonucleïnezuur) en DNA (desoxyribonucleïnezuur). DNA bevat de erfelijke informatie die de eiwitten coderen om een mens te laten functioneren; RNA is de vanuit DNA afgeschreven informatie die een interface maakt tussen DNA en eiwitten.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Ahlberg, G. et al. (2018). Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun. 9, Article number: 4316. Ahlberg, G. et al. (2018). Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation. Nat Commun. 9, Article number: 4316.
go back to reference Arend, P. (2018) Position of human blood group O(H) and phenotype-determining enzymes in growth and infectious disease. Ann. N.Y. Acad. Sci. 1425, 5–18.CrossRef Arend, P. (2018) Position of human blood group O(H) and phenotype-determining enzymes in growth and infectious disease. Ann. N.Y. Acad. Sci. 1425, 5–18.CrossRef
go back to reference Boomkamp, S.D. & Butters, T.D. (2008). Glycosphingolipid disorders of the brain. Subcell. Biochem. 49, 441–467. Boomkamp, S.D. & Butters, T.D. (2008). Glycosphingolipid disorders of the brain. Subcell. Biochem. 49, 441–467.
go back to reference Brites, P., Mooyer, P.A., El, M.L., Waterham, H.R. & Wanders, R.J. (2009). Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain. 132, 482–492. Brites, P., Mooyer, P.A., El, M.L., Waterham, H.R. & Wanders, R.J. (2009). Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain. 132, 482–492.
go back to reference Cavalier-Smith, T. (2006). Rooting the tree of life by transition analyses. Biol. Direct. 1, 19. Cavalier-Smith, T. (2006). Rooting the tree of life by transition analyses. Biol. Direct. 1, 19.
go back to reference Delage, B. & Dashwood, R.H. (2008). Dietary manipulation of histone structure & function. Annu. Rev. Nutr. 28, 347–366. Delage, B. & Dashwood, R.H. (2008). Dietary manipulation of histone structure & function. Annu. Rev. Nutr. 28, 347–366.
go back to reference Ellis, L., Atadja, P.W. & Johnstone, R.W. (2009). Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther. 8, 1409–1420. Ellis, L., Atadja, P.W. & Johnstone, R.W. (2009). Epigenetics in cancer: targeting chromatin modifications. Mol. Cancer Ther. 8, 1409–1420.
go back to reference Hoffmann, F.G., Opazo, J.C. & Storz, J.F. (2008). Rapid rates of lineage-specific gene duplication & deletion in the alpha-globin gene family. Mol. Biol. Evol. 25, 591–602. Hoffmann, F.G., Opazo, J.C. & Storz, J.F. (2008). Rapid rates of lineage-specific gene duplication & deletion in the alpha-globin gene family. Mol. Biol. Evol. 25, 591–602.
go back to reference Hosoi, E. (2008). Biological & clinical aspects of ABO blood group system. J. Med. Invest. 55, 174–182. Hosoi, E. (2008). Biological & clinical aspects of ABO blood group system. J. Med. Invest. 55, 174–182.
go back to reference Jaeken, J. & Matthijs, G. (2007). Congenital disorders of glycosylation: A rapidly expanding disease family. An. Rev. Genom. Human Genet. 8, 261–278. Jaeken, J. & Matthijs, G. (2007). Congenital disorders of glycosylation: A rapidly expanding disease family. An. Rev. Genom. Human Genet. 8, 261–278.
go back to reference Lee, E.K. & Gorospe, M. (2009). Minireview: Posttranscriptional regulation of the insulin & insulin-like growth factor systems. Endocrinology. 151, 1403–8. Lee, E.K. & Gorospe, M. (2009). Minireview: Posttranscriptional regulation of the insulin & insulin-like growth factor systems. Endocrinology. 151, 1403–8.
go back to reference Li, H. & Durbin, R. (2010). Fast & accurate long read alignment with Burrows-Wheeler transform. Bioinformatics. Li, H. & Durbin, R. (2010). Fast & accurate long read alignment with Burrows-Wheeler transform. Bioinformatics.
go back to reference Maddox, B. (2003). The double helix & the ‘wronged heroine’. Nature. 421, 407–408. Maddox, B. (2003). The double helix & the ‘wronged heroine’. Nature. 421, 407–408.
go back to reference Mathers, J.C. & McKay, J.A. (2009). Epigenetics – potential contribution to fetal programming. Adv. Exp. Med. Biol. 646, 119–123. Mathers, J.C. & McKay, J.A. (2009). Epigenetics – potential contribution to fetal programming. Adv. Exp. Med. Biol. 646, 119–123.
go back to reference Meyer, T.E., Tollin, G. & Cusanovich, M.A. (1994). Protein interaction sites obtained via sequence homology. The site of complexation of elektron transfer partners of cytochrome c revealed by mapping amino acid substitutions onto three-dimensional protein surfaces. Biochimie. 76, 480–488. Meyer, T.E., Tollin, G. & Cusanovich, M.A. (1994). Protein interaction sites obtained via sequence homology. The site of complexation of elektron transfer partners of cytochrome c revealed by mapping amino acid substitutions onto three-dimensional protein surfaces. Biochimie. 76, 480–488.
go back to reference Nooijer S. de Holland B.R. & Penny D. (2009). The emergence of predators in early life: there was no Garden of Eden. PLoS. One. 4, e5507. Nooijer S. de Holland B.R. & Penny D. (2009). The emergence of predators in early life: there was no Garden of Eden. PLoS. One. 4, e5507.
go back to reference Sanger, F. (2001). The early days of DNA sequences. Nat. Med. 7, 267–268.CrossRef Sanger, F. (2001). The early days of DNA sequences. Nat. Med. 7, 267–268.CrossRef
go back to reference Schauer, R & Kamerling, J.P. (2018). Exploration of the Sialic Acid World. Adv Carbohydr. Chem Biochem. 75, 1–213. Schauer, R & Kamerling, J.P. (2018). Exploration of the Sialic Acid World. Adv Carbohydr. Chem Biochem. 75, 1–213.
go back to reference Sezgin, E., Levental, I., Mayor, S., Eggeling, C. (2017). The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18, 361–374.CrossRef Sezgin, E., Levental, I., Mayor, S., Eggeling, C. (2017). The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 18, 361–374.CrossRef
go back to reference Smith, B.C. & Denu, J.M. (2009). Chemical mechanisms of histone lysine & arginine modifications. Biochim. Biophys. Acta. 1789, 45–57. Smith, B.C. & Denu, J.M. (2009). Chemical mechanisms of histone lysine & arginine modifications. Biochim. Biophys. Acta. 1789, 45–57.
go back to reference Storry, J.R. & Olsson, M.L. (2009). The ABO blood group system revisited: a review & update. Immunohematology. 25, 48–59. Storry, J.R. & Olsson, M.L. (2009). The ABO blood group system revisited: a review & update. Immunohematology. 25, 48–59.
go back to reference Tokuda, G. & Watanabe, H. (2007). Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett. 3, 336–339. Tokuda, G. & Watanabe, H. (2007). Hidden cellulases in termites: revision of an old hypothesis. Biol. Lett. 3, 336–339.
go back to reference Watson, J.D. & Crick, F.H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 171, 737–738. Watson, J.D. & Crick, F.H. (1953). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 171, 737–738.
Metagegevens
Titel
Biomoleculen
Auteur
Prof. dr. F.C. Schuit
Copyright
2019
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2358-6_1