Skip to main content
Top

2020 | OriginalPaper | Hoofdstuk

5. Biologisch fundament van leren: het plastische brein

Auteur : Ben van Cranenburgh

Gepubliceerd in: Van contractie naar actie

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Leren is mogelijk doordat er in de hersenen iets verandert: plasticiteit. Hoewel men er lang en ten onrechte van uitgegaan is dat het volwassen brein statisch is, zijn de bewijzen voor plasticiteit op dit moment onontkoombaar: op alle niveaus is plasticiteit aangetoond, van zenuwuiteinden tot cortex. Plastische veranderingen treden op tijdens de ontwikkeling van kind tot volwassene, bij het leren van motorische vaardigheden (van tennis tot vioolspelen), van zintuiglijke vaardigheden (bijvoorbeeld leren van braille, pianostemmen, gebarentaal) en bij herstel na hersenbeschadiging. Beweging, bezigheden en leefstijl hebben een ingrijpende invloed op structuur en functie van onze hersenen, zo sterk zelfs dat hierdoor het optreden van degeneratieve ziekten uitgesteld of vertraagd kan worden. Inzicht in plasticiteit kan inspireren tot een andere aanpak; niet alleen van leerprocessen, maar ook van chronische pijn en focale dystonie.
Literatuur
go back to reference Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concept in cognitive reserve. Trends in cognitive sciences, 17(10), 502–509. Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concept in cognitive reserve. Trends in cognitive sciences, 17(10), 502–509.
go back to reference Cotman, C., et al. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 9. Cotman, C., et al. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 9.
go back to reference Cramer, S., & Nudo, R. (2010). Brain repair after stroke. Cambridge: Cambridge Universitiy Press.CrossRef Cramer, S., & Nudo, R. (2010). Brain repair after stroke. Cambridge: Cambridge Universitiy Press.CrossRef
go back to reference DeFelipe, J. (2002). Sesquicentenary of the birthday of Santiago Ramón y Cajal, the father of modern neuroscience. Trends in Neurosciences, 25, 481. DeFelipe, J. (2002). Sesquicentenary of the birthday of Santiago Ramón y Cajal, the father of modern neuroscience. Trends in Neurosciences, 25, 481.
go back to reference ECLIPSE Collaborative Members. (2010). Education, the brain and dementia: Neuroprotection or compensation. Brain, 133, 2210–2216.CrossRef ECLIPSE Collaborative Members. (2010). Education, the brain and dementia: Neuroprotection or compensation. Brain, 133, 2210–2216.CrossRef
go back to reference Elbert, T., et al. (1995). Increased cortical representation of the finger of the left hand in string players. Science, 270, 305–307. Elbert, T., et al. (1995). Increased cortical representation of the finger of the left hand in string players. Science, 270, 305–307.
go back to reference Hillary, F., & Grafman, J. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in cognitive sciences, 21(5), 385–401. Hillary, F., & Grafman, J. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in cognitive sciences, 21(5), 385–401.
go back to reference James, W. (1890, 1950). The principles of psychology, (Vol. 1 en 2). New York: Dover. James, W. (1890, 1950). The principles of psychology, (Vol. 1 en 2). New York: Dover.
go back to reference Jenkins, W., & Merzenich, M. (1987). Reorganization of cortical representation after brain injury: A neurophysiological model of the basis of recovery from stroke. In Seil, F., et al. Neural regeneration. Progress of Brain Research, 71. Amsterdam: Elsevier. Jenkins, W., & Merzenich, M. (1987). Reorganization of cortical representation after brain injury: A neurophysiological model of the basis of recovery from stroke. In Seil, F., et al. Neural regeneration. Progress of Brain Research, 71. Amsterdam: Elsevier.
go back to reference Kandel, E., et al. (1991). Principles of neural science (3e druk) New York: Mac Graw Hill. Kandel, E., et al. (1991). Principles of neural science (3e druk) New York: Mac Graw Hill.
go back to reference Kandel, E., et al. (2013). Principles of neural science (5e druk) New York: Mac Graw Hill. Kandel, E., et al. (2013). Principles of neural science (5e druk) New York: Mac Graw Hill.
go back to reference Kramer, A., & Erickson, K. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11, 342–348.CrossRefPubMed Kramer, A., & Erickson, K. (2007). Capitalizing on cortical plasticity: Influence of physical activity on cognition and brain function. Trends in Cognitive Sciences, 11, 342–348.CrossRefPubMed
go back to reference May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Science, 16(10), 475–482.CrossRef May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Science, 16(10), 475–482.CrossRef
go back to reference Murray, A., et al. (2011). The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer’s disease. Brain, 134, 3687–3696.CrossRefPubMed Murray, A., et al. (2011). The balance between cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer’s disease. Brain, 134, 3687–3696.CrossRefPubMed
go back to reference Pasual-Leone, A. (2003). The brain that plays music and is changed by it. In I. Peretz & R. Zatorre (Red.), The cognitive neurosciences of music. Oxford: Oxford Universtiy Press. Pasual-Leone, A. (2003). The brain that plays music and is changed by it. In I. Peretz & R. Zatorre (Red.), The cognitive neurosciences of music. Oxford: Oxford Universtiy Press.
go back to reference Perls, T. (2004). Centenarians who avoid dementia. Trends in Neurosciences, 27, 10. Perls, T. (2004). Centenarians who avoid dementia. Trends in Neurosciences, 27, 10.
go back to reference Raichlen, D., & Alexander, G. (2017). Adaptive capacity: An evolutionary neuroscience model linking exercise, cognition and brain health. Trends in neurosciences, 40(7), 408–421. Raichlen, D., & Alexander, G. (2017). Adaptive capacity: An evolutionary neuroscience model linking exercise, cognition and brain health. Trends in neurosciences, 40(7), 408–421.
go back to reference Ramon y Cajal, S. (1913). Degeneration and regeneration of the nervous system. London: Oxford University Press. Ramon y Cajal, S. (1913). Degeneration and regeneration of the nervous system. London: Oxford University Press.
go back to reference Rosenzweig, M., & Bennett, E. (1969). Effects of differential environments on brain weights and enzyme activities in gerbils, rats and mice. Developmental Psychobiology, 2, 87–95.CrossRefPubMed Rosenzweig, M., & Bennett, E. (1969). Effects of differential environments on brain weights and enzyme activities in gerbils, rats and mice. Developmental Psychobiology, 2, 87–95.CrossRefPubMed
go back to reference Seeley, W. W., et al. (2007). Unravelling Boléro: Progressive aphasia, transmodal creativity and the right posterior neocortex, Brain, 131(1), 39–49. Seeley, W. W., et al. (2007). Unravelling Boléro: Progressive aphasia, transmodal creativity and the right posterior neocortex, Brain, 131(1), 39–49.
go back to reference Steward, O. (1989). Reorganization of neuronal connections following CNS trauma: Principles and experimental paradigms. Journal of Neurotrauma, 6, 99.CrossRefPubMed Steward, O. (1989). Reorganization of neuronal connections following CNS trauma: Principles and experimental paradigms. Journal of Neurotrauma, 6, 99.CrossRefPubMed
go back to reference Van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neurosciences, 12, 7. Van Praag, H. (2009). Exercise and the brain: Something to chew on. Trends in Neurosciences, 12, 7.
go back to reference Voss, M., et al. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17(10), 525–544. Voss, M., et al. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17(10), 525–544.
go back to reference Wenger, E., et al. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in cognitive sciences, 21(12), 930–939. Wenger, E., et al. (2017). Expansion and renormalization of human brain structure during skill acquisition. Trends in cognitive sciences, 21(12), 930–939.
go back to reference Xin, D., et al. (2012). Altered resting brain function and structure in professional badminton players. Brain Connect, 2(4), 225–233.CrossRef Xin, D., et al. (2012). Altered resting brain function and structure in professional badminton players. Brain Connect, 2(4), 225–233.CrossRef
Metagegevens
Titel
Biologisch fundament van leren: het plastische brein
Auteur
Ben van Cranenburgh
Copyright
2020
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2445-3_5