Skip to main content
Top
Gepubliceerd in:

01-09-2007 | Interuniversity Cardiology Institute of the Netherlands

Biological pacing by gene and cell therapy

Auteurs: G. J. J. Boink, J. Seppen, J. M. T. de Bakker, H. L. Tan

Gepubliceerd in: Netherlands Heart Journal | Uitgave 9/2007

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

At present, cardiac rhythm disorders such as sick sinus syndrome (SSS) or AV nodal block (AVB) are usually treated by electronic pacemakers. These devices have significant shortcomings, including lack of autonomic modulation, and the need for repetitive procedures for battery replacement or lead repositioning. Biological pacemakers as replacement or complement to electronic pacemakers have been the subject of increasing research interest. This research has resulted in many encouraging preclinical studies. Various approaches in the field of gene and cell therapy have been developed by different groups and this combined effort makes it increasingly realistic that this therapy will eventually find its way to clinical applicability. (Neth Heart J 2007;15:318-22.)
Literatuur
go back to reference Verkerk AO, Wilders R, van Borren MM, Peters RJ, Broekhuis E, Lam K, et al. Pacemaker current (If) in the human sinoatrial node. Eur Heart J. In press 2007. Verkerk AO, Wilders R, van Borren MM, Peters RJ, Broekhuis E, Lam K, et al. Pacemaker current (If) in the human sinoatrial node. Eur Heart J. In press 2007.
go back to reference Mistrik P, Mader R, Michalakis S, Weidinger M, Pfeifer A, Biel M. The murine HCN3 gene encodes a hyperpolarization-activated cation channel with slow kinetics and unique response to cyclic nucleotides. J Biol Chem 2005;280:27056-61. Mistrik P, Mader R, Michalakis S, Weidinger M, Pfeifer A, Biel M. The murine HCN3 gene encodes a hyperpolarization-activated cation channel with slow kinetics and unique response to cyclic nucleotides. J Biol Chem 2005;280:27056-61.
go back to reference Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci USA 1999;96:9391-6. Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci USA 1999;96:9391-6.
go back to reference Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 1999;85:e1-e6. Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 1999;85:e1-e6.
go back to reference DiFrancesco D. Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Curr Med Res Opin 2005;21:1115-22. DiFrancesco D. Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Curr Med Res Opin 2005;21:1115-22.
go back to reference Rosen MR, Brink PR, Cohen IS, Robinson RB. Genes, stem cells and biological pacemakers. Cardiovasc Res 2004;64:12-23. Rosen MR, Brink PR, Cohen IS, Robinson RB. Genes, stem cells and biological pacemakers. Cardiovasc Res 2004;64:12-23.
go back to reference Miake J, Marbán E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 2003;111:1529-36. Miake J, Marbán E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 2003;111:1529-36.
go back to reference Miake J, Marbán E, Nuss HB. Biological pacemaker created by gene transfer. Nature 2002;419:132-3. Miake J, Marbán E, Nuss HB. Biological pacemaker created by gene transfer. Nature 2002;419:132-3.
go back to reference Tan HL, Hou CJ, Lauer MR, Sung RJ. Electrophysiologic mechanisms of the long QT interval syndromes and torsade de pointes. Ann Intern Med 1995;122:701-14. Tan HL, Hou CJ, Lauer MR, Sung RJ. Electrophysiologic mechanisms of the long QT interval syndromes and torsade de pointes. Ann Intern Med 1995;122:701-14.
go back to reference Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, et al. R. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 2002;110: 381-8. Tristani-Firouzi M, Jensen JL, Donaldson MR, Sansone V, Meola G, Hahn A, et al. R. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 2002;110: 381-8.
go back to reference Zhang L, Benson DW, Tristani-Firouzi M, Ptacek LJ, Tawil R, Schwartz PJ, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation 2005;111:2720-6. Zhang L, Benson DW, Tristani-Firouzi M, Ptacek LJ, Tawil R, Schwartz PJ, et al. Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation 2005;111:2720-6.
go back to reference Qu J, Barbuti A, Protas L, Santoro B, Cohen IS, Robinson RB. HCN2 overexpression in newborn and adult ventricular myocytes: distinct effects on gating and excitability. Circ Res 2001;89:E8-14. Qu J, Barbuti A, Protas L, Santoro B, Cohen IS, Robinson RB. HCN2 overexpression in newborn and adult ventricular myocytes: distinct effects on gating and excitability. Circ Res 2001;89:E8-14.
go back to reference Qu J, Plotnikov AN, Danilo P Jr, Shlapakova I, Cohen IS, Robinson RB, et al. Expression and function of a biological pacemaker in canine heart. Circulation 2003;107:1106-9. Qu J, Plotnikov AN, Danilo P Jr, Shlapakova I, Cohen IS, Robinson RB, et al. Expression and function of a biological pacemaker in canine heart. Circulation 2003;107:1106-9.
go back to reference Bucchi A, Plotnikov AN, Shlapakova I, Danilo P Jr., Kryukova Y, Qu J, et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation 2006;114:992-9. Bucchi A, Plotnikov AN, Shlapakova I, Danilo P Jr., Kryukova Y, Qu J, et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation 2006;114:992-9.
go back to reference Tse HF, Xue T, Lau CP, Siu CW, Wang K, Zhang QY, et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 2006;114:1000-11. Tse HF, Xue T, Lau CP, Siu CW, Wang K, Zhang QY, et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 2006;114:1000-11.
go back to reference Borer JS. Drug insight: If inhibitors as specific heart-rate-reducing agents. Nat Clin Pract Cardiovasc Med 2004;1:103-9. Borer JS. Drug insight: If inhibitors as specific heart-rate-reducing agents. Nat Clin Pract Cardiovasc Med 2004;1:103-9.
go back to reference DiFrancesco D. Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Curr Med Res Opin 2005;21:1115-22. DiFrancesco D. Cardiac pacemaker I(f) current and its inhibition by heart rate-reducing agents. Curr Med Res Opin 2005;21:1115-22.
go back to reference Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, et al. Human mesenchymal stem cells engraft and demonstrate sitespecific differentiation after in utero transplantation in sheep. Nat Med 2000;6:1282-6. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, et al. Human mesenchymal stem cells engraft and demonstrate sitespecific differentiation after in utero transplantation in sheep. Nat Med 2000;6:1282-6.
go back to reference Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22:1282-9. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;22:1282-9.
go back to reference Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 2005;111:11-20. Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 2005;111:11-20.
go back to reference Srivastava D, Ivey KN. Potential of stem-cell-based therapies for heart disease. Nature 2006;441:1097-9. Srivastava D, Ivey KN. Potential of stem-cell-based therapies for heart disease. Nature 2006;441:1097-9.
go back to reference Rosen MR. 15th annual Gordon K. Moe Lecture. Biological pacemaking: in our lifetime? Heart Rhythm 2005;2:418-28. Rosen MR. 15th annual Gordon K. Moe Lecture. Biological pacemaking: in our lifetime? Heart Rhythm 2005;2:418-28.
go back to reference Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 2004;94:952-9. Potapova I, Plotnikov A, Lu Z, Danilo P Jr, Valiunas V, Qu J, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 2004;94:952-9.
go back to reference Robinson RB, Rosen MR, Brink PR, Cohen IS. Letter regarding the article by Xue et al, “Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes”. Circulation 2005;112:e82-e83. Robinson RB, Rosen MR, Brink PR, Cohen IS. Letter regarding the article by Xue et al, “Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes”. Circulation 2005;112:e82-e83.
go back to reference Fleury S, Simeoni E, Zuppinger C, Déglon N, von Segesser LK, Kappenberger L, et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 2003;107:2375-82. Fleury S, Simeoni E, Zuppinger C, Déglon N, von Segesser LK, Kappenberger L, et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 2003;107:2375-82.
go back to reference Seppen J, Barry SC, Harder B, Osborne WRA. Lentivirus administration to rat muscle provides efficient sustained expression of erythropoietin. Blood 2001;98:594-6. Seppen J, Barry SC, Harder B, Osborne WRA. Lentivirus administration to rat muscle provides efficient sustained expression of erythropoietin. Blood 2001;98:594-6.
go back to reference Seppen J, van Til NP, van der Rijt R, Hiralall JK, Kunne C, Oude Elferink RPJ. Immune response to lentiviral bilirubin UDP-glucuronosyltransferase gene transfer in fetal and neonatal rats. Gene Ther 2006;13:672-7. Seppen J, van Til NP, van der Rijt R, Hiralall JK, Kunne C, Oude Elferink RPJ. Immune response to lentiviral bilirubin UDP-glucuronosyltransferase gene transfer in fetal and neonatal rats. Gene Ther 2006;13:672-7.
go back to reference Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99:e3-e9. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE, et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99:e3-e9.
go back to reference Rosen AB, Kelly DJ, Schuldt AJ, Lu J, Potapova IA, Doronin SV, et al. Finding Fluorescent Needles in the Cardiac Haystack: Tracking Human Mesenchymal Stem Cells Labeled with Quantum Dots for Quantitative In Vivo 3-D Fluorescence Analysis. Stem Cells 2007 May 10 (Epub ahead of print). Rosen AB, Kelly DJ, Schuldt AJ, Lu J, Potapova IA, Doronin SV, et al. Finding Fluorescent Needles in the Cardiac Haystack: Tracking Human Mesenchymal Stem Cells Labeled with Quantum Dots for Quantitative In Vivo 3-D Fluorescence Analysis. Stem Cells 2007 May 10 (Epub ahead of print).
go back to reference Boink GJJ, Verkerk AO, van Amersfoorth SC, Tasseron S, van der Meulen J, de Bakker JMT, et al. Increased spontaneous activity and autonomic modulation in lentiviral transduced rat cardiac myocytes overexpressing HCN4. Heart Rhythm 2007 (meeting abstract). Boink GJJ, Verkerk AO, van Amersfoorth SC, Tasseron S, van der Meulen J, de Bakker JMT, et al. Increased spontaneous activity and autonomic modulation in lentiviral transduced rat cardiac myocytes overexpressing HCN4. Heart Rhythm 2007 (meeting abstract).
go back to reference Biel M, Schneider A, Wahl C. Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 2002;12:206-12. Biel M, Schneider A, Wahl C. Cardiac HCN channels: structure, function, and modulation. Trends Cardiovasc Med 2002;12:206-12.
Metagegevens
Titel
Biological pacing by gene and cell therapy
Auteurs
G. J. J. Boink
J. Seppen
J. M. T. de Bakker
H. L. Tan
Publicatiedatum
01-09-2007
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Netherlands Heart Journal / Uitgave 9/2007
Print ISSN: 1568-5888
Elektronisch ISSN: 1876-6250
DOI
https://doi.org/10.1007/BF03086008