We will briefly discuss four categories of substances for which germline exposure has been linked to abnormal brain development and/or behavior in offspring: halogenated anesthetic gases; hormone-disrupting exposures; products related to smoking; and valproic acid. This is not intended as an exhaustive list, but merely to illustrate the principle with actual exposures that are common in the human population and that to some extent have been investigated for heritable impacts on offspring neurodevelopment.
Halogenated General Anesthetic Gases
Based on studies to date, the toxicants that are perhaps of paramount concern are halogenated anesthetic gases. The first of these gases, halothane, was introduced into practice in 1956, followed by many others including enflurane (1972), isoflurane (1981), desflurane (1992), and sevoflurane (1995) (Whalen et al.,
2005). The rate of surgical procedures in the U.S. has been increasing annually. In 2006, an estimated 53.3 million surgical and nonsurgical procedures were performed in U.S. ambulatory surgery centers, and in 2010, 51.4 million inpatient procedures were performed in nonfederal hospitals in the U.S. (Forum,
2017). The number of surgeries performed globally has rapidly increased, from 226.4 million in 2004 to 312.9 million in 2012, according to World Health Organization estimates (Weiser et al.,
2016). The most commonly used inhaled anesthetics in these procedures are nitrous oxide and the halogenated gases, which are typically administered in combination with intravenous anesthetic agents such as midazolam or propofol (Clar et al.,
2021).
The halogenated anesthetic agents commonly employed in surgical procedures are small, potent, lipophilic molecules that diffuse through vessel-rich tissues, including the gonads, with the clinical purpose to interrupt nerve signals and induce a global suppression of the nervous system. They may be used in unusually high concentrations in young children owing the immaturity of their GABAergic system (Li et al.,
2019). Anesthetic gases can cause significant DNA damage (Schifilliti et al.,
2011), changes in gene expression, and epigenetic alterations (Martynyuk et al.,
2020; Wang et al.,
2021), in both exposed somatic and germ cells (Escher & Ford,
2020; Kaymak et al.,
2012; Martynyuk et al.,
2020; Wang et al.,
2021). The damage caused by the gases also manifests in morphological and functional impairments in sperm (Coate et al.,
1979; Land et al.,
1981; Tang et al.,
2020; Wang et al.,
2008). The gases are also widely observed to act as steroid hormone disruptors, inducing dysfunction in the gonadal tissues and cells, with adverse impacts on germ cell integrity (Arena & Pereira,
2002; Kaya et al.,
2013; Xu et al.,
2012).
Studies in rodent models have repeatedly demonstrated that germline exposure to halogenated anesthetic gases can exert adverse brain and neurobehavioral outcomes in live-born progeny. The first of these dates back to 1981, a small study finding maternal line F2 generation of halothane-exposed gestating F0 female mice to be “significantly slower than control mice throughout the training” on all days of testing and all configurations of a maze test. Specifically, in a maze test used to assess learning, control mice made significant progress in all maze settings by the third training period. In contrast, F2 mice, born to the F1 females exposed to halothane in utero took until the seventh training period to learn the maze. The authors concluded that the impaired learning in the F2 “suggests that the anesthetic agent may have caused a genetic aberration” in the exposed mothers’ fetal eggs (Chalon et al.,
1981). In a 1984 paper, the same lab reported that enflurane caused impaired learning function in the generation born of the exposed germ cells, this time later-stage sperm instead of early-stage eggs (Tang et al.,
1984). The researchers remarked that it “seems likely that spermatogenetic changes, caused by enflurane, are associated with genetic alterations” that affected the pups’ brain development. After these papers raised the specter of potential adverse heritable impacts of general anesthesia, this important question for public health seemed to fall into the abyss, and more than three decades passed before another paper was published on this topic.
In the past few years several studies have revisited this question and have reached similar conclusions, while adding the dimension of implicating epigenetic mechanisms. In the first of these studies, sub-clinical concentrations of sevoflurane (2.1% sevoflurane for 6 h) were administered to male and female neonate rat pups and the directly exposed F0 animals and their F1 progeny were examined (Ju et al.,
2018). Using the elevated plus maze and the Morris water maze tests, it was found that the F0 and F1 male animals exhibit abnormal behaviors in both tests, indicating increase in anxiety and impairment in spatial memory. These behavioral abnormalities were associated with changes in gene expression of the potassium chloride cotransporter 2 (
Kcc2).
Kcc2 expression is reduced by 20–40% in the hypothalamus and less than 20% in the hippocampus of F0 and F1 male animals compared to unexposed controls (Ju et al.,
2018). DNA methylation in the promoter of the
Kcc2 gene was examined in sperm of F0 males and hypothalamus and hippocampus of F1 males, and found to increase significantly in the six CpG sites examined after sevoflurane exposure. These data suggest that the down-regulation of
Kcc2 gene expression and increased promoter CpG methylation in the F1 hypothalamus is associated with the increased in
Kcc2 promoter CpG methylation of the F0 sperm.
Kcc2 is a central nervous system (CNS) neuron-specific chloride potassium symporter localized at excitatory synapses that is essential for synaptic inhibitions, synaptic spin morphogenesis and neuroplasticity. Mutations or changes in
Kcc2 expression are involved in many neurological diseases including brain trauma, epilepsies, autism and schizophrenia (Agez et al.,
2017). These findings suggest that sevoflurane could induce a nongenetic effect in early-stage germ cells, causing some sex-specific brain and behavioral abnormalities in the next generation, even when used at low concentrations. An editorial accompanying the paper reporting these results noted that general anesthetics may modulate developmental neuroplasticity in the next generation via changes in gene expression and DNA methylation (Vutskits et al.,
2018).
Studies by the same group found that expression of DNA methyltransferase 3a and 3b (
Dnmt3a and
Dnmt3b, enzymes that catalyze the transfer of a methyl group to DNA) in the hypothalamus of F1 animals was increased by more than 40% compared to unexposed control males (Xu et al.,
2020). When the animals were treated with Decitabine, a methyltransferase inhibitor, prior to sevoflurane exposure, the expression of
Dnmt3a,
Dnmt3b, and
Kcc2 in the hypothalamus of F1 animals were similar as unexposed control animals and the animals exhibit normal behaviors. These data suggest that DNA methyltransferase activity might be involved in the response to sevoflurane exposure at the
Kcc2 locus. In the future, it would be interesting to perform genome-wide analyses of changes in gene expression and DNA methylation in this system.
In addition, administration of sevoflurane to young adult rats (with more mature germ cells) resulted in similar, though not identical, abnormalities in parental germ cells and in male offspring of exposed sires and dams (Ju et al.,
2019). Notably, the lab’s experiments suggested that compared to the somatic cells, the germ cells are more sensitive to the deleterious effects of sevoflurane, raising the possibility that male offspring may be affected even when the anesthesia level/duration is insufficient to induce significant abnormalities in exposed parents (Martynyuk et al.,
2020).
Another lab recently performed experiments with some similar aims but looking only at the offspring brain as an endpoint rather than the parental germ cells or offspring behaviors. After exposing neonatal female rats to sevoflurane, they bred the females and found their F1 offspring’s brains exhibited epigenetic abnormalities, including reduced DNA methylation in hippocampal neurons and upregulation of
Arc and
Junb mRNA expression in F1 males born to F0 exposed females, an effect linked to functional decline in learning and memory. This effect was sexually dimorphic, again only noted in the F1 male progeny (Chastain-Potts et al.,
2020).
A recent study from another lab demonstrated the molecular basis for neurodevelopmental pathology in offspring of sperm of F1 sons of pregnant mice exposed to sevoflurane (Wang et al.,
2021). Gestating F0 mice were exposed at day E12.5 of F1 embryonic development for 2 h, as this is the time when the germline of the exposed fetus is fully demethylated and may be more susceptible to environmental exposures. Adverse behavioral defects were observed in more than 38% of the directly exposed F1 males, including sociability deficits and increased anxiety as measured by the three-chamber sociability test, bedding shredding and marble burying tests. By outcrossing the F1 males to unexposed females for two generations, sevoflurane was found to have both “intergenerational” (F2 derived from exposed germline) and “transgenerational” (F3 derived from germline never exposed to sevoflurane) actions. In fact, 44–47% of the F2 and F3 showed the same behavioral problems as the F1 males (females were not tested). Based on preliminary data from one of our labs (VGC), these behavioral phenotypes correlate with reduced neonatal brain size and weight. However, the brain size and weight differences were not apparent in the mature adult mice. The inter- and transgenerational inheritance through the male germ cells was confirmed by Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq) experiments in sperm of the F1 and F2 generations, which showed a dramatic recruitment of TFs to enhancer sequences of genes found to be associated with ASD, including
Arid1b,
Ntrk2, and
Stmn2 (Wang et al.,
2021). These results and the ones described above point to a correlation between exposure of laboratory animals to sevoflurane, alterations of the transcriptional landscape in the germline, changes in progeny’s neural cell epigenomes, and the development of behavioral phenotypes similar to those displayed by humans diagnosed with autism. Therefore, evidence obtained in mouse models by independent laboratories suggest that sevoflurane, one of the most commonly utilized GA agents in surgery, could led to heritable alterations in the epigenome of the germ cells and brain, through changes in DNA modifications, gene expression and transcription factor occupancy.
In human cohorts, research on germ cell impacts of general anesthesia has been surprisingly sparse, but intriguingly two studies point to significant molecular vulnerabilities. In terms of the epigenome, one study examining obesity and bariatric surgery found significant changes in spermatozoa DNA methylation in 1509 genes approximately one week after surgery, with persistent effects in 1004 genes and 1116 CpG positions a year later (Donkin et al.,
2016). Though the authors attributed these changes to weight loss and nutritional factors, the sudden nature of the effects point to the anesthesia as possibly the more salient exposure (Martynyuk et al.,
2020). A 2012 study on DNA damage in sperm in vitro after exposure to various concentrations of halothane, isoflurane, desflurane and sevoflurane was conducted by the classic DNA damage “comet” assay (Kaymak et al.,
2012), which assesses DNA damage via single cell gel electrophoresis (Azqueta & Collins,
2013). The genotoxic effect was dose-dependent for isoflurane and sevoflurane, and halothane was most strongly genotoxic, but this effect was not dose dependent. No genotoxic effect was observed for desflurane. The study was preliminary in nature, however, offering no data on repeated exposures or different durations (Kaymak et al.,
2012). It is also worth noting that a recent epidemiological study on a large Danish cohort found a two-fold higher autism risk in offspring of parents who had been born very preterm, that is, less than 32 weeks of gestation (Xiao et al.,
2021). Although this was not part of the study’s evaluation, it is well known that premature infants, and in particular very preterm infants, undergo sharply higher rates of early life drug exposure, including anesthesia for surgery, opiates, oxygen, and corticosteroids (Smrcek et al.,
2005).
Taken together, the studies offer evidence that agents of general anesthesia can induce molecular changes in germline, changing transcription of key brain development genes and inducing adverse neurodevelopmental outcomes in progeny, particularly males.
Synthetic Steroids, Endocrine-Disrupting Chemicals and Endocrine Disease
In recent decades, humans have been increasingly treated with synthetic hormone drugs and exposed to many environmental substances that act as EDCs (Diamanti-Kandarakis et al.,
2009). Most of these substances affect molecular signaling through the superfamily of nuclear receptors, which act as DNA-binding TFs with powerful capabilities of modifying the epigenetic landscape and gene expression programs (Ozgyin et al.,
2015). Numerous studies support the hypothesis that alterations in endocrine systems influence the epigenetic information of the germline which may lead to neurodevelopmental and behavioral abnormalities in subsequent generations.
Several studies have investigated heritable impacts of synthetic steroid drugs. In a guinea pig model, F0 gestational treatment with a clinically relevant dose of the synthetic glucocorticoid betamethasone led to abnormalities in the F2 generation, including modified physiology of the hypothalamic–pituitary–adrenal (HPA) axis and increased locomotor activity in a novel location (Moisiadis et al.,
2017). In a mouse study, elevated paternal glucocorticoid exposure altered the profile of small noncoding RNA profile in sperm and resulted in increased anxiety-like behavior in next-generation (F1) males, but decreased the same behaviors in F2 male and female offspring. In F2 males only there was evidence of enhanced depression-like behaviors (Short et al.,
2016). In humans, grandchildren of pregnant women administered the notorious synthetic estrogen diethylstilbestrol (DES) (data from descendants of over 47,000 DES-treated women) exhibit significantly increased risk for ADHD through the maternal line (Kioumourtzoglou et al.,
2018).
In addition to endocrine alterations due to exogenous administration of drugs, aberrant status of endogenous hormones may also impact germline and influence neurological phenotypes in subsequent generations. This may occur due to chronic stress, which elevates circulating levels of glucocorticoids. Neonatal, juvenile and adult stress may change the profile of microRNAs, a category of sncRNAs, in the sperm and lead to aberrant programming of the HPA axis and to anxiety and other neurological phenotypes in subsequent generations (Dickson et al.,
2018; Gapp et al.,
2014; Jawaid et al.,
2018; Manners et al.,
2019; Morgan & Bale,
2011; Rodgers et al.,
2013,
2015; Saavedra-Rodríguez & Feig,
2013). Alterations in thyroid hormone, which occurs in women with thyroid disease, can also cause intergenerational effects, affecting neuroendocrine function (Anselmo et al.,
2019; Bakke et al.,
1977). Furthermore, sperm epigenetic information is altered in a mouse model of developmental overexposure to thyroid hormone (Martinez et al.,
2020). This exposure causes hypomethylation in the promoter of genes involved in brain development that are also implicated in ASD and other neurological disorders. F2 generation descendants of exposed male and female mice exhibit altered neonatal brain gene expression programs and abnormal behaviors (Martinez et al.,
2020).
Studies involving environmental EDCs have also found links between germline exposure and abnormal neurobehavioral outcomes in the offspring. Exposure of F1 fetal rats to the androgenic fungicide vinclozolin or to polychlorinated biphenyls, which mimic the structure of thyroid hormones, led to socio-sexual behavioral abnormalities in the F2 progeny, with males most affected (Krishnan et al.,
2018,
2019). This was associated with abnormal expression of steroid hormone receptors (estrogen receptor α, androgen and progesterone receptors) in the medial preoptic area and ventromedial nucleus of the hypothalamus (Krishnan et al.,
2018,
2019). Several studies have examined the effects of bisphenol A (BPA), a compound with estrogenic properties, on social behaviors in mice of the first and subsequent generations (Goldsby et al.,
2017; Wolstenholme et al.,
2012,
2019). Mice exposed to BPA in utero exhibited reduced social interest compared to control mice, but sociability was increased in subsequent generations (Wolstenholme et al.,
2012). The brains of BPA-exposed fetal mice exhibited reduced expression of oxytocin and vasopressin, critical neuropeptides controlling social behaviors in mice and humans which have been implicated in ASD and schizophrenia. The brain expression of vasopressin and estrogen receptor α, which regulates the expression of oxytocin (Young et al.,
1998) and vasopressin (Scordalakes & Rissman,
2004) was also reduced in BPA mice (Wolstenholme et al.,
2012). The decrease in vasopressin expression persisted until the F3 generation in the BPA lineage, which also exhibited severe deficits in social recognition and the expression of postsynaptic density genes (Wolstenholme et al.,
2019). Interestingly, BPA-line F3 generation mice also exhibited marked abnormalities in the expression of imprinted genes, especially the maternally expressed gene Meg3 (Drobna et al.,
2018). It is worth noting that these changes in gene expression were found in areas related to the sexual differentiation of the brain, including the lateral septum, amygdala, preoptic area, hypothalamus and bed nucleus of the stria terminalis (Drobna et al.,
2018; Goldsby et al.,
2017).
Mechanistically, EDCs may behave similarly to the endogenous hormones that they mimic and bind to or interfere with the binding of endogenous hormone receptors (e.g., steroid receptors) or other binding proteins involved in hormone physiology and action, ultimately impacting receptor chromatin modification and transcriptional functions (Lakshmanan & Shaheer,
2020; Martini et al.,
2020). Directly, by binding to hormone receptors, or indirectly, by changing recruitment patterns of TFs, including Ctcf, EDCs could reprogram the germline at different stages of development (Fiorito et al.,
2016). DNA-bound TFs could then modify accessibility of epigenetic modifiers to specific genomic loci. For example, ATAC-seq experiments carried out with sperm from the F1 through F6 progeny of mice exposed to BPA in utero reveal disruptions at binding sites for Ctcf, Foxa1, Esr1 and Ar (Jung et al.,
2020). The sperm disruptions persist (or lead to subsequent disruptions) after fertilization in somatic cells of the post-implantation embryo, affecting cell differentiation and development in the next generation, eliciting abnormal phenotypes in the adult organism. These abnormal patterns of transcription may affect genes critical for the development of neurological and endocrine functions in the offspring (Martini et al.,
2020). This has been shown to be the case for BPA-induced alterations in sperm in the binding of Ctcf to an enhancer of the
Fto gene. These alterations are maintained in the hypothalamus and affect the differentiation of POMC and AgRP neurons in the arcuate nucleus, leading to increased food consumption and obesity (Jung et al.,
2020).
Given the dramatic surge in the medical use of synthetic hormones and environmental exposure to EDCs over the course of the past six decades, it is possible that some of these exposures are altering the transcriptional program of germline, conferring risk for dysregulated brain development and abnormal behaviors.
Whether germline exposure to tobacco, its metabolites, or related products can influence autism risk may depend on timing and dose. While maternal smoking either before or during pregnancy may be associated with a variety of risks to the fetus, evidence for an increase in autism risk is low (Lee et al.,
2012; Rosen et al.,
2015), with perhaps only a slightly elevated risk when the mother was a heavy smoker (von Ehrenstein et al.,
2020). However, in contrast to earlier studies, a recent epidemiological study based on two large cohorts in Korea found paternal smoking correlated to an increased likelihood of ASD in offspring. The authors concluded that elimination of paternal smoking might reduce the risk of having a child with ASD by as much as 11–14% (Kim et al.,
2021). Fetal germline impacts were the subject of study in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, which linked grandmaternal smoking in pregnancy with an increased risk for autism traits and diagnosed autism in grand-offspring through the maternal line (Golding et al.,
2017), though it lacked data on dose effects.
Both mutagenic and epimutagenic factors may be at play. Paternal smoking affects the mutation rates in sperm (Axelsson et al.,
2018; Haervig et al.,
2020), for example by increasing DNA adducts caused by a metabolite of benzo(a)pyrene (BaP), a known carcinogen and main component of tobacco smoke (Beal et al.,
2019; Laubenthal et al.,
2012; Linschooten et al.,
2013). Studies in rodents demonstrate that ingestion of nicotine by gestating dams increased risk for ADHD-like behaviors in the F2 generation (Buck et al.,
2019; Zhu et al.,
2014), with epigenetic mechanisms in the exposed germline being implicated (Buck et al.,
2019). More recently, a study showed that mouse sires exposed to nicotine and saccharin, a mixture common in vaping products, produced male (females were not examined) offspring with elevated activity and reduced spatial memory (McCarthy et al.,
2020). Both nicotine and saccharine exposure produces significant changes in DNA methylation at promoter regions of dopamine receptor genes in spermatozoa, suggesting that epigenetic modification of sperm DNA may link the exposure to the behavioral phenotypes (McCarthy et al.,
2020).
The generational effects of cannabis use have also emerged as a concern for heritable neurobehavioral effects. One study has reported alterations in DNA methylation in human sperm in men that were frequent cannabis users as compared with non-smokers (Murphy et al.,
2018). A follow-up study looked at the effects of cannabis exposure on DNA methylation of the gene Disks-large associated protein 2 (
DLGAP2), which is implicated in ASD (Schrott et al.,
2020). This gene exhibited 17 differentially methylated CpG sites by Reduced representation bisulfite sequencing (RRBS) in the sperm of cannabis-exposed men compared to controls. In the brains of rats born to THC-exposed fathers, significant loss of methylation was detected at the same CpG sites in the nucleus accumbens as in the sperm of the exposed fathers, suggesting paternal exposure could alter the epigenetic profile of the offspring.