Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2003

01-11-2003 | Original Article

Asynchronous perception of motion and luminance change

Auteur: Dirk Kerzel

Gepubliceerd in: Psychological Research | Uitgave 4/2003

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract.

Observers were asked to indicate when a target moving on a circular trajectory changed its luminance. The judged position of the luminance change was displaced from the true position in the direction of motion, indicating differences between the times-to-consciousness of motion and luminance change. Motion was processed faster than luminance change. The latency difference was more pronounced for a small (116–134 ms) than for a large luminance decrement (37 ms). The results show that first-order motion is perceived before an accurate representation of luminance is available. These findings are consistent with current accounts of the flash-lag effect. Two control experiments ruled out that the results were due to a general forward tendency. Localization of the target when an auditory signal was presented did not produce forward displacement, and the judged onset of motion was not shifted in the direction of motion.
Literatuur
go back to reference Aschersleben, G., & Müsseler, J. (1999). Dissociations in the timing of stationary and moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1709–1720. Aschersleben, G., & Müsseler, J. (1999). Dissociations in the timing of stationary and moving stimuli. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1709–1720.
go back to reference Braddick, O. J. (1980). Low-level and high-level processes in apparent motion. Proceedings of the Royal Society of London Series B-Biological Science, 290(1038), 137–151. Braddick, O. J. (1980). Low-level and high-level processes in apparent motion. Proceedings of the Royal Society of London Series B-Biological Science, 290(1038), 137–151.
go back to reference Brenner, E., Smeets, J. B., & van den Berg, A. V. (2001). Smooth eye movements and spatial localisation. Vision Research, 41(17), 2253–2259.CrossRefPubMed Brenner, E., Smeets, J. B., & van den Berg, A. V. (2001). Smooth eye movements and spatial localisation. Vision Research, 41(17), 2253–2259.CrossRefPubMed
go back to reference Burkhardt, D. A., Gottesman, J., & Keenan, R. M. (1987). Sensory latency and reaction time: dependence on contrast polarity and early linearity in human vision. Journal of the Optical Society of America [A], 4(3), 530–539.CrossRefPubMed Burkhardt, D. A., Gottesman, J., & Keenan, R. M. (1987). Sensory latency and reaction time: dependence on contrast polarity and early linearity in human vision. Journal of the Optical Society of America [A], 4(3), 530–539.CrossRefPubMed
go back to reference Cavanagh, P., & Mather, G. (1989). Motion: the long and short of it. Spatial Vision, 4(2–3), 103–129.PubMed Cavanagh, P., & Mather, G. (1989). Motion: the long and short of it. Spatial Vision, 4(2–3), 103–129.PubMed
go back to reference DeYoe, E. A., & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience, 11(5), 219–226.CrossRef DeYoe, E. A., & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience, 11(5), 219–226.CrossRef
go back to reference Dubner, R., & Zeki, S. M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research, 35(2), 528–532.CrossRefPubMed Dubner, R., & Zeki, S. M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research, 35(2), 528–532.CrossRefPubMed
go back to reference Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science, 287(5460), 2036–2038.CrossRefPubMed Eagleman, D. M., & Sejnowski, T. J. (2000). Motion integration and postdiction in visual awareness. Science, 287(5460), 2036–2038.CrossRefPubMed
go back to reference Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.CrossRefPubMed Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.CrossRefPubMed
go back to reference Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. [On the measurement of sensation time]. Zeitschrift für Sinnesphysiologie, 54, 58–78. Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. [On the measurement of sensation time]. Zeitschrift für Sinnesphysiologie, 54, 58–78.
go back to reference Hazelhoff, F. F., & Wiersma, H. (1924). Die Wahrnehmungszeit. Erster Artikel: Die Bestimmung der Schnelligkeit der Wahrnehmung von Lichtreizen nach der Lokalisationsmethode. [The time to perception: First article: The determination of the speed of perception of light stimuli with the localization method]. Zeitschrift für Psychologie, 96, 171–188. Hazelhoff, F. F., & Wiersma, H. (1924). Die Wahrnehmungszeit. Erster Artikel: Die Bestimmung der Schnelligkeit der Wahrnehmung von Lichtreizen nach der Lokalisationsmethode. [The time to perception: First article: The determination of the speed of perception of light stimuli with the localization method]. Zeitschrift für Psychologie, 96, 171–188.
go back to reference Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40(27), 3703–3715.CrossRefPubMed Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40(27), 3703–3715.CrossRefPubMed
go back to reference Kerzel, D. (2002a). Different localization of motion onset with pointing and relative judgements. Experimental Brain Research, 145(3), 340–350.CrossRefPubMed Kerzel, D. (2002a). Different localization of motion onset with pointing and relative judgements. Experimental Brain Research, 145(3), 340–350.CrossRefPubMed
go back to reference Kerzel, D. (2002b). Memory for the position of stationary objects: Disentangling foveal bias and memory averaging. Vision Research, 42(2), 159–167.CrossRefPubMed Kerzel, D. (2002b). Memory for the position of stationary objects: Disentangling foveal bias and memory averaging. Vision Research, 42(2), 159–167.CrossRefPubMed
go back to reference Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 829–840.PubMed Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perception in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 829–840.PubMed
go back to reference Kerzel, D., & Müsseler, J. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Research, 42(2), 181–189.CrossRefPubMed Kerzel, D., & Müsseler, J. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Research, 42(2), 181–189.CrossRefPubMed
go back to reference Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Research, 39, 3702–3709.CrossRefPubMed Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: a consequence of the interaction of visual focal attention and metacontrast. Vision Research, 39, 3702–3709.CrossRefPubMed
go back to reference Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. Trends in Neurosciences, 24(6), 335–339.CrossRefPubMed Krekelberg, B., & Lappe, M. (2001). Neuronal latencies and the position of moving objects. Trends in Neurosciences, 24(6), 335–339.CrossRefPubMed
go back to reference Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–749.CrossRefPubMed Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240(4853), 740–749.CrossRefPubMed
go back to reference Lu, Z. L., & Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35(19), 2697–2722.CrossRefPubMed Lu, Z. L., & Sperling, G. (1995). The functional architecture of human visual motion perception. Vision Research, 35(19), 2697–2722.CrossRefPubMed
go back to reference Mateeff, S., & Hohnsbein, J. (1989). The role of the adjacency between background cues and objects in visual localization during ocular pursuit. Perception, 18(1), 93–104.CrossRefPubMed Mateeff, S., & Hohnsbein, J. (1989). The role of the adjacency between background cues and objects in visual localization during ocular pursuit. Perception, 18(1), 93–104.CrossRefPubMed
go back to reference Mateeff, S., Yakimoff, N., & Dimitrov, G. (1981). Localization of brief visual stimuli during pursuit eye movements. Acta Psychologica, 48(1–3), 133–140.CrossRefPubMed Mateeff, S., Yakimoff, N., & Dimitrov, G. (1981). Localization of brief visual stimuli during pursuit eye movements. Acta Psychologica, 48(1–3), 133–140.CrossRefPubMed
go back to reference Merigan, W. H., & Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–402.CrossRefPubMed Merigan, W. H., & Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–402.CrossRefPubMed
go back to reference Moutoussis, K., & Zeki, S. (1997). Functional segregation and temporal hierarchy of the visual perceptive systems. Proceedings of the Royal Society of London Series B-Biological Science, 264(1387), 1407–1414. Moutoussis, K., & Zeki, S. (1997). Functional segregation and temporal hierarchy of the visual perceptive systems. Proceedings of the Royal Society of London Series B-Biological Science, 264(1387), 1407–1414.
go back to reference Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: the Frohlich effect and an attention-shifting explanation. Perception & Psychophysics, 60(4), 683–695.CrossRef Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: the Frohlich effect and an attention-shifting explanation. Perception & Psychophysics, 60(4), 683–695.CrossRef
go back to reference Neuhaus, W. (1930). Experimentelle Untersuchung der Scheinbewegung [Experimental investigations of apparent motion]. Archiv für die gesamte Psychologie, 775, 315–458. Neuhaus, W. (1930). Experimentelle Untersuchung der Scheinbewegung [Experimental investigations of apparent motion]. Archiv für die gesamte Psychologie, 775, 315–458.
go back to reference Patel, S. S., Ogmen, H., Bedell, H. E., & Sampath, V. (2000). Flash-lag effect: differential latency, not postdiction. Science, 290(5494), 1051a.CrossRef Patel, S. S., Ogmen, H., Bedell, H. E., & Sampath, V. (2000). Flash-lag effect: differential latency, not postdiction. Science, 290(5494), 1051a.CrossRef
go back to reference Ramachandran, V. S., & Anstis, S. M. (1986). The perception of apparent motion. Scientific American, 254(6), 102–109.CrossRefPubMed Ramachandran, V. S., & Anstis, S. M. (1986). The perception of apparent motion. Scientific American, 254(6), 102–109.CrossRefPubMed
go back to reference Roufs, J. A. J. (1963). Perception lag as a function of stimulus luminance. Vision Research, 3, 81–91.CrossRef Roufs, J. A. J. (1963). Perception lag as a function of stimulus luminance. Vision Research, 3, 81–91.CrossRef
go back to reference Whitney, D., & Murakami, I. (1998). Latency difference, not spatial extrapolation. Nature Neuroscience, 1(8), 656–657.CrossRefPubMed Whitney, D., & Murakami, I. (1998). Latency difference, not spatial extrapolation. Nature Neuroscience, 1(8), 656–657.CrossRefPubMed
go back to reference Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 40(2), 137–149.CrossRefPubMed Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 40(2), 137–149.CrossRefPubMed
go back to reference Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature, 284(5755), 412–418.CrossRefPubMed Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature, 284(5755), 412–418.CrossRefPubMed
go back to reference Zeki, S., & Bartels, A. (1998). The autonomy of the visual systems and the modularity of conscious vision. Proceedings of the Royal Society of London Series B-Biological Science, 353(1377), 1911–1914. Zeki, S., & Bartels, A. (1998). The autonomy of the visual systems and the modularity of conscious vision. Proceedings of the Royal Society of London Series B-Biological Science, 353(1377), 1911–1914.
go back to reference Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274(5670), 423–428.CrossRefPubMed Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274(5670), 423–428.CrossRefPubMed
Metagegevens
Titel
Asynchronous perception of motion and luminance change
Auteur
Dirk Kerzel
Publicatiedatum
01-11-2003
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 4/2003
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-002-0121-6

Andere artikelen Uitgave 4/2003

Psychological Research 4/2003 Naar de uitgave