Skip to main content

Advertisement

Log in

Nuclear EGFR as Novel Therapeutic Target

Insights into Nuclear Translocation and Function

Der nukleäre EGFR als neues therapeutisches Ziel. Einsichten in die nukleäre Translokation und Funktion

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

An Erratum to this article was published on 28 January 2010

Emerging evidence suggests the existence of a new mode of epidermal growth factor receptor (EGFR) signaling in which activated EGFR undergoes nuclear translocation following treatment with ionizing radiation. The authors provide evidence that the nuclear EGFR transport is a stress-specific cellular reaction, which is linked to src-dependent EGFR internalization into caveolae. These flask-shaped pits can fuse with endoplasmic reticulum and the EGFR is sorted into a perinuclear localization. This compartment may serve as a reservoir for nuclear EGFR transport which is regulated by PKCε (protein kinase Cepsilon). Nuclear EGFR is able to induce transcription of genes essential for cell proliferation and cell-cycle regulation. Moreover, nuclear EGFR has physical contact with compounds of the DNA repair machinery and is involved in removal of DNA damage. Anti-EGFR strategies target radiation-associated EGFR nuclear translocation in different manners. EGFR-inhibitory antibodies, i.e., cetuximab (Erbitux®), can block nuclear translocation by EGFR immobilization within the cytosol in responder cell lines, whereas tyrosine kinase inhibitors rather target nuclear kinase activity of EGFR linked with cytosolic or nuclear functions. However, both strategies can inhibit DNA repair following irradiation.

Der EGFR wird als membranständiger Wachstumsfaktor-Rezeptor beschrieben. Neue Erkenntnisse zeigten jedoch, dass der EGFR z. B. nach Bestrahlung auch im Zellkern gefunden werden kann. Der Kerntransport des EGFR wird vor allem nach Stressexposition der Zelle beobachtet und ist mit einer Src-Kinase-abhängigen Internalisierung des EGFR in das endosomale Kompartment der Caveolae assoziiert. Nach Verschmelzung der Caveolae mit der Membran des endoplasmatischen Retikulums reichert sich der EGFR perinukleär an. Der perinukleäre EGFR-Pool dient wahrscheinlich als Reservoir für den Kerntransport, der nach Strahlenexposition durch die Aktivität der PKCε (Proteinkinase Cepsilon) reguliert wird. Der nukleäre EGFR agiert zum einen als Transkriptionsfaktor und induziert die Transkription von zellzyklus- und proliferationsrelevanten Proteinen, zum anderen hat er physikalischen Kontakt zu für die DNA-Reparatur essentiellen Proteinen. In der Radioonkologie finden prinzipiell zwei Anti-EGFR-Therapien Verwendung. Antikörperstrategien, z. B. die Behandlung mit Cetuximab (Erbitux®), können in sensitiven Tumorzellen zu einer Immobilisierung des internalisierten EGFR in den Caveolae führen. Die Translokation in den Zellkern ist blockiert. Im Gegensatz dazu verhindern Kinaseinhibitoren die strahleninduzierte Kerntranslokation des EGFR nicht, hemmen aber die EGFR-Kinaseaktivität und blockieren so das nukleäre und zytoplasmatische "Signaling" des Rezeptors. Auf diese Weise können beide Strategien die Reparatur von DNA-Schäden behindern und den Erfolg einer radioonkologischen Behandlung verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abud HE, Watson N, Heath JK. Growth of intestinal epithelium in organ culture is dependent on EGF signalling. Exp Cell Res 2005;303:252–62.

    Article  CAS  PubMed  Google Scholar 

  2. Abulencia A, Adelman J, Affolder T, et al. Search for heavy long-lived particles that decay to photons at CDF II. Phys Rev Lett 2007;99:121801.

    Article  CAS  PubMed  Google Scholar 

  3. Abulrob A, Giuseppin S, Andrade MF, et al. Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene 2004;23:6967–79.

    Article  CAS  PubMed  Google Scholar 

  4. Ardavanis A, Koumna S, Fragos I, et al. Erlotinib monotherapy in patients with advanced non-small cell lung cancer: an effective approach with low toxicity. Anticancer Res 2008;28:2409–15.

    CAS  PubMed  Google Scholar 

  5. Bandyopadhyay D, Mandal M, Adam L, et al. Physical interaction between epidermal growth factor receptor and DNA-dependent protein kinase in mammalian cells. J Biol Chem 1998;273:1568–73.

    Article  CAS  PubMed  Google Scholar 

  6. Bhola NE, Grandis JR. Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer. Front Biosci 2008;13:1857–65.

    Article  CAS  PubMed  Google Scholar 

  7. Bölke E, Gerber PA, Lammering G, et al. Development and management of severe cutaneous side effects in head-and-neck cancer patients during concurrent radiotherapy and cetuximab. Strahlenther Onkol 2008;184:105–10.

    Article  PubMed  Google Scholar 

  8. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567–78.

    Article  CAS  PubMed  Google Scholar 

  9. Brown PD, Krishnan S, Sarkaria JN, et al. Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol 2008;26:5603–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capalbo G, Rodel C, Stauber RH, et al. The role of survivin for radiation therapy. Prognostic and predictive factor and therapeutic target. Strahlenther Onkol 2007;183:593–9.

    Article  PubMed  Google Scholar 

  11. Cordero JB, Cozzolino M, Lu Y, et al. 1,25-dihydroxyvitamin D down-regulates cell membrane growth- and nuclear growth-promoting signals by the epidermal growth factor receptor. J Biol Chem 2002;277:38965–71.

    Article  CAS  PubMed  Google Scholar 

  12. Cordes N, Frick S, Brunner TB, et al. Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene 2007;26:6851–62.

    Article  CAS  PubMed  Google Scholar 

  13. Dittmann K, Mayer C, Fehrenbacher B, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 2005;280:31182–9.

    Article  CAS  PubMed  Google Scholar 

  14. Dittmann K, Mayer C, Kehlbach R, et al. Radiation-induced caveolin-1 associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-PK. Mol Cancer 2008;7:69.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dittmann K, Mayer C, Rodemann HP. Inhibition of radiation-induced EGFR nuclear import by C225 (cetuximab) suppresses DNA-PK activity. Radiother Oncol 2005;76:157–61.

    Article  CAS  PubMed  Google Scholar 

  16. Eschmann SM, Friedel G, Paulsen F, et al. Repeat 18F-FDG PET for monitoring neoadjuvant chemotherapy in patients with stage III non-small cell lung cancer. Lung Cancer 2007;55:165–71.

    Article  CAS  PubMed  Google Scholar 

  17. Evdonin AL, Guzhova IV, Margulis BA, et al. Extracellular heat shock protein 70 mediates heat stress-induced epidermal growth factor receptor transactivation in A431 carcinoma cells. FEBS Lett 2006;580:6674–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrer-Soler L, Vazquez-Martin A, Brunet J, et al. An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer: gefitinib (Iressa)-induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands. Int J Mol Med 2007;20:3–10.

    CAS  PubMed  Google Scholar 

  19. Franovic A, Gunaratnam L, Smith K, et al. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Natl Acad Sci U S A 2007;104:13092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Greenfield JJ, High S. The Sec61 complex is located in both the ER and the ER-Golgi intermediate compartment. J Cell Sci 1999;112:1477–86.

    CAS  PubMed  Google Scholar 

  21. Hanada N, Lo HW, Day CP, et al. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog 2006;45:10–7.

    Article  CAS  PubMed  Google Scholar 

  22. Harari PM, Allen GW, Bonner JA. Biology of interactions: antiepidermal growth factor receptor agents. J Clin Oncol 2007;25:4057–65.

    Article  CAS  PubMed  Google Scholar 

  23. Hoshino M, Fukui H, Ono Y, et al. Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiology 2007;74:15–21.

    Article  CAS  PubMed  Google Scholar 

  24. Hung LY, Tseng JT, Lee YC, et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res 2008;36:4337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iliakis G, Wang H, Perrault AR, et al. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 2004;104:14–20.

    Article  CAS  PubMed  Google Scholar 

  26. Ingley E, Williams JH, Walker CE, et al. A novel ADP-ribosylation like factor (ARL-6), interacts with the protein-conducting channel SEC61beta subunit. FEBS Lett 1999;459:69–74.

    Article  CAS  PubMed  Google Scholar 

  27. Karni R, Jove R, Levitzki A. Inhibition of pp60c-Src reduces Bcl-XL expression and reverses the transformed phenotype of cells overexpressing EGF and HER-2 receptors. Oncogene 1999;18:4654–62.

    Article  CAS  PubMed  Google Scholar 

  28. Khan EM, Heidinger JM, Levy M, et al. Epidermal growth factor receptor exposed to oxidative stress undergoes Src- and caveolin-1-dependent perinuclear trafficking. J Biol Chem 2006;281:14486–93.

    Article  CAS  PubMed  Google Scholar 

  29. Knebel A, Rahmsdorf HJ, Ullrich A, et al. Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 1996;15:5314–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Krause M, Schutze C, Petersen C, et al. Different classes of EGFR inhibitors may have different potential to improve local tumour control after fractionated irradiation: a study on C225 in FaDu hSCC. Radiother Oncol 2005;74:109–15.

    Article  CAS  PubMed  Google Scholar 

  31. Laimer K, Spizzo G, Gastl G, et al. High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohistochemical analysis. Oral Oncol 2007;43:193–8.

    Article  CAS  PubMed  Google Scholar 

  32. Liao HJ, Carpenter G. Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression. Mol Biol Cell 2007;18:1064–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liao HJ, Carpenter G. Cetuximab/C225-induced intracellular trafficking of epidermal growth factor receptor. Cancer Res 2009;69:6179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin SY, Makino K, Xia W, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 2001;3:802–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lipponen P, Eskelinen M. Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br J Cancer 1994;69:1120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lo HW, Xia W, Wei Y, et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer [Erratum in: Cancer Res 2005;65:2045]. Cancer Research 2005;65:338–48.

    CAS  PubMed  Google Scholar 

  37. Marquardt F, Rodel F, Capalbo G, et al. Molecular targeted treatment and radiation therapy for rectal cancer. Strahlenther Onkol 2010;185:371–8.

    Article  Google Scholar 

  38. Marti U, Wells A. The nuclear accumulation of a variant epidermal growth factor receptor (EGFR) lacking the transmembrane domain requires coexpression of a full-length EGFR. Mol Cell Biol Res Commun 2000;3:8–14.

    Article  CAS  PubMed  Google Scholar 

  39. Milas L, Mason K, Hunter N, et al. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody [Comment]. Clin Cancer Res 2000;6:701–8.

    CAS  PubMed  Google Scholar 

  40. Morgan MA, Parsels LA, Kollar LE, et al. The combination of epidermal growth factor receptor inhibitors with gemcitabine and radiation in pancreatic cancer. Clin Cancer Res 2008;14:5142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nasu S, Ang KK, Fan Z, et al. C225 antiepidermal growth factor receptor antibody enhances tumor radiocurability. Int J Radiat Oncol Biol Phys 2001;51:474–7.

    Article  CAS  PubMed  Google Scholar 

  42. Niyazi M, Marini P, Daniel PT, et al. Efficacy of a triple treatment with irradiation, agonistic TRAIL receptor antibodies and EGFR blockade. Strahlenther Onkol 2010;185:8–18.

    Article  Google Scholar 

  43. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007;8:185–94.

    Article  CAS  PubMed  Google Scholar 

  44. Peeters M, Price T, Van Laethem JL. Anti-epidermal growth factor receptor monotherapy in the treatment of metastatic colorectal cancer: where are we today? Oncologist 2009;14:29–39.

    Article  CAS  PubMed  Google Scholar 

  45. Peng XH, Karna P, Cao Z, et al. Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem 2006;281:25903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prados MD, Chang SM, Butowski N, et al. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J Clin Oncol 2009;27:579–84.

    Article  CAS  PubMed  Google Scholar 

  47. Prewett M, Rockwell P, Rockwell RF, et al. The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol 1996;19:419–27.

    Article  CAS  PubMed  Google Scholar 

  48. Psyrri A, Egleston B, Weinberger P, et al. Correlates and determinants of nuclear epidermal growth factor receptor content in an oropharyngeal cancer tissue microarray. Cancer Epidemiol Biomarkers Prev 2008;17:1486–92.

    Article  CAS  PubMed  Google Scholar 

  49. Psyrri A, Yu Z, Weinberger PM, et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res 2005;11:5856–62.

    Article  CAS  PubMed  Google Scholar 

  50. Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol 2007;83:781–91.

    Article  CAS  PubMed  Google Scholar 

  51. Saito T, Okada S, Ohshima K, et al. Differential activation of epidermal growth factor (EGF) receptor downstream signaling pathways by betacellulin and EGF. Endocrinology 2004;145:4232–43.

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt-Ullrich RK, Mikkelsen RB, Dent P, et al. Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 1997;15:1191–7.

    Article  CAS  PubMed  Google Scholar 

  53. Schutze C, Dorfler A, Eicheler W, et al. Combination of EGFR/HER2 tyrosine kinase inhibition by BIBW 2992 and BIBW 2669 with irradiation in FaDu human squamous cell carcinoma. Strahlenther Onkol 2007;183:256–64.

    Article  PubMed  Google Scholar 

  54. Sirak I, Petera J, Hatlova J, et al. Epidermal growth factor receptor as a predictor of tumor response to preoperative chemoradiation in locally advanced gastric carcinoma. Strahlenther Onkol 2008;184:592–7.

    Article  PubMed  Google Scholar 

  55. Strasser H, Grabenbauer GG, Sprung CN, et al. DNA double-strand break induction and repair in irradiated lymphoblastoid, fibroblast cell lines and white blood cells from ATM, NBS and radiosensitive patients. Strahlenther Onkol 2007;183:447–53.

    Article  PubMed  Google Scholar 

  56. Tanos B, Pendergast AM. Abl tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J Biol Chem 2006;281:32714–23.

    Article  CAS  PubMed  Google Scholar 

  57. Toulany M, Baumann M, Rodemann HP. Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity. Mol Cancer Res 2007;5:863–72.

    Article  CAS  PubMed  Google Scholar 

  58. Toulany M, Dittmann K, Kruger M, et al. Radioresistance of K-Ras mutated human tumor cells is mediated through EGFR-dependent activation of PI3K-AKT pathway. Radiother Oncol 2005;76:143–50.

    Article  CAS  PubMed  Google Scholar 

  59. Toulany M, Kasten-Pisula U, Brammer I, et al. Blockage of epidermal growth factor receptor-phosphatidylinositol 3-kinase-AKT signaling increases radiosensitivity of K-RAS mutated human tumor cells in vitro by affecting DNA repair. Clin Cancer Res 2006;12:4119–26.

    Article  CAS  PubMed  Google Scholar 

  60. Wang Q, Zhu F, Wang Z. Identification of EGF receptor C-terminal sequences 1005-1017 and di-leucine motif 1010LL1011 as essential in EGF receptor endocytosis. Exp Cell Res 2007;313:3349–63.

    Article  CAS  PubMed  Google Scholar 

  61. Wang SC, Nakajima Y, Yu YL, et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol 2006;8:1359–68.

    Article  CAS  PubMed  Google Scholar 

  62. Wanner G, Mayer C, Kehlbach R, et al. Activation of protein kinase Cepsilon stimulates DNA-repair via epidermal growth factor receptor nuclear accumulation. Radiother Oncol 2008;86:383–90.

    Article  CAS  PubMed  Google Scholar 

  63. Wickner W, Schekman R. Protein translocation across biological membranes. Science 2005;310:1452–6.

    Article  CAS  PubMed  Google Scholar 

  64. Xia W, Wei Y, Du Y, et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog 2009;48:610–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yotsumoto F, Yagi H, Suzuki SO, et al. Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun 2008;365:555–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Dittmann.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00066-010-7001-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittmann, K., Mayer, C. & Rodemann, H.P. Nuclear EGFR as Novel Therapeutic Target. Strahlenther Onkol 186, 1–6 (2010). https://doi.org/10.1007/s00066-009-2026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-2026-4

Key Words:

Schlüsselwörter:

Navigation