Skip to main content
Top
Gepubliceerd in:

11-11-2021 | Original Article

Are metaphors embodied? The neural evidence

Auteur: Rutvik H. Desai

Gepubliceerd in: Psychological Research | Uitgave 8/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Abstract concepts can potentially be represented using metaphorical mappings to concrete domains. This view predicts that when linguistic metaphors are processed, they will invoke sensory-motor simulations. Here, I examine evidence from neuroimaging and lesion studies that addresses whether metaphors in language are embodied in this manner. Given the controversy in this area, I first outline some criteria by which the quality of neuroimaging and lesion studies might be evaluated. I then review studies of metaphors in various sensory-motor domains, such as action, motion, texture, taste, and time, and examine their strengths and weaknesses. Studies of idioms are evaluated next. I also address some neuroimaging studies that can speak to the question of metaphoric conceptual organization without explicit use of linguistic metaphors. I conclude that the weight of the evidence suggests that metaphors are indeed grounded in sensory-motor systems. The case of idioms is less clear, and I suggest that they might be grounded in a qualitatively different manner than metaphors at higher levels of the action hierarchy. While metaphors are unlikely to explain all aspects of abstract concept representation, for some specific abstract concepts, there is also nonlinguistic neural evidence for metaphoric conceptual organization.
Voetnoten
1
This is not meant to imply that other theories, such as the amodal symbol view, do in fact account for abstract concepts. Whether other theories can account for either concrete or abstract concepts is indeed not clear, but this is a separate question that will not be addressed here.
 
2
Abstract sentences are also “literal” in that they are non-figurative. Here, the term LIT is reserved for non-figurative sentences that denote a concrete sensory-motor event, such as “throwing a ball.” ABS is used for literal sentences that denote events that do not directly entail action/perception, such as “considering my options.”
 
3
Many neuroimaging studies present sentence stimuli visually that are read silently. Note that this does not obviate the importance of controlling for phonology. Activation of phonological representations during reading is automatic and rapid (and similarly, orthography is activated to some extent by auditory word presentations).
 
4
This activation could be seen only due to the whole-brain analysis used in the study. If the analyses were targeted only to specific action ROIs, as is common, this area relevant to abstract semantics and with interesting theoretical implications would not be seen. This provides an example of the potential value of whole-brain analyses.
 
5
They used the term ‘literal’ for this condition. Under the current nomenclature, such conditions are termed ABS.
 
Literatuur
go back to reference Akkal, D., Dum, R. P., & Strick, P. L. (2007). Supplementary motor area and presupplementary motor area: Targets of basal ganglia and cerebellar output. Journal of Neuroscience, 27, 10659–10673.PubMedCrossRef Akkal, D., Dum, R. P., & Strick, P. L. (2007). Supplementary motor area and presupplementary motor area: Targets of basal ganglia and cerebellar output. Journal of Neuroscience, 27, 10659–10673.PubMedCrossRef
go back to reference Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16, 1818–1823.PubMedCrossRef Aziz-Zadeh, L., Wilson, S. M., Rizzolatti, G., & Iacoboni, M. (2006). Congruent embodied representations for visually presented actions and linguistic phrases describing actions. Current Biology, 16, 1818–1823.PubMedCrossRef
go back to reference Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thought. Cambridge University Press. Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thought. Cambridge University Press.
go back to reference Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of Royal Statistical Society B, 57, 298–300. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of Royal Statistical Society B, 57, 298–300.
go back to reference Binkofski, F. C., Klann, J., & Caspers, S. (2016). On the neuroanatomy and functional role of the inferior parietal lobule and intraparietal sulcus. In G. Hickok & S. Small (Eds.), Neurobiology of Language. Academic Press. Binkofski, F. C., Klann, J., & Caspers, S. (2016). On the neuroanatomy and functional role of the inferior parietal lobule and intraparietal sulcus. In G. Hickok & S. Small (Eds.), Neurobiology of Language. Academic Press.
go back to reference Bogacz, R., Wagenmakers, E. J., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33, 10–16.PubMedCrossRef Bogacz, R., Wagenmakers, E. J., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33, 10–16.PubMedCrossRef
go back to reference Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120–153.PubMedCrossRef Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120–153.PubMedCrossRef
go back to reference Boulenger, V., Hauk, O., & Pulvermuller, F. (2009). Grasping ideas with the motor system: Semantic somatotopy in idiom comprehension. Cerebral Cortex, 19, 1905–1914.PubMedCrossRef Boulenger, V., Hauk, O., & Pulvermuller, F. (2009). Grasping ideas with the motor system: Semantic somatotopy in idiom comprehension. Cerebral Cortex, 19, 1905–1914.PubMedCrossRef
go back to reference Boulenger, V., Shtyrov, Y., & Pulvermuller, F. (2012). When do you grasp the idea? MEG evidence for instantaneous idiom understanding. NeuroImage, 59, 3502–3513.PubMedCrossRef Boulenger, V., Shtyrov, Y., & Pulvermuller, F. (2012). When do you grasp the idea? MEG evidence for instantaneous idiom understanding. NeuroImage, 59, 3502–3513.PubMedCrossRef
go back to reference Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365–376.PubMedCrossRef Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365–376.PubMedCrossRef
go back to reference Buxbaum, L. J., Johnson-Frey, S. H., & Bartlett-Williams, M. (2005). Deficient internal models for planning hand–object interactions in apraxia. Neuropsychologia, 43, 917–929.PubMedCrossRef Buxbaum, L. J., Johnson-Frey, S. H., & Bartlett-Williams, M. (2005). Deficient internal models for planning hand–object interactions in apraxia. Neuropsychologia, 43, 917–929.PubMedCrossRef
go back to reference Buxbaum, L. J., Kyle, K., Grossman, M., & Coslett, H. B. (2007). Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex, 43, 411–423.PubMedCrossRef Buxbaum, L. J., Kyle, K., Grossman, M., & Coslett, H. B. (2007). Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex, 43, 411–423.PubMedCrossRef
go back to reference Cacciari, C., Bolognini, N., Senna, I., Pellicciari, M. C., Miniussi, C., & Papagno, C. (2011). Literal, fictive and metaphorical motion sentences preserve the motion component of the verb: A TMS study. Brain and Language, 119, 149–157.PubMedCrossRef Cacciari, C., Bolognini, N., Senna, I., Pellicciari, M. C., Miniussi, C., & Papagno, C. (2011). Literal, fictive and metaphorical motion sentences preserve the motion component of the verb: A TMS study. Brain and Language, 119, 149–157.PubMedCrossRef
go back to reference Cacciari, C., & Tabossi, P. (1988). The comprehension of idioms. Journal of Memory and Language, 27, 668–683.CrossRef Cacciari, C., & Tabossi, P. (1988). The comprehension of idioms. Journal of Memory and Language, 27, 668–683.CrossRef
go back to reference Cacciola, A., Milardi, D., Bertino, S., Basile, G. A., Calamuneri, A., Chillemi, G., Rizzo, G., Anastasi, G., & Quartarone, A. (2019). Structural connectivity-based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders. Movement Disorders, 34, 987–996.PubMedCrossRef Cacciola, A., Milardi, D., Bertino, S., Basile, G. A., Calamuneri, A., Chillemi, G., Rizzo, G., Anastasi, G., & Quartarone, A. (2019). Structural connectivity-based topography of the human globus pallidus: Implications for therapeutic targeting in movement disorders. Movement Disorders, 34, 987–996.PubMedCrossRef
go back to reference Casasanto, D. (2009). When is a lingusitic metaphor a conceptual metaphor. In V. Evans & S. Pourcel (Eds.), New directions in cognitive linguistics. John Benjamins. Casasanto, D. (2009). When is a lingusitic metaphor a conceptual metaphor. In V. Evans & S. Pourcel (Eds.), New directions in cognitive linguistics. John Benjamins.
go back to reference Casasanto, D., & Bottini, R. (2014). Spatial language and abstract concepts. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 139–149.PubMed Casasanto, D., & Bottini, R. (2014). Spatial language and abstract concepts. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 139–149.PubMed
go back to reference Casasanto, D., & Gijssels, T. (2015). What makes a metaphor an embodied metaphor? Linguistics Vanguard, 1, 327–337.CrossRef Casasanto, D., & Gijssels, T. (2015). What makes a metaphor an embodied metaphor? Linguistics Vanguard, 1, 327–337.CrossRef
go back to reference Chen, E., Widick, P., & Chatterjee, A. (2008). Functional-anatomical organization of predicate metaphor processing. Brain and Language, 107, 194–202.PubMedPubMedCentralCrossRef Chen, E., Widick, P., & Chatterjee, A. (2008). Functional-anatomical organization of predicate metaphor processing. Brain and Language, 107, 194–202.PubMedPubMedCentralCrossRef
go back to reference Citron, F. M., & Goldberg, A. E. (2014). Metaphorical sentences are more emotionally engaging than their literal counterparts. Journal of Cognitive Neuroscience, 26, 2585–2595.PubMedCrossRef Citron, F. M., & Goldberg, A. E. (2014). Metaphorical sentences are more emotionally engaging than their literal counterparts. Journal of Cognitive Neuroscience, 26, 2585–2595.PubMedCrossRef
go back to reference Desai, R. H., Binder, J. R., Conant, L. L., Mano, Q. R., & Seidenberg, M. S. (2011). The neural career of sensory-motor metaphors. Journal of Cognitive Neuroscience, 23, 2376–2386.PubMedCrossRef Desai, R. H., Binder, J. R., Conant, L. L., Mano, Q. R., & Seidenberg, M. S. (2011). The neural career of sensory-motor metaphors. Journal of Cognitive Neuroscience, 23, 2376–2386.PubMedCrossRef
go back to reference Desai, R. H., Conant, L. L., Binder, J. R., Park, H., & Seidenberg, M. S. (2013). A piece of the action: Modulation of sensory-motor regions by action idioms and metaphors. NeuroImage, 83, 862–869.PubMedCrossRef Desai, R. H., Conant, L. L., Binder, J. R., Park, H., & Seidenberg, M. S. (2013). A piece of the action: Modulation of sensory-motor regions by action idioms and metaphors. NeuroImage, 83, 862–869.PubMedCrossRef
go back to reference Desai, R. H., Reilly, M., & van Dam, W. (2018). The multifaceted abstract brain. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 373, 20170122.PubMedPubMedCentralCrossRef Desai, R. H., Reilly, M., & van Dam, W. (2018). The multifaceted abstract brain. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 373, 20170122.PubMedPubMedCentralCrossRef
go back to reference Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses. Journal of Neuroscience Methods, 118, 115–128.PubMedCrossRef Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: Statistical power analyses. Journal of Neuroscience Methods, 118, 115–128.PubMedCrossRef
go back to reference Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110, 412–431.PubMedCrossRef Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. Cognition, 110, 412–431.PubMedCrossRef
go back to reference Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83, 764–770.PubMedPubMedCentralCrossRef Eichenbaum, H., & Cohen, N. J. (2014). Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron, 83, 764–770.PubMedPubMedCentralCrossRef
go back to reference Fernandez, L., Huys, R., Issartel, J., Azulay, J. P., & Eusebio, A. (2018). Movement speed-accuracy trade-off in Parkinson’s disease. Frontiers in Neurology, 9, 897.PubMedPubMedCentralCrossRef Fernandez, L., Huys, R., Issartel, J., Azulay, J. P., & Eusebio, A. (2018). Movement speed-accuracy trade-off in Parkinson’s disease. Frontiers in Neurology, 9, 897.PubMedPubMedCentralCrossRef
go back to reference Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., Conant, L. L., & Seidenberg, M. S. (2016). Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cerebral Cortex, 26, 2018–2034.PubMedCrossRef Fernandino, L., Binder, J. R., Desai, R. H., Pendl, S. L., Humphries, C. J., Gross, W. L., Conant, L. L., & Seidenberg, M. S. (2016). Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cerebral Cortex, 26, 2018–2034.PubMedCrossRef
go back to reference Fernandino, L., Conant, L. L., Binder, J. R., Blindauer, K., Hiner, B., Spangler, K., & Desai, R. H. (2013). “Where is the action? Action sentence processing in Parkinson’s disease.” Neuropsychologia, 51, 1510–1517.PubMedPubMedCentralCrossRef Fernandino, L., Conant, L. L., Binder, J. R., Blindauer, K., Hiner, B., Spangler, K., & Desai, R. H. (2013). “Where is the action? Action sentence processing in Parkinson’s disease.” Neuropsychologia, 51, 1510–1517.PubMedPubMedCentralCrossRef
go back to reference Galea, M. P., & Darian-Smith, I. (1994). Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cerebral Cortex, 4, 166–194.PubMedCrossRef Galea, M. P., & Darian-Smith, I. (1994). Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cerebral Cortex, 4, 166–194.PubMedCrossRef
go back to reference Gibbs, R. W. (1994a). Figurative thought and figurative language. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics. Academic Press. Gibbs, R. W. (1994a). Figurative thought and figurative language. In M. A. Gernsbacher (Ed.), Handbook of psycholinguistics. Academic Press.
go back to reference Gibbs, R. W. (1994b). The poetics of mind: Figurative thought, language, and understanding. Cambridge University Press. Gibbs, R. W. (1994b). The poetics of mind: Figurative thought, language, and understanding. Cambridge University Press.
go back to reference Gibbs, R. W. (2011). Evaluating conceptual metaphor theory. Discourse Processes, 48, 529–562.CrossRef Gibbs, R. W. (2011). Evaluating conceptual metaphor theory. Discourse Processes, 48, 529–562.CrossRef
go back to reference Gibbs Jr, R. W. (1996). Why many concepts are metaphorical. Cognition, 61, 309–319.CrossRef Gibbs Jr, R. W. (1996). Why many concepts are metaphorical. Cognition, 61, 309–319.CrossRef
go back to reference Goldenberg, G., & Karnath, H. O. (2006). The neural basis of imitation is body part specific. Journal of Neuroscience, 26, 6282–6287.PubMedCrossRef Goldenberg, G., & Karnath, H. O. (2006). The neural basis of imitation is body part specific. Journal of Neuroscience, 26, 6282–6287.PubMedCrossRef
go back to reference Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86, 141–155.PubMedCrossRef Grahn, J. A., Parkinson, J. A., & Owen, A. M. (2008). The cognitive functions of the caudate nucleus. Progress in Neurobiology, 86, 141–155.PubMedCrossRef
go back to reference Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119–136.PubMedCrossRef Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119–136.PubMedCrossRef
go back to reference Guo, Y., Schmitz, T. W., Mur, M., Ferreira, C. S., & Anderson, M. C. (2018). A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence. Neuropsychologia, 108, 117–134.PubMedPubMedCentralCrossRef Guo, Y., Schmitz, T. W., Mur, M., Ferreira, C. S., & Anderson, M. C. (2018). A supramodal role of the basal ganglia in memory and motor inhibition: Meta-analytic evidence. Neuropsychologia, 108, 117–134.PubMedPubMedCentralCrossRef
go back to reference Haaland, K. Y., Harrington, D. L., & Knight, R. T. (2000). Neural representations of skilled movement. Brain, 123, 2306–2313.PubMedCrossRef Haaland, K. Y., Harrington, D. L., & Knight, R. T. (2000). Neural representations of skilled movement. Brain, 123, 2306–2313.PubMedCrossRef
go back to reference Haber, S. N. (2016). Corticostriatal circuitry. In D. W. Pfaff & N. Volkow (Eds.), Neuroscience in the 21st century: From basic to clinical. Springer. Haber, S. N. (2016). Corticostriatal circuitry. In D. W. Pfaff & N. Volkow (Eds.), Neuroscience in the 21st century: From basic to clinical. Springer.
go back to reference Hamblin, J. L., & Gibbs, R. W., Jr. (1999). Why you can’t kick the bucket as you slowly die: Verbs in idiom comprehension. Journal of Psycholinguistic Research, 28, 25–39.CrossRef Hamblin, J. L., & Gibbs, R. W., Jr. (1999). Why you can’t kick the bucket as you slowly die: Verbs in idiom comprehension. Journal of Psycholinguistic Research, 28, 25–39.CrossRef
go back to reference Jamrozik, A., McQuire, M., Cardillo, E. R., & Chatterjee, A. (2016). Metaphor: Bridging embodiment to abstraction. Psychonomic Bulletin and Review, 23, 1080–1089.PubMedCrossRef Jamrozik, A., McQuire, M., Cardillo, E. R., & Chatterjee, A. (2016). Metaphor: Bridging embodiment to abstraction. Psychonomic Bulletin and Review, 23, 1080–1089.PubMedCrossRef
go back to reference Jax, S. A., Buxbaum, L. J., & Moll, A. D. (2006). Deficits in movement planning and intrinsic coordinate control in ideomotor apraxia. Journal of Cognitive Neuroscience, 18, 2063–2076.PubMedCrossRef Jax, S. A., Buxbaum, L. J., & Moll, A. D. (2006). Deficits in movement planning and intrinsic coordinate control in ideomotor apraxia. Journal of Cognitive Neuroscience, 18, 2063–2076.PubMedCrossRef
go back to reference Jin, X., Tecuapetla, F., & Costa, R. M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nature Neuroscience, 17, 423–430.PubMedPubMedCentralCrossRef Jin, X., Tecuapetla, F., & Costa, R. M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nature Neuroscience, 17, 423–430.PubMedPubMedCentralCrossRef
go back to reference Johari, K., Riccardi, N., Malyutina, S., Modi, M., & Desai, R. H. (2021). HD-tDCS over motor cortex facilitates figurative and literal action sentence processing. Neuropsychologia, 159, 107955.PubMedPubMedCentralCrossRef Johari, K., Riccardi, N., Malyutina, S., Modi, M., & Desai, R. H. (2021). HD-tDCS over motor cortex facilitates figurative and literal action sentence processing. Neuropsychologia, 159, 107955.PubMedPubMedCentralCrossRef
go back to reference Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15, 681–695.PubMedCrossRef Johnson-Frey, S. H., Newman-Norlund, R., & Grafton, S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cerebral Cortex, 15, 681–695.PubMedCrossRef
go back to reference Kiefer, M., & Harpaintner, M. (2020). Varieties of abstract concepts and their grounding in perception or action. Open Psychology, 2, 119–137.CrossRef Kiefer, M., & Harpaintner, M. (2020). Varieties of abstract concepts and their grounding in perception or action. Open Psychology, 2, 119–137.CrossRef
go back to reference Kiefer, M., & Pulvermuller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48, 805–825.PubMedCrossRef Kiefer, M., & Pulvermuller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48, 805–825.PubMedCrossRef
go back to reference Kuhnke, P., Kiefer, M., & Hartwigsen, G. (2020). Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cerebral Cortex, 30, 3938–3959.PubMedPubMedCentralCrossRef Kuhnke, P., Kiefer, M., & Hartwigsen, G. (2020). Task-dependent recruitment of modality-specific and multimodal regions during conceptual processing. Cerebral Cortex, 30, 3938–3959.PubMedPubMedCentralCrossRef
go back to reference Lacey, S., Stilla, R., Deshpande, G., Zhao, S., Stephens, C., McCormick, K., Kemmerer, D., & Sathian, K. (2017). Engagement of the left extrastriate body area during body-part metaphor comprehension. Brain and Language, 166, 1–18.PubMedCrossRef Lacey, S., Stilla, R., Deshpande, G., Zhao, S., Stephens, C., McCormick, K., Kemmerer, D., & Sathian, K. (2017). Engagement of the left extrastriate body area during body-part metaphor comprehension. Brain and Language, 166, 1–18.PubMedCrossRef
go back to reference Lacey, S., Stilla, R., & Sathian, K. (2012). Metaphorically feeling: Comprehending textural metaphors activates somatosensory cortex. Brain and Language, 120, 416–421.PubMedPubMedCentralCrossRef Lacey, S., Stilla, R., & Sathian, K. (2012). Metaphorically feeling: Comprehending textural metaphors activates somatosensory cortex. Brain and Language, 120, 416–421.PubMedPubMedCentralCrossRef
go back to reference Lai, V. T., Howerton, O., & Desai, R. H. (2019). Concrete processing of action metaphors: Evidence from ERP. Brain Research, 1714, 202–209.PubMedCrossRef Lai, V. T., Howerton, O., & Desai, R. H. (2019). Concrete processing of action metaphors: Evidence from ERP. Brain Research, 1714, 202–209.PubMedCrossRef
go back to reference Lakoff, G. (1993). The contemporary theory of metaphor. In A. Ortony (Ed.), Metaphor and thought. Cambridge University Press. Lakoff, G. (1993). The contemporary theory of metaphor. In A. Ortony (Ed.), Metaphor and thought. Cambridge University Press.
go back to reference Lakoff, G., & Johnson, M. (1980). Metaphors we live By. Chicago. Lakoff, G., & Johnson, M. (1980). Metaphors we live By. Chicago.
go back to reference Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. Basic Books. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. Basic Books.
go back to reference Lauro, R., Leonor, J., Mattavelli, G., Papagno, C., & Tettamanti, M. (2013). She runs, the road runs, my mind runs, bad blood runs between us: Literal and figurative motion verbs: An fMRI study. NeuroImage, 83C, 361–371.CrossRef Lauro, R., Leonor, J., Mattavelli, G., Papagno, C., & Tettamanti, M. (2013). She runs, the road runs, my mind runs, bad blood runs between us: Literal and figurative motion verbs: An fMRI study. NeuroImage, 83C, 361–371.CrossRef
go back to reference Lehericy, S., Bardinet, E., Tremblay, L., Van de Moortele, P. F., Pochon, J. B., Dormont, D., Kim, D. S., Yelnik, J., & Ugurbil, K. (2006). Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex, 16, 149–161.PubMedCrossRef Lehericy, S., Bardinet, E., Tremblay, L., Van de Moortele, P. F., Pochon, J. B., Dormont, D., Kim, D. S., Yelnik, J., & Ugurbil, K. (2006). Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cerebral Cortex, 16, 149–161.PubMedCrossRef
go back to reference Markowitz, J. E., Gillis, W. F., Beron, C. C., Neufeld, S. Q., Robertson, K., Bhagat, N. D., Peterson, R. E., Peterson, E., Hyun, M., Linderman, S. W., Sabatini, B. L., & Datta, S. R. (2018). The striatum organizes 3D behavior via moment-to-moment action selection. Cell, 174, 44 e17-58 e17.CrossRef Markowitz, J. E., Gillis, W. F., Beron, C. C., Neufeld, S. Q., Robertson, K., Bhagat, N. D., Peterson, R. E., Peterson, E., Hyun, M., Linderman, S. W., Sabatini, B. L., & Datta, S. R. (2018). The striatum organizes 3D behavior via moment-to-moment action selection. Cell, 174, 44 e17-58 e17.CrossRef
go back to reference McGlone, M. S. (2007). What is the explanatory value of a conceptual metaphor? Language and Communication, 27, 109–126.CrossRef McGlone, M. S. (2007). What is the explanatory value of a conceptual metaphor? Language and Communication, 27, 109–126.CrossRef
go back to reference McGlone, M. S. (2011). Hyperbole, homunculi, and hindsight bias: An alternative evaluation of conceptual metaphor theory. Discourse Processes, 48, 563–574.CrossRef McGlone, M. S. (2011). Hyperbole, homunculi, and hindsight bias: An alternative evaluation of conceptual metaphor theory. Discourse Processes, 48, 563–574.CrossRef
go back to reference Milardi, D., Quartarone, A., Bramanti, A., Anastasi, G., Bertino, S., Basile, G. A., Buonasera, P., Pilone, G., Celeste, G., Rizzo, G., Bruschetta, D., & Cacciola, A. (2019). The cortico-basal ganglia-cerebellar network: Past, present and future perspectives. Frontiers in Systems Neuroscience, 13, 61.PubMedPubMedCentralCrossRef Milardi, D., Quartarone, A., Bramanti, A., Anastasi, G., Bertino, S., Basile, G. A., Buonasera, P., Pilone, G., Celeste, G., Rizzo, G., Bruschetta, D., & Cacciola, A. (2019). The cortico-basal ganglia-cerebellar network: Past, present and future perspectives. Frontiers in Systems Neuroscience, 13, 61.PubMedPubMedCentralCrossRef
go back to reference Murphy, G. L. (1997). Reasons to doubt the present evidence for metaphoric representation. Cognition, 62, 99–108.PubMedCrossRef Murphy, G. L. (1997). Reasons to doubt the present evidence for metaphoric representation. Cognition, 62, 99–108.PubMedCrossRef
go back to reference Murphy, K., & Garavan, H. (2004). An empirical investigation into the number of subjects required for an event-related fMRI study. NeuroImage, 22, 879–885.PubMedCrossRef Murphy, K., & Garavan, H. (2004). An empirical investigation into the number of subjects required for an event-related fMRI study. NeuroImage, 22, 879–885.PubMedCrossRef
go back to reference Nachev, P., Kennard, C., & Husain, M. (2008). ’Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856–869.PubMedCrossRef Nachev, P., Kennard, C., & Husain, M. (2008). ’Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9, 856–869.PubMedCrossRef
go back to reference Nachev, P., Wydell, H., O’Neill, K., Husain, M., & Kennard, C. (2007). The role of the pre-supplementary motor area in the control of action. NeuroImage, 36(Suppl 2), T155–T163.PubMedCrossRef Nachev, P., Wydell, H., O’Neill, K., Husain, M., & Kennard, C. (2007). The role of the pre-supplementary motor area in the control of action. NeuroImage, 36(Suppl 2), T155–T163.PubMedCrossRef
go back to reference Pajula, J., & Tohka, J. (2016). How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI. Computational Intelligence and Neuroscience, 2016, 2094601.PubMedPubMedCentralCrossRef Pajula, J., & Tohka, J. (2016). How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI. Computational Intelligence and Neuroscience, 2016, 2094601.PubMedPubMedCentralCrossRef
go back to reference Peeters, R. R., Rizzolatti, G., & Orban, G. A. (2013). Functional properties of the left parietal tool use region. NeuroImage, 78, 83–93.PubMedCrossRef Peeters, R. R., Rizzolatti, G., & Orban, G. A. (2013). Functional properties of the left parietal tool use region. NeuroImage, 78, 83–93.PubMedCrossRef
go back to reference Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59–63.PubMedCrossRef Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Sciences, 10, 59–63.PubMedCrossRef
go back to reference Pollio, H. R. (1977). Psychology and the poetics of growth : Figurative language in psychology, psychotherapy, and education (L. Erlbaum Associates; distributed by the Halsted Press Division of J. Wiley: Hillsdale, N.J. New York) Pollio, H. R. (1977). Psychology and the poetics of growth : Figurative language in psychology, psychotherapy, and education (L. Erlbaum Associates; distributed by the Halsted Press Division of J. Wiley: Hillsdale, N.J. New York)
go back to reference Quadflieg, S., Etzel, J. A., Gazzola, V., Keysers, C., Schubert, T. W., Waiter, G. D., & Macrae, C. N. (2011). Puddles, parties, and professors: Linking word categorization to neural patterns of visuospatial coding. Journal of Cognitive Neuroscience, 23, 2636–2649.PubMedCrossRef Quadflieg, S., Etzel, J. A., Gazzola, V., Keysers, C., Schubert, T. W., Waiter, G. D., & Macrae, C. N. (2011). Puddles, parties, and professors: Linking word categorization to neural patterns of visuospatial coding. Journal of Cognitive Neuroscience, 23, 2636–2649.PubMedCrossRef
go back to reference Ramayya, A. G., Glasser, M. F., & Rilling, J. K. (2010). A DTI investigation of neural substrates supporting tool use. Cerebral Cortex, 20, 507–516.PubMedCrossRef Ramayya, A. G., Glasser, M. F., & Rilling, J. K. (2010). A DTI investigation of neural substrates supporting tool use. Cerebral Cortex, 20, 507–516.PubMedCrossRef
go back to reference Randerath, J., Valyear, K. F., Philip, B. A., & Frey, S. H. (2017). Contributions of the parietal cortex to increased efficiency of planning-based action selection. Neuropsychologia, 105, 135–143.PubMedPubMedCentralCrossRef Randerath, J., Valyear, K. F., Philip, B. A., & Frey, S. H. (2017). Contributions of the parietal cortex to increased efficiency of planning-based action selection. Neuropsychologia, 105, 135–143.PubMedPubMedCentralCrossRef
go back to reference Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2009). Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia, 47, 388–396.PubMedCrossRef Raposo, A., Moss, H. E., Stamatakis, E. A., & Tyler, L. K. (2009). Modulation of motor and premotor cortices by actions, action words and action sentences. Neuropsychologia, 47, 388–396.PubMedCrossRef
go back to reference Reilly, M., Howerton, O., & Desai, R. H. (2019). Time-course of motor involvement in literal and metaphoric action sentence processing: a TMS study. Frontiers in Psychology, 10, 371.PubMedPubMedCentralCrossRef Reilly, M., Howerton, O., & Desai, R. H. (2019). Time-course of motor involvement in literal and metaphoric action sentence processing: a TMS study. Frontiers in Psychology, 10, 371.PubMedPubMedCentralCrossRef
go back to reference Riva, D., Taddei, M., & Bulgheroni, S. (2018). The neuropsychology of basal ganglia. European Journal of Paediatric Neurology, 22, 321–326.PubMedCrossRef Riva, D., Taddei, M., & Bulgheroni, S. (2018). The neuropsychology of basal ganglia. European Journal of Paediatric Neurology, 22, 321–326.PubMedCrossRef
go back to reference Sanford, D. (2014). Idiom as the intersection of conceptual and syntactic schemas. Language and Cognition, 6, 492–509.CrossRef Sanford, D. (2014). Idiom as the intersection of conceptual and syntactic schemas. Language and Cognition, 6, 492–509.CrossRef
go back to reference Saygin, A. P., McCullough, S., Alac, M., & Emmorey, K. (2010). Modulation of BOLD response in motion-sensitive lateral temporal cortex by real and fictive motion sentences. Journal of Cognitive Neuroscience, 22, 2480–2490.PubMedPubMedCentralCrossRef Saygin, A. P., McCullough, S., Alac, M., & Emmorey, K. (2010). Modulation of BOLD response in motion-sensitive lateral temporal cortex by real and fictive motion sentences. Journal of Cognitive Neuroscience, 22, 2480–2490.PubMedPubMedCentralCrossRef
go back to reference Swinney, D., & Cutler, A. (1979). The access and processing of idiomatic expressions. Journal of Verbal Learning and Verbal Behavior, 18, 523–534.CrossRef Swinney, D., & Cutler, A. (1979). The access and processing of idiomatic expressions. Journal of Verbal Learning and Verbal Behavior, 18, 523–534.CrossRef
go back to reference Tavares, R. M., Mendelsohn, A., Grossman, Y., Williams, C. H., Shapiro, M., Trope, Y., & Schiller, D. (2015). A map for social navigation in the human brain. Neuron, 87, 231–243.PubMedPubMedCentralCrossRef Tavares, R. M., Mendelsohn, A., Grossman, Y., Williams, C. H., Shapiro, M., Trope, Y., & Schiller, D. (2015). A map for social navigation in the human brain. Neuron, 87, 231–243.PubMedPubMedCentralCrossRef
go back to reference Titone, D. A., & Connine, C. M. (1999). On the compositional and noncompositional nature of idiomatic expressions. Journal of Pragmatics, 31, 1655–1674.CrossRef Titone, D. A., & Connine, C. M. (1999). On the compositional and noncompositional nature of idiomatic expressions. Journal of Pragmatics, 31, 1655–1674.CrossRef
go back to reference Tunik, E., Frey, S. H., & Grafton, S. T. (2005). Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8, 505–511.PubMedCrossRef Tunik, E., Frey, S. H., & Grafton, S. T. (2005). Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8, 505–511.PubMedCrossRef
go back to reference Tunik, E., Lo, O. Y., & Adamovich, S. V. (2008). Transcranial magnetic stimulation to the frontal operculum and supramarginal gyrus disrupts planning of outcome-based hand-object interactions. Journal of Neuroscience, 28, 14422–14427.PubMedCrossRef Tunik, E., Lo, O. Y., & Adamovich, S. V. (2008). Transcranial magnetic stimulation to the frontal operculum and supramarginal gyrus disrupts planning of outcome-based hand-object interactions. Journal of Neuroscience, 28, 14422–14427.PubMedCrossRef
go back to reference Turner, B. O., Paul, E. J., Miller, M. B., & Barbey, A. K. (2018). Small sample sizes reduce the replicability of task-based fMRI studies. Commun Biol, 1, 62.PubMedPubMedCentralCrossRef Turner, B. O., Paul, E. J., Miller, M. B., & Barbey, A. K. (2018). Small sample sizes reduce the replicability of task-based fMRI studies. Commun Biol, 1, 62.PubMedPubMedCentralCrossRef
go back to reference Varney, N. R., & Damasio, H. (1987). Locus of lesion in impaired pantomime recognition. Cortex, 23, 699–703.PubMedCrossRef Varney, N. R., & Damasio, H. (1987). Locus of lesion in impaired pantomime recognition. Cortex, 23, 699–703.PubMedCrossRef
go back to reference Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11, 403–430.CrossRef Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11, 403–430.CrossRef
go back to reference Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5, 151.PubMedPubMedCentralCrossRef Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5, 151.PubMedPubMedCentralCrossRef
go back to reference Vulchanova, M., Milburn, E., Vulchanov, V., & Baggio, G. (2019). Boon or burden? The role of compositional meaning in figurative language processing and acquisition. Journal of Logic, Language and Information, 28, 359–387.CrossRef Vulchanova, M., Milburn, E., Vulchanov, V., & Baggio, G. (2019). Boon or burden? The role of compositional meaning in figurative language processing and acquisition. Journal of Logic, Language and Information, 28, 359–387.CrossRef
go back to reference Wallentin, M., Lund, T. E., Ostergaard, S., Ostergaard, L., & Roepstorff, A. (2005a). Motion verb sentences activate left posterior middle temporal cortex despite static context. NeuroReport, 16, 649–652.PubMedCrossRef Wallentin, M., Lund, T. E., Ostergaard, S., Ostergaard, L., & Roepstorff, A. (2005a). Motion verb sentences activate left posterior middle temporal cortex despite static context. NeuroReport, 16, 649–652.PubMedCrossRef
go back to reference Wallentin, M., Østergaarda, S., Lund, T. E., Østergaard, L., & Roepstorff, A. (2005b). Concrete spatial language: See what I mean? Brain and Language, 92, 221–233.PubMedCrossRef Wallentin, M., Østergaarda, S., Lund, T. E., Østergaard, L., & Roepstorff, A. (2005b). Concrete spatial language: See what I mean? Brain and Language, 92, 221–233.PubMedCrossRef
go back to reference Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31, 1459–1468.PubMedPubMedCentralCrossRef Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31, 1459–1468.PubMedPubMedCentralCrossRef
go back to reference Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. NeuroImage, 49, 1728–1740.PubMedCrossRef Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: A voxel-wise meta-analysis. NeuroImage, 49, 1728–1740.PubMedCrossRef
go back to reference Zanolie, K., Dantzig, S. V., Boot, I., Wijnen, J., Schubert, T. W., Giessner, S. R., & Pecher, D. (2012). Mighty metaphors: behavioral and ERP evidence that power shifts attention on a vertical dimension. Brain and Cognition, 78, 50–58.PubMedCrossRef Zanolie, K., Dantzig, S. V., Boot, I., Wijnen, J., Schubert, T. W., Giessner, S. R., & Pecher, D. (2012). Mighty metaphors: behavioral and ERP evidence that power shifts attention on a vertical dimension. Brain and Cognition, 78, 50–58.PubMedCrossRef
Metagegevens
Titel
Are metaphors embodied? The neural evidence
Auteur
Rutvik H. Desai
Publicatiedatum
11-11-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 8/2022
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-021-01604-4

Andere artikelen Uitgave 8/2022

Psychological Research 8/2022 Naar de uitgave