Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2018

27-02-2017 | Original Article

Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules

Auteurs: Michael J. Carter, Victoria Smith, Anthony N. Carlsen, Diane M. Ste-Marie

Gepubliceerd in: Psychological Research | Uitgave 3/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

A distinct learning advantage has been shown when participants control their knowledge of results (KR) scheduling during practice compared to when the same KR schedule is imposed on the learner without choice (i.e., yoked schedules). Although the learning advantages of self-controlled KR schedules are well-documented, the brain regions contributing to these advantages remain unknown. Identifying key brain regions would not only advance our theoretical understanding of the mechanisms underlying self-controlled learning advantages, but would also highlight regions that could be targeted in more applied settings to boost the already beneficial effects of self-controlled KR schedules. Here, we investigated whether applying anodal transcranial direct current stimulation (tDCS) to the primary motor cortex (M1) would enhance the typically found benefits of learning a novel motor skill with a self-controlled KR schedule. Participants practiced a spatiotemporal task in one of four groups using a factorial combination of KR schedule (self-controlled vs. yoked) and tDCS (anodal vs. sham). Testing occurred on two consecutive days with spatial and temporal accuracy measured on both days and learning was assessed using 24-h retention and transfer tests without KR. All groups improved their performance in practice and a significant effect for practicing with a self-controlled KR schedule compared to a yoked schedule was found for temporal accuracy in transfer, but a similar advantage was not evident in retention. There were no significant differences as a function of KR schedule or tDCS for spatial accuracy in retention or transfer. The lack of a significant tDCS effect suggests that M1 may not strongly contribute to self-controlled KR learning advantages; however, caution is advised with this interpretation as typical self-controlled learning benefits were not strongly replicated in the present experiment.
Literatuur
go back to reference Bund, A., & Wiemeyer, J. (2004). Self-controlled learning of a complex motor skill: Effects of the learners’ preferences on performance and self-efficacy. Journal of Human Movement Studies, 47(3), 215–236. Bund, A., & Wiemeyer, J. (2004). Self-controlled learning of a complex motor skill: Effects of the learners’ preferences on performance and self-efficacy. Journal of Human Movement Studies, 47(3), 215–236.
go back to reference Carlsen, A. N., Eagles, J. S., & MacKinnon, C. D. (2015). Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system. Behavioural Brain Research, 279, 68–75. doi:10.1016/j.bbr.2014.11.009.CrossRefPubMed Carlsen, A. N., Eagles, J. S., & MacKinnon, C. D. (2015). Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system. Behavioural Brain Research, 279, 68–75. doi:10.​1016/​j.​bbr.​2014.​11.​009.CrossRefPubMed
go back to reference Carter, M. J., Carlsen, A. N., & Ste-Marie, D. M. (2014). Self-controlled feedback is effective if it is based on the learner’s performance: A replication and extension of Chiviacowsky and Wulf (2005). Frontiers in Psychology, 5, 1325. doi:10.3389/fpsyg.2014.01325.PubMedPubMedCentral Carter, M. J., Carlsen, A. N., & Ste-Marie, D. M. (2014). Self-controlled feedback is effective if it is based on the learner’s performance: A replication and extension of Chiviacowsky and Wulf (2005). Frontiers in Psychology, 5, 1325. doi:10.​3389/​fpsyg.​2014.​01325.PubMedPubMedCentral
go back to reference Carter, M. J., Maslovat, D., & Carlsen, A. N. (2015). Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. Journal of Neurophysiology, 113(3), 780–785. doi:10.1152/jn.00662.2014.CrossRefPubMed Carter, M. J., Maslovat, D., & Carlsen, A. N. (2015). Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. Journal of Neurophysiology, 113(3), 780–785. doi:10.​1152/​jn.​00662.​2014.CrossRefPubMed
go back to reference Carter, M. J., & Ste-Marie, D. M. (2017). An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules. Psychological Research, 81, 399–406. doi:10.1007/s00426-016-0757-2.CrossRefPubMed Carter, M. J., & Ste-Marie, D. M. (2017). An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules. Psychological Research, 81, 399–406. doi:10.​1007/​s00426-016-0757-2.CrossRefPubMed
go back to reference Chiviacowsky, S., & Wulf, G. (2002). Self-controlled feedback: Does it enhance learning because performers get feedback when they need it? Research Quarterly for Exercise and Sport, 73(4), 408–415.CrossRefPubMed Chiviacowsky, S., & Wulf, G. (2002). Self-controlled feedback: Does it enhance learning because performers get feedback when they need it? Research Quarterly for Exercise and Sport, 73(4), 408–415.CrossRefPubMed
go back to reference Chiviacowsky, S., & Wulf, G. (2005). Self-controlled feedback is effective if it is based on the learner’s performance. Research Quarterly for Exercise and Sport, 76(1), 42–48.CrossRefPubMed Chiviacowsky, S., & Wulf, G. (2005). Self-controlled feedback is effective if it is based on the learner’s performance. Research Quarterly for Exercise and Sport, 76(1), 42–48.CrossRefPubMed
go back to reference Chiviacowsky, S., Wulf, G., de Medeiros, F. L., Kaefer, A., & Wally, R. (2008). Self-controlled feedback in 10-year-old children: Higher feedback frequencies enhance learning. Research Quarterly for Exercise and Sport, 79(1), 122–127.PubMed Chiviacowsky, S., Wulf, G., de Medeiros, F. L., Kaefer, A., & Wally, R. (2008). Self-controlled feedback in 10-year-old children: Higher feedback frequencies enhance learning. Research Quarterly for Exercise and Sport, 79(1), 122–127.PubMed
go back to reference Cuypers, K., Leenus, D. J. F., den Berg, F. E., Nitsche, M. A., Thijs, H., Wenderoth, N., & Meesen, R. L. J. (2013). Is motor learning mediated by tDCS intensity?. PLos One, 8(6). doi:10.1371/journal.pone.0067344. Cuypers, K., Leenus, D. J. F., den Berg, F. E., Nitsche, M. A., Thijs, H., Wenderoth, N., & Meesen, R. L. J. (2013). Is motor learning mediated by tDCS intensity?. PLos One, 8(6). doi:10.​1371/​journal.​pone.​0067344.
go back to reference DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments, (51). doi:10.3791/2744.PubMedPubMedCentral DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments, (51). doi:10.​3791/​2744.PubMedPubMedCentral
go back to reference Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti, S. P., et al. (2006). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement Disorders, 21(10), 1693–1702. doi:10.1002/mds.21012.CrossRefPubMed Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti, S. P., et al. (2006). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement Disorders, 21(10), 1693–1702. doi:10.​1002/​mds.​21012.CrossRefPubMed
go back to reference Grand, K. F., Bruzi, A. T., Dyke, F. B., Godwin, M. M., Leiker, A. M., Thompson, A. G., et al. (2015). Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation. Human Movement Science, 43, 23–32. doi:10.1016/j.humov.2015.06.013.CrossRefPubMed Grand, K. F., Bruzi, A. T., Dyke, F. B., Godwin, M. M., Leiker, A. M., Thompson, A. G., et al. (2015). Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation. Human Movement Science, 43, 23–32. doi:10.​1016/​j.​humov.​2015.​06.​013.CrossRefPubMed
go back to reference Hadipour-Niktarash, A., Lee, C. K., Desmond, J. E., & Shadmehr, R. (2007). Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. Journal of Neuroscience, 27(49), 13413–13419. doi:10.1523/JNEUROSCI.2570-07.2007.CrossRefPubMed Hadipour-Niktarash, A., Lee, C. K., Desmond, J. E., & Shadmehr, R. (2007). Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. Journal of Neuroscience, 27(49), 13413–13419. doi:10.​1523/​JNEUROSCI.​2570-07.​2007.CrossRefPubMed
go back to reference Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430.CrossRefPubMed Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430.CrossRefPubMed
go back to reference Hansen, S., Pfeiffer, J., & Patterson, J. T. (2011). Self-control of feedback during motor learning: Accounting for the absolute amount of feedback using a yoked group with self-control over feedback. Journal of Motor Behavior, 43(2), 113–119. doi:10.1080/00222895.2010.548421.CrossRefPubMed Hansen, S., Pfeiffer, J., & Patterson, J. T. (2011). Self-control of feedback during motor learning: Accounting for the absolute amount of feedback using a yoked group with self-control over feedback. Journal of Motor Behavior, 43(2), 113–119. doi:10.​1080/​00222895.​2010.​548421.CrossRefPubMed
go back to reference Hashemirad, F., Zoghi, M., Fitzgerald, P. B., & Jaberzadeh, S. (2016). The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain and Cognition, 102, 1–12. doi:10.1016/j.bandc.2015.11.005.CrossRefPubMed Hashemirad, F., Zoghi, M., Fitzgerald, P. B., & Jaberzadeh, S. (2016). The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain and Cognition, 102, 1–12. doi:10.​1016/​j.​bandc.​2015.​11.​005.CrossRefPubMed
go back to reference Janelle, C. M., Barba, D. A., Frehlich, S. G., Tennant, L. K., & Cauraugh, J. H. (1997). Maximizing performance feedback effectiveness through videotape replay and a self-controlled learning environment. Research Quarterly for Exercise and Sport, 68(4), 269–279.CrossRefPubMed Janelle, C. M., Barba, D. A., Frehlich, S. G., Tennant, L. K., & Cauraugh, J. H. (1997). Maximizing performance feedback effectiveness through videotape replay and a self-controlled learning environment. Research Quarterly for Exercise and Sport, 68(4), 269–279.CrossRefPubMed
go back to reference Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning—evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36(5), 2710–2715. doi:10.1111/j.1460-9568.2012.08175.x.CrossRefPubMed Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning—evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36(5), 2710–2715. doi:10.​1111/​j.​1460-9568.​2012.​08175.​x.CrossRefPubMed
go back to reference Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., & Winstein, C. J. (2010). Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 13(8), 923–925. doi:10.1038/Nn.2596.CrossRefPubMed Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., & Winstein, C. J. (2010). Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 13(8), 923–925. doi:10.​1038/​Nn.​2596.CrossRefPubMed
go back to reference Kuo, H. I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644–648. doi:10.1016/j.brs.2012.09.010.CrossRefPubMed Kuo, H. I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644–648. doi:10.​1016/​j.​brs.​2012.​09.​010.CrossRefPubMed
go back to reference Lewthwaite, R., & Wulf, G. (2012). Motor learning through a motivational lens. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory, and practice (2nd edn., pp. 173–191). London: Routledge. Lewthwaite, R., & Wulf, G. (2012). Motor learning through a motivational lens. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory, and practice (2nd edn., pp. 173–191). London: Routledge.
go back to reference Lin, C. H., Fisher, B. E., Winstein, C. J., Wu, A. D., & Gordon, J. (2008). Contextual interference effect: Elaborative processing or forgetting-reconstruction? A post hoc analysis of transcranial magnetic stimulation-induced effects on motor learning. Journal of Motor Behavior, 40(6), 578–586. doi:10.3200/Jmbr.40.6.578-586.CrossRefPubMed Lin, C. H., Fisher, B. E., Winstein, C. J., Wu, A. D., & Gordon, J. (2008). Contextual interference effect: Elaborative processing or forgetting-reconstruction? A post hoc analysis of transcranial magnetic stimulation-induced effects on motor learning. Journal of Motor Behavior, 40(6), 578–586. doi:10.​3200/​Jmbr.​40.​6.​578-586.CrossRefPubMed
go back to reference Lin, C. H., Fisher, B. E., Wu, A. D., Ko, Y. A., Lee, L. Y., & Winstein, C. J. (2009). Neural correlate of the contextual interference effect in motor learning: A kinematic analysis. Journal of Motor Behavior, 41(3), 232–242.CrossRefPubMedPubMedCentral Lin, C. H., Fisher, B. E., Wu, A. D., Ko, Y. A., Lee, L. Y., & Winstein, C. J. (2009). Neural correlate of the contextual interference effect in motor learning: A kinematic analysis. Journal of Motor Behavior, 41(3), 232–242.CrossRefPubMedPubMedCentral
go back to reference Lin, C. H., Winstein, C. J., Fisher, B. E., & Wu, A. D. (2010). Neural correlates of the contextual interference effect in motor learning: A transcranial magnetic stimulation investigation. Journal of Motor Behavior, 42(4), 223–232.CrossRefPubMed Lin, C. H., Winstein, C. J., Fisher, B. E., & Wu, A. D. (2010). Neural correlates of the contextual interference effect in motor learning: A transcranial magnetic stimulation investigation. Journal of Motor Behavior, 42(4), 223–232.CrossRefPubMed
go back to reference Magill, R. A. (1988). Activity during the post-knowledge of results interval can benefit motor skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: The motor-action controversy (pp. 231–246). Elsevier Science Publishers B.V: North Holland.CrossRef Magill, R. A. (1988). Activity during the post-knowledge of results interval can benefit motor skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: The motor-action controversy (pp. 231–246). Elsevier Science Publishers B.V: North Holland.CrossRef
go back to reference Magill, R. A., & Anderson, D. I. (2013). The roles and uses of augmented feedback in motor skill acquisition. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory, and practice (2nd edn.). New York: Routledge. Magill, R. A., & Anderson, D. I. (2013). The roles and uses of augmented feedback in motor skill acquisition. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory, and practice (2nd edn.). New York: Routledge.
go back to reference Marquez, C. M. S., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7. doi:10.3389/Fnhum.2013.00333. Marquez, C. M. S., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7. doi:10.​3389/​Fnhum.​2013.​00333.
go back to reference Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.CrossRefPubMed Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.CrossRefPubMed
go back to reference Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644. doi:10.1038/Nature712.CrossRefPubMed Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644. doi:10.​1038/​Nature712.CrossRefPubMed
go back to reference Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527 Pt 3, 633–639.CrossRefPubMed Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527 Pt 3, 633–639.CrossRefPubMed
go back to reference Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.CrossRefPubMed Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.CrossRefPubMed
go back to reference Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. doi:10.1162/089892903321662994.CrossRefPubMed Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. doi:10.​1162/​0898929033216629​94.CrossRefPubMed
go back to reference O’Connell, N. E., Cossar, J., Marston, L., Wand, B. M., Bunce, D., Moseley, G. L., & de Souza, L. H. (2012). Rethinking clinical trials of transcranial direct current stimulation: Participant and assessor blinding is inadequate at intensities of 2 mA. PLoS One, 7(10). doi:10.1371/journal.pone.0047514. O’Connell, N. E., Cossar, J., Marston, L., Wand, B. M., Bunce, D., Moseley, G. L., & de Souza, L. H. (2012). Rethinking clinical trials of transcranial direct current stimulation: Participant and assessor blinding is inadequate at intensities of 2 mA. PLoS One, 7(10). doi:10.​1371/​journal.​pone.​0047514.
go back to reference Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., et al. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99–111.CrossRefPubMed Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., et al. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99–111.CrossRefPubMed
go back to reference Patterson, J. T., Carter, M., & Sanli, E. (2011). Decreasing the proportion of self-control trials during the acquisition period does not compromise the learning advantages in a self-controlled context. Research Quarterly for Exercise and Sport, 82(4), 624–633.CrossRefPubMed Patterson, J. T., Carter, M., & Sanli, E. (2011). Decreasing the proportion of self-control trials during the acquisition period does not compromise the learning advantages in a self-controlled context. Research Quarterly for Exercise and Sport, 82(4), 624–633.CrossRefPubMed
go back to reference Post, P. G., Fairbrother, J. T., & Barros, J. A. C. (2011). Self-controlled amount of practice benefits learning of a motor skill. Research Quarterly for Exercise and Sport, 82(3), 474–481.CrossRefPubMed Post, P. G., Fairbrother, J. T., & Barros, J. A. C. (2011). Self-controlled amount of practice benefits learning of a motor skill. Research Quarterly for Exercise and Sport, 82(3), 474–481.CrossRefPubMed
go back to reference Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., et al. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. doi:10.1073/pnas.0805413106.CrossRefPubMedPubMedCentral Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., et al. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. doi:10.​1073/​pnas.​0805413106.CrossRefPubMedPubMedCentral
go back to reference Richardson, A. G., Overduin, S. A., Valero-Cabré, A., Padoa-Schioppa, C., Pascual-Leone, A., Bizzi, E., & Press, D. Z. (2006). Disruption of primary motor cortex before learning impairs memory of movement dynamics. The Journal of neuroscience†¯, 26(48), 12466–12470. doi:10.1523/JNEUROSCI.1139-06.2006. Richardson, A. G., Overduin, S. A., Valero-Cabré, A., Padoa-Schioppa, C., Pascual-Leone, A., Bizzi, E., & Press, D. Z. (2006). Disruption of primary motor cortex before learning impairs memory of movement dynamics. The Journal of neuroscience†¯, 26(48), 12466–12470. doi:10.​1523/​JNEUROSCI.​1139-06.​2006.
go back to reference Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th edn.). Champaign: Human Kinetics. Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th edn.). Champaign: Human Kinetics.
go back to reference Ste-Marie, D. M., Carter, M. J., Law, B., Vertes, K. A., & Smith, V. (2015). Self-controlled learning benefits: Examining the contributions of self-efficacy and intrinsic motivation via path analysis. Journal of Sport Sciences. doi:10.1080/02640414.2015.1130236. Ste-Marie, D. M., Carter, M. J., Law, B., Vertes, K. A., & Smith, V. (2015). Self-controlled learning benefits: Examining the contributions of self-efficacy and intrinsic motivation via path analysis. Journal of Sport Sciences. doi:10.​1080/​02640414.​2015.​1130236.
go back to reference Swinnen, S. P. (1988). Post-performance activities and skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: The motor-action controversy (pp. 315–338). Elsevier Science Publishers B.V: North Holland.CrossRef Swinnen, S. P. (1988). Post-performance activities and skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: The motor-action controversy (pp. 315–338). Elsevier Science Publishers B.V: North Holland.CrossRef
go back to reference Swinnen, S. P. (1996). Information feedback for motor skill learning: A review. In H. N. Zelaznik (Ed.), Advances in motor learning and control (pp. 37–66). Champaign: Human Kinetics. Swinnen, S. P. (1996). Information feedback for motor skill learning: A review. In H. N. Zelaznik (Ed.), Advances in motor learning and control (pp. 37–66). Champaign: Human Kinetics.
go back to reference Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., & Rossini, P. M. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. Journal of Neurophysiology, 104(2), 1134–1140. doi:10.1152/jn.00661.2009.CrossRefPubMed Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., & Rossini, P. M. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. Journal of Neurophysiology, 104(2), 1134–1140. doi:10.​1152/​jn.​00661.​2009.CrossRefPubMed
go back to reference Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.CrossRefPubMed Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.CrossRefPubMed
go back to reference Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin and Review. doi:10.3758/s13423-015-0999-9.PubMed Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin and Review. doi:10.​3758/​s13423-015-0999-9.PubMed
Metagegevens
Titel
Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules
Auteurs
Michael J. Carter
Victoria Smith
Anthony N. Carlsen
Diane M. Ste-Marie
Publicatiedatum
27-02-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2018
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0846-x

Andere artikelen Uitgave 3/2018

Psychological Research 3/2018 Naar de uitgave