Skip to main content
Top
Gepubliceerd in:

01-02-2025 | Research

Anchoring bias in mental arithmetic

Auteurs: Samuel Shaki, Martin H. Fischer

Gepubliceerd in: Psychological Research | Uitgave 1/2025

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Mental arithmetic is widely studied, both with symbolic digits and with non-symbolic dot patterns that require operand estimation. Several studies reported surprising biases in adults’ performance with both formats while their direction (over/underestimation in addition/subtraction) remains controversial (operational momentum effect or OM; Prado & Knops, Prado and Knops, Psychonomic Bulletin & Review, in Press., 2024). Theoretical accounts of OM make opposing predictions, thus enabling a decisive test: Using symbolic stimuli and responses, we enabled accurate operand encoding and result reporting, thus leaving mental calculation as only source of bias. Importantly, we manipulated operand order through calculation instructions (e.g., “29 + 19” vs. “add 19 to 29”) to assess the crucial role of first operand size as cognitive anchor. With both auditory (Experiment 1, N = 30) and visual presentation (Experiment 2, N = 30), we observed reverse OM, i.e., overestimations in subtraction and underestimations in addition. Importantly, this instance of operation-based anchoring was independent of a second anchoring effect related to operand order: A large operand is a stronger anchor when mentioned first. Our discovery of both operation-based and order-based anchoring extends the well-known anchoring effect into mental arithmetic and eliminates several competing theories about the origin of OM.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Ebbinghaus, H. (1902). The principles of psychology. Veit Ebbinghaus, H. (1902). The principles of psychology. Veit
go back to reference Kahneman, D. (2012). Thinking fast and slow (chapter 11). Penguin. Kahneman, D. (2012). Thinking fast and slow (chapter 11). Penguin.
go back to reference LeFevre, J., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adults. Journal of Experimental Psychology-Learning Memory and Cognition, 22(1), 216–230.CrossRef LeFevre, J., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adults. Journal of Experimental Psychology-Learning Memory and Cognition, 22(1), 216–230.CrossRef
go back to reference Lemaire, P., & Arnaud, L. (2008). Young and older adults’ strategies in complex arithmetic. American Journal of Psychology, 121, 1–16.CrossRefPubMed Lemaire, P., & Arnaud, L. (2008). Young and older adults’ strategies in complex arithmetic. American Journal of Psychology, 121, 1–16.CrossRefPubMed
go back to reference Mathieu, R., Epinat-Duclos, J., Sigovan, M., Breton, A., Cheylus, A., Fayol, M., & Prado, J. (2018). What’s behind a “+” sign? Perceiving an arithmetic operator recruits brain circuits for spatial orienting. Cerebral Cortex, 28(5), 1673–1684.CrossRefPubMed Mathieu, R., Epinat-Duclos, J., Sigovan, M., Breton, A., Cheylus, A., Fayol, M., & Prado, J. (2018). What’s behind a “+” sign? Perceiving an arithmetic operator recruits brain circuits for spatial orienting. Cerebral Cortex, 28(5), 1673–1684.CrossRefPubMed
go back to reference McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69(8), 1324–1333.CrossRef McCrink, K., Dehaene, S., & Dehaene-Lambertz, G. (2007). Moving along the number line: Operational momentum in nonsymbolic arithmetic. Perception & Psychophysics, 69(8), 1324–1333.CrossRef
go back to reference Popper, K. (2005/1935). The logic of scientific discovery (Die Logik der Forschung). Taylor & Francis (original published by Springer, Vienna). Popper, K. (2005/1935). The logic of scientific discovery (Die Logik der Forschung). Taylor & Francis (original published by Springer, Vienna).
go back to reference Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.CrossRefPubMed Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131.CrossRefPubMed
Metagegevens
Titel
Anchoring bias in mental arithmetic
Auteurs
Samuel Shaki
Martin H. Fischer
Publicatiedatum
01-02-2025
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2025
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-024-02035-7