Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2017

22-02-2016 | Original Article

An integrative view of storage of low- and high-level visual dimensions in visual short-term memory

Auteur: Hagit Magen

Gepubliceerd in: Psychological Research | Uitgave 2/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Baddeley, A. D. (1986). Working Memory. Oxford: Oxford University Press. Baddeley, A. D. (1986). Working Memory. Oxford: Oxford University Press.
go back to reference Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation (Vol. 8, pp. 47–89). New York: Academic Press. Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The Psychology of Learning and Motivation (Vol. 8, pp. 47–89). New York: Academic Press.
go back to reference Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2013). Real-world objects are not represented as bound units: independent forgetting of different object details from visual memory. Journal of Experimental Psychology General, 142, 791–808. doi:10.1037/a0029649.CrossRefPubMed Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2013). Real-world objects are not represented as bound units: independent forgetting of different object details from visual memory. Journal of Experimental Psychology General, 142, 791–808. doi:10.​1037/​a0029649.CrossRefPubMed
go back to reference Cowan, N., Blume, C. L., & Saults, J. S. (2013). Attention to attributes and objects in working memory. Journal of Experimental Psychology Learning Memory and Cognition, 39, 731–747. doi:10.1037/a0029687.CrossRef Cowan, N., Blume, C. L., & Saults, J. S. (2013). Attention to attributes and objects in working memory. Journal of Experimental Psychology Learning Memory and Cognition, 39, 731–747. doi:10.​1037/​a0029687.CrossRef
go back to reference Kobatake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology, 71, 856–867.PubMed Kobatake, E., & Tanaka, K. (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology, 71, 856–867.PubMed
go back to reference Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences USA, 99, 9596–9601. doi:10.1073/pnas.092277599.CrossRef Li, F. F., VanRullen, R., Koch, C., & Perona, P. (2002). Rapid natural scene categorization in the near absence of attention. Proceedings of the National Academy of Sciences USA, 99, 9596–9601. doi:10.​1073/​pnas.​092277599.CrossRef
go back to reference Logie, R. H. (1995). Visuospatial Working Memory. Hove: Lawrence Erlbaum Associates. Logie, R. H. (1995). Visuospatial Working Memory. Hove: Lawrence Erlbaum Associates.
go back to reference Logothetis, N. K., & Sheinberg, D. L. (1996). Visual object recognition. Annual Review of Neuroscience, 19, 577– 621.CrossRefPubMed Logothetis, N. K., & Sheinberg, D. L. (1996). Visual object recognition. Annual Review of Neuroscience, 19, 577– 621.CrossRefPubMed
go back to reference Luck, S. J., & Beach, N. J. (1998). Visual attention and the binding problem: A neurophysiological perspective. In R. Wright (Ed.), Visual attention (pp. 455–478). New York: Oxford University Press. Luck, S. J., & Beach, N. J. (1998). Visual attention and the binding problem: A neurophysiological perspective. In R. Wright (Ed.), Visual attention (pp. 455–478). New York: Oxford University Press.
go back to reference Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.CrossRefPubMed Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.CrossRefPubMed
go back to reference Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391–400.CrossRefPubMedPubMedCentral Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391–400.CrossRefPubMedPubMedCentral
go back to reference Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception and Psychophysics, 16, 283–290.CrossRef Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception and Psychophysics, 16, 283–290.CrossRef
go back to reference Price, C. J., & Humphreys, G. W. (1989). The effects of surface detail on object categorization and naming. Quarterly Journal of Experimental Psychology-Human Experimental Psychology, 41, 797–827.CrossRef Price, C. J., & Humphreys, G. W. (1989). The effects of surface detail on object categorization and naming. Quarterly Journal of Experimental Psychology-Human Experimental Psychology, 41, 797–827.CrossRef
go back to reference Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19, 109–139.CrossRefPubMed Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19, 109–139.CrossRefPubMed
go back to reference Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.CrossRefPubMed Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.CrossRefPubMed
Metagegevens
Titel
An integrative view of storage of low- and high-level visual dimensions in visual short-term memory
Auteur
Hagit Magen
Publicatiedatum
22-02-2016
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 2/2017
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-016-0747-4

Andere artikelen Uitgave 2/2017

Psychological Research 2/2017 Naar de uitgave