Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2016

29-05-2015 | Original Article

An action-incongruent secondary task modulates prediction accuracy in experienced performers: evidence for motor simulation

Auteurs: Desmond Mulligan, Keith R. Lohse, Nicola J. Hodges

Gepubliceerd in: Psychological Research | Uitgave 4/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

We provide behavioral evidence that the human motor system is involved in the perceptual decision processes of skilled performers, directly linking prediction accuracy to the (in)ability of the motor system to activate in a response-specific way. Experienced and non-experienced dart players were asked to predict, from temporally occluded video sequences, the landing position of a dart thrown previously by themselves (self) or another (other). This prediction task was performed while additionally performing (a) an action-incongruent secondary motor task (right arm force production), (b) a congruent secondary motor task (mimicking) or (c) an attention-matched task (tone-monitoring). Non-experienced dart players were not affected by any of the secondary task manipulations, relative to control conditions, yet prediction accuracy decreased for the experienced players when additionally performing the force-production, motor task. This interference effect was present for ‘self’ as well as ‘other’ decisions, reducing the accuracy of experienced participants to a novice level. The mimicking (congruent) secondary task condition did not interfere with (or facilitate) prediction accuracy for either group. We conclude that visual–motor experience moderates the process of decision making, such that a seemingly visual–cognitive prediction task relies on activation of the motor system for experienced performers. This fits with a motor simulation account of action prediction in sports and other tasks, and alerts to the specificity of these simulative processes.
Literatuur
go back to reference Abernethy, B., Farrow, D., Gorman, A. D., & Mann, D. (2012). Anticipatory behaviour and expert performance. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory and practice (pp. 288–305). London: Routledge. Abernethy, B., Farrow, D., Gorman, A. D., & Mann, D. (2012). Anticipatory behaviour and expert performance. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory and practice (pp. 288–305). London: Routledge.
go back to reference Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109–1116.CrossRefPubMed Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 1109–1116.CrossRefPubMed
go back to reference Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406.CrossRef Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369–406.CrossRef
go back to reference Balser, N., Lorey, B., Pilgramm, S., Stark, R., Bischoff, M., Zentgraf, K., et al. (2014). Prediction of human actions: expertise and task-related effects on neural activation of the action observation network. Human Brain Mapping, 35, 4016–4034.CrossRefPubMed Balser, N., Lorey, B., Pilgramm, S., Stark, R., Bischoff, M., Zentgraf, K., et al. (2014). Prediction of human actions: expertise and task-related effects on neural activation of the action observation network. Human Brain Mapping, 35, 4016–4034.CrossRefPubMed
go back to reference Bischoff, M., Zentgraf, K., Lorey, B., Pilgramm, S., Balser, N., Baumgartner, E., et al. (2012). Motor familiarity: brain activation when watching kinematic displays of one’s own movements. Neuropsychologia, 50, 2085–2092.CrossRefPubMed Bischoff, M., Zentgraf, K., Lorey, B., Pilgramm, S., Balser, N., Baumgartner, E., et al. (2012). Motor familiarity: brain activation when watching kinematic displays of one’s own movements. Neuropsychologia, 50, 2085–2092.CrossRefPubMed
go back to reference Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561–567.CrossRefPubMed Blakemore, S. J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561–567.CrossRefPubMed
go back to reference Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267.CrossRefPubMed Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43, 260–267.CrossRefPubMed
go back to reference Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or nonbiological motion on movement execution. Journal of Sports Sciences, 25, 519–530.CrossRefPubMed Bouquet, C. A., Gaurier, V., Shipley, T., Toussaint, L., & Blandin, Y. (2007). Influence of the perception of biological or nonbiological motion on movement execution. Journal of Sports Sciences, 25, 519–530.CrossRefPubMed
go back to reference Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 3–22.CrossRefPubMed Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106, 3–22.CrossRefPubMed
go back to reference Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.CrossRefPubMed Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: an fMRI study with expert dancers. Cerebral Cortex, 15, 1243–1249.CrossRefPubMed
go back to reference Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905–1910.CrossRefPubMed Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 1905–1910.CrossRefPubMed
go back to reference Cañal-Bruland, R., van Ginneken, W. F., van der Meer, B. R., & Williams, A. M. (2011). The effect of local kinematic changes on anticipation judgments. Human Movement Science, 30, 495–503.CrossRefPubMed Cañal-Bruland, R., van Ginneken, W. F., van der Meer, B. R., & Williams, A. M. (2011). The effect of local kinematic changes on anticipation judgments. Human Movement Science, 30, 495–503.CrossRefPubMed
go back to reference Capa, R. L., Marshall, P. J., Shipley, T. F., Salesse, R. N., & Bouquet, C. A. (2011). Does motor interference arise from mirror system activation? The effect of prior visuo-motor practice on automatic imitation. Psychological Research, 75, 152–157.CrossRefPubMed Capa, R. L., Marshall, P. J., Shipley, T. F., Salesse, R. N., & Bouquet, C. A. (2011). Does motor interference arise from mirror system activation? The effect of prior visuo-motor practice on automatic imitation. Psychological Research, 75, 152–157.CrossRefPubMed
go back to reference Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16, 69–74.CrossRefPubMed Casile, A., & Giese, M. A. (2006). Nonvisual motor training influences biological motion perception. Current Biology, 16, 69–74.CrossRefPubMed
go back to reference Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50, 1148–1167.CrossRefPubMed Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50, 1148–1167.CrossRefPubMed
go back to reference Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. The Journal of Neuroscience, 31, 3493–3499.CrossRefPubMed Christensen, A., Ilg, W., & Giese, M. A. (2011). Spatiotemporal tuning of the facilitation of biological motion perception by concurrent motor execution. The Journal of Neuroscience, 31, 3493–3499.CrossRefPubMed
go back to reference Cooper, L., & Podgorny, P. (1976). Mental transformations and visual comparison processes: effects of complexity and similarity. Journal of Experimental Psychology: Human Perception and Performance, 2, 503–514.PubMed Cooper, L., & Podgorny, P. (1976). Mental transformations and visual comparison processes: effects of complexity and similarity. Journal of Experimental Psychology: Human Perception and Performance, 2, 503–514.PubMed
go back to reference Craighero, L., Bello, A., Fadiga, L., & Rizzolatti, G. (2002). Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40, 492–502.CrossRefPubMed Craighero, L., Bello, A., Fadiga, L., & Rizzolatti, G. (2002). Hand action preparation influences the responses to hand pictures. Neuropsychologia, 40, 492–502.CrossRefPubMed
go back to reference Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31, 1257–1267.CrossRefPubMedPubMedCentral Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. Neuroimage, 31, 1257–1267.CrossRefPubMedPubMedCentral
go back to reference Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., et al. (1994). Mapping motor representations with positron emission tomography. Nature, 371, 600–602.CrossRefPubMed Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., et al. (1994). Mapping motor representations with positron emission tomography. Nature, 371, 600–602.CrossRefPubMed
go back to reference Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.CrossRefPubMed Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211–245.CrossRefPubMed
go back to reference Flach, R., Knoblich, G., & Prinz, W. (2004). Recognizing one’s own clapping: the role of temporal cues. Psychological Research, 69, 147–156.CrossRefPubMed Flach, R., Knoblich, G., & Prinz, W. (2004). Recognizing one’s own clapping: the role of temporal cues. Psychological Research, 69, 147–156.CrossRefPubMed
go back to reference Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308, 662–667.CrossRefPubMed Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308, 662–667.CrossRefPubMed
go back to reference Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Science, 2, 493–501.CrossRef Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Science, 2, 493–501.CrossRef
go back to reference Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19, 1239–1255.CrossRefPubMedPubMedCentral Gazzola, V., & Keysers, C. (2009). The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cerebral Cortex, 19, 1239–1255.CrossRefPubMedPubMedCentral
go back to reference Gobet, F., & Jackson, S. (2002). In search of templates. Cognitive Systems Research, 3, 35–44.CrossRef Gobet, F., & Jackson, S. (2002). In search of templates. Cognitive Systems Research, 3, 35–44.CrossRef
go back to reference Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97–117.CrossRefPubMed Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97–117.CrossRefPubMed
go back to reference Grossman, E. D., & Blake, R. (2001). Brain activity invoked by inverted and imagined biological motion. Vision Research, 41, 1475–1482.CrossRefPubMed Grossman, E. D., & Blake, R. (2001). Brain activity invoked by inverted and imagined biological motion. Vision Research, 41, 1475–1482.CrossRefPubMed
go back to reference Hamilton, A., Wolpert, D. M., & Frith, U. (2004). Your own action influences how you perceive another person’s action. Current Biology, 14, 493–498.CrossRefPubMed Hamilton, A., Wolpert, D. M., & Frith, U. (2004). Your own action influences how you perceive another person’s action. Current Biology, 14, 493–498.CrossRefPubMed
go back to reference Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65, 3–14.CrossRefPubMed Hecht, H., Vogt, S., & Prinz, W. (2001). Motor learning enhances perceptual judgment: a case for action-perception transfer. Psychological Research, 65, 3–14.CrossRefPubMed
go back to reference Hohmann, T., Troje, N. F., Olmos, A., & Munzert, J. (2011). The influence of motor expertise and motor experience on action and actor recognition. Journal of Cognitive Psychology, 23, 403–415.CrossRef Hohmann, T., Troje, N. F., Olmos, A., & Munzert, J. (2011). The influence of motor expertise and motor experience on action and actor recognition. Journal of Cognitive Psychology, 23, 403–415.CrossRef
go back to reference Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action. Behavioral and Brain Sciences, 24, 849–937.CrossRefPubMed Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action. Behavioral and Brain Sciences, 24, 849–937.CrossRefPubMed
go back to reference Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the Findings. Psychonomic Bulletin and Review, 12, 822–851.CrossRefPubMed Hubbard, T. L. (2005). Representational momentum and related displacements in spatial memory: a review of the Findings. Psychonomic Bulletin and Review, 12, 822–851.CrossRefPubMed
go back to reference Iacoboni, M., Moinar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79.CrossRefPubMedPubMedCentral Iacoboni, M., Moinar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3, e79.CrossRefPubMedPubMedCentral
go back to reference Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528.CrossRefPubMed Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–2528.CrossRefPubMed
go back to reference Ikegami, T., & Ganesh, G. (2014). Watching novice action degrades expert motor performance: causation between action production and outcome prediction of observed actions by humans. Scientific Reports, 4, A6989.CrossRef Ikegami, T., & Ganesh, G. (2014). Watching novice action degrades expert motor performance: causation between action production and outcome prediction of observed actions by humans. Scientific Reports, 4, A6989.CrossRef
go back to reference Jackson, R. C., Abernethy, B., & Wernhart, S. (2009). Sensitivity to fine-grained and coarse visual information: the effect of blurring on anticipation skill. International Journal of Sport Psychology, 40, 461–475. Jackson, R. C., Abernethy, B., & Wernhart, S. (2009). Sensitivity to fine-grained and coarse visual information: the effect of blurring on anticipation skill. International Journal of Sport Psychology, 40, 461–475.
go back to reference Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123, 355–371.CrossRefPubMed Jackson, R. C., Warren, S., & Abernethy, B. (2006). Anticipation skill and susceptibility to deceptive movement. Acta Psychologica, 123, 355–371.CrossRefPubMed
go back to reference Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14, 103–109.CrossRef Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14, 103–109.CrossRef
go back to reference Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525.CrossRefPubMed Kilner, J. M., Paulignan, Y., & Blakemore, S. J. (2003). An interference effect of observed biological movement on action. Current Biology, 13, 522–525.CrossRefPubMed
go back to reference Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: interactions of perception and action. Psychological Science, 12, 467–472.CrossRefPubMed Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: interactions of perception and action. Psychological Science, 12, 467–472.CrossRefPubMed
go back to reference Knoblich, G., & Prinz, W. (2001). Recognition of self-generated actions from kinematic displays of drawing. Journal of Experimental Psychology: Human Perception and Performance, 27, 456–465.PubMed Knoblich, G., & Prinz, W. (2001). Recognition of self-generated actions from kinematic displays of drawing. Journal of Experimental Psychology: Human Perception and Performance, 27, 456–465.PubMed
go back to reference Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: the influence of posture and perspective. Experimental Brain Research, 194, 233–243.CrossRefPubMed Lorey, B., Bischoff, M., Pilgramm, S., Stark, R., Munzert, J., & Zentgraf, K. (2009). The embodied nature of motor imagery: the influence of posture and perspective. Experimental Brain Research, 194, 233–243.CrossRefPubMed
go back to reference Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210–220.PubMed Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210–220.PubMed
go back to reference Makris, S., & Urgesi, C. (2014). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive and Affective Neuroscience, 10, 342–351.CrossRefPubMedPubMedCentral Makris, S., & Urgesi, C. (2014). Neural underpinnings of superior action prediction abilities in soccer players. Social Cognitive and Affective Neuroscience, 10, 342–351.CrossRefPubMedPubMedCentral
go back to reference Mann, D., Dicks, M., Cañal-Bruland, R., & van der Kamp, J. (2013). Neurophysiological studies may provide a misleading picture of how perceptual–motor interactions are coordinated. i-Perception, 4, 78–80.CrossRefPubMedPubMedCentral Mann, D., Dicks, M., Cañal-Bruland, R., & van der Kamp, J. (2013). Neurophysiological studies may provide a misleading picture of how perceptual–motor interactions are coordinated. i-Perception, 4, 78–80.CrossRefPubMedPubMedCentral
go back to reference Mann, D. T., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: a meta-analysis. Journal of Sport and Exercise Psychology, 29, 457–478.PubMed Mann, D. T., Williams, A. M., Ward, P., & Janelle, C. M. (2007). Perceptual-cognitive expertise in sport: a meta-analysis. Journal of Sport and Exercise Psychology, 29, 457–478.PubMed
go back to reference Miall, R. C., Stanley, J., Todhunter, S., Levick, C., Lindo, S., & Miall, J. D. (2006). Performing hand actions assists the visual discrimination of similar hand postures. Neuropsychologia, 44, 966–976.CrossRefPubMed Miall, R. C., Stanley, J., Todhunter, S., Levick, C., Lindo, S., & Miall, J. D. (2006). Performing hand actions assists the visual discrimination of similar hand postures. Neuropsychologia, 44, 966–976.CrossRefPubMed
go back to reference Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology, Learning, Memory, and Cognition, 34, 1076–1083.CrossRefPubMed Motes, M. A., Hubbard, T. L., Courtney, J. R., & Rypma, B. (2008). A principal components analysis of dynamic spatial memory biases. Journal of Experimental Psychology, Learning, Memory, and Cognition, 34, 1076–1083.CrossRefPubMed
go back to reference Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756.CrossRefPubMedPubMedCentral Mukamel, R., Ekstrom, A., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756.CrossRefPubMedPubMedCentral
go back to reference Mulligan, D., & Hodges, N. J. (2014). Throwing in the dark: improved prediction of action outcomes following motor training without vision of the action. Psychological Research, 78, 692–704.CrossRefPubMed Mulligan, D., & Hodges, N. J. (2014). Throwing in the dark: improved prediction of action outcomes following motor training without vision of the action. Psychological Research, 78, 692–704.CrossRefPubMed
go back to reference Paulus, M., Lindemann, O., & Bekkering, H. (2009). Motor simulation in verbal knowledge acquisition. The Quarterly Journal of Experimental Psychology, 62, 2298–2305.CrossRefPubMed Paulus, M., Lindemann, O., & Bekkering, H. (2009). Motor simulation in verbal knowledge acquisition. The Quarterly Journal of Experimental Psychology, 62, 2298–2305.CrossRefPubMed
go back to reference Pilgramm, S., Lorey, B., Stark, R., Munzert, J., & Zentgraf, K. (2009). The role of own-body representations in action observation: a functional MRI study. NeuroReport, 20, 997–1001.CrossRefPubMed Pilgramm, S., Lorey, B., Stark, R., Munzert, J., & Zentgraf, K. (2009). The role of own-body representations in action observation: a functional MRI study. NeuroReport, 20, 997–1001.CrossRefPubMed
go back to reference Pobric, G., & Hamilton, A. F. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16, 524–529.CrossRefPubMed Pobric, G., & Hamilton, A. F. (2006). Action understanding requires the left inferior frontal cortex. Current Biology, 16, 524–529.CrossRefPubMed
go back to reference Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRef Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.CrossRef
go back to reference Prinz, W., & Hommel, B. (2002). Common mechanisms in perception and action: Attention and performance XIX. New York: Oxford University Press. Prinz, W., & Hommel, B. (2002). Common mechanisms in perception and action: Attention and performance XIX. New York: Oxford University Press.
go back to reference Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.CrossRefPubMed Ramnani, N., & Miall, R. C. (2004). A system in the human brain for predicting the actions of others. Nature Neuroscience, 7, 85–90.CrossRefPubMed
go back to reference Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17, 1201–1207.CrossRefPubMed Reithler, J., van Mier, H. I., Peters, J. C., & Goebel, R. (2007). Nonvisual motor learning influences abstract action observation. Current Biology, 17, 1201–1207.CrossRefPubMed
go back to reference Repp, B. H., & Knoblich, G. (2004). Perceiving action identity: how pianists recognize their own performances. Psychological Science, 15, 604–609.CrossRefPubMed Repp, B. H., & Knoblich, G. (2004). Perceiving action identity: how pianists recognize their own performances. Psychological Science, 15, 604–609.CrossRefPubMed
go back to reference Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefPubMed Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefPubMed
go back to reference Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.CrossRefPubMed Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.CrossRefPubMed
go back to reference Ruby, P., & Decety, J. (2003). What you believe versus what you think they believe: a neuroimaging study of conceptual perspective-taking. European Journal of Neuroscience, 11, 2475–2480.CrossRef Ruby, P., & Decety, J. (2003). What you believe versus what you think they believe: a neuroimaging study of conceptual perspective-taking. European Journal of Neuroscience, 11, 2475–2480.CrossRef
go back to reference Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130, 2452–2461.CrossRefPubMed Saygin, A. P. (2007). Superior temporal and premotor brain areas necessary for biological motion perception. Brain, 130, 2452–2461.CrossRefPubMed
go back to reference Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences, 11, 211–218.CrossRefPubMed Schubotz, R. I. (2007). Prediction of external events with our motor system: towards a new framework. Trends in Cognitive Sciences, 11, 211–218.CrossRefPubMed
go back to reference Schubotz, R., & von Cramon, D. Y. (2003). Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage, 20, S120–S131.CrossRefPubMed Schubotz, R., & von Cramon, D. Y. (2003). Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage, 20, S120–S131.CrossRefPubMed
go back to reference Schubotz, R. I., & von Cramon, D. Y. (2004). Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. Journal of Neuroscience, 24, 5467–5474.CrossRefPubMed Schubotz, R. I., & von Cramon, D. Y. (2004). Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observation and imagery. Journal of Neuroscience, 24, 5467–5474.CrossRefPubMed
go back to reference Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.CrossRefPubMed Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.CrossRefPubMed
go back to reference Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press. Shepard, R. N., & Cooper, L. A. (1982). Mental images and their transformations. Cambridge, MA: MIT Press.
go back to reference Springer, A., Brandstädter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., & Prinz, W. (2011). Motor execution affects action prediction. Brain and Cognition, 76, 26–36.CrossRefPubMed Springer, A., Brandstädter, S., Liepelt, R., Birngruber, T., Giese, M., Mechsner, F., & Prinz, W. (2011). Motor execution affects action prediction. Brain and Cognition, 76, 26–36.CrossRefPubMed
go back to reference Springer, A., Brandstädter, S., & Prinz, W. (2013a). Dynamic simulation and static matching for action prediction: evidence from body part priming. Cognitive Science, 37, 936–952.CrossRefPubMed Springer, A., Brandstädter, S., & Prinz, W. (2013a). Dynamic simulation and static matching for action prediction: evidence from body part priming. Cognitive Science, 37, 936–952.CrossRefPubMed
go back to reference Springer, A., Parkinson, J., & Prinz, W. (2013b). Action simulation: time course and representational mechanisms. Frontiers in Cognition, 4, 1–20. Springer, A., Parkinson, J., & Prinz, W. (2013b). Action simulation: time course and representational mechanisms. Frontiers in Cognition, 4, 1–20.
go back to reference Starkes, J. L. (1987). Skill in field hockey: the nature of the cognitive advantage. International Journal of Sport Psychology, 2, 146–160. Starkes, J. L. (1987). Skill in field hockey: the nature of the cognitive advantage. International Journal of Sport Psychology, 2, 146–160.
go back to reference Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2012). Fooling the kickers but not the goalkeepers: behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 2765–2778.CrossRefPubMed Tomeo, E., Cesari, P., Aglioti, S. M., & Urgesi, C. (2012). Fooling the kickers but not the goalkeepers: behavioral and neurophysiological correlates of fake action detection in soccer. Cerebral Cortex, 23, 2765–2778.CrossRefPubMed
go back to reference Urgesi, C., Savonitto, M. M., Fabbro, F., & Aglioti, M. (2012). Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychological Research, 76, 542–560.CrossRefPubMed Urgesi, C., Savonitto, M. M., Fabbro, F., & Aglioti, M. (2012). Long- and short-term plastic modeling of action prediction abilities in volleyball. Psychological Research, 76, 542–560.CrossRefPubMed
go back to reference Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise and Sport, 73, 107–112.CrossRefPubMed Ward, P., Williams, A. M., & Bennett, S. J. (2002). Visual search and biological motion perception in tennis. Research Quarterly for Exercise and Sport, 73, 107–112.CrossRefPubMed
go back to reference Williams, A. M., & Davids, K. (1995). Declarative knowledge in sport: a by-product of experience or a characteristic of expertise? Journal of Sport and Exercise Psychology, 17, 259–275. Williams, A. M., & Davids, K. (1995). Declarative knowledge in sport: a by-product of experience or a characteristic of expertise? Journal of Sport and Exercise Psychology, 17, 259–275.
go back to reference Williams, A. M., & Davids, K. (1998). Perceptual expertise in sport: Research, theory and practice. In H. Steinberg, I. Cockerill, & A. Dewey (Eds.), What sport psychologists do (pp. 48–57). Leicester: British Psychological Society. Williams, A. M., & Davids, K. (1998). Perceptual expertise in sport: Research, theory and practice. In H. Steinberg, I. Cockerill, & A. Dewey (Eds.), What sport psychologists do (pp. 48–57). Leicester: British Psychological Society.
go back to reference Williams, A. M., & Ward, P. (2003). Developing perceptual expertise in sport. In J. L. Starkes & K. A. Ericsson (Eds.), Expert performance in sports: Advances in research on sport expertise (pp. 220–249). Champaign, Illinois: Human Kinetics. Williams, A. M., & Ward, P. (2003). Developing perceptual expertise in sport. In J. L. Starkes & K. A. Ericsson (Eds.), Expert performance in sports: Advances in research on sport expertise (pp. 220–249). Champaign, Illinois: Human Kinetics.
go back to reference Williams, A. M., & Ward, P. (2007). Perceptual-cognitive expertise in sport: Exploring new horizons. In G. Tenenabum & R. Eklund (Eds.), Handbook of sport psychology (3rd ed., pp. 203–223). New York: Wiley. Williams, A. M., & Ward, P. (2007). Perceptual-cognitive expertise in sport: Exploring new horizons. In G. Tenenabum & R. Eklund (Eds.), Handbook of sport psychology (3rd ed., pp. 203–223). New York: Wiley.
go back to reference Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460–473.CrossRefPubMed Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131, 460–473.CrossRefPubMed
go back to reference Witt, J. K., Kemmerer, D., Linkenauger, S. A., & Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychological Science, 21, 1215–1219.CrossRefPubMed Witt, J. K., Kemmerer, D., Linkenauger, S. A., & Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychological Science, 21, 1215–1219.CrossRefPubMed
go back to reference Witt, J. K., & Proffitt, D. R. (2008). Action-specific influences on distance perception: a role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance, 34, 1479–1492.PubMedPubMedCentral Witt, J. K., & Proffitt, D. R. (2008). Action-specific influences on distance perception: a role for motor simulation. Journal of Experimental Psychology: Human Perception and Performance, 34, 1479–1492.PubMedPubMedCentral
go back to reference Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40, 925–930.CrossRefPubMed Wohlschläger, A. (2000). Visual motion priming by invisible actions. Vision Research, 40, 925–930.CrossRefPubMed
go back to reference Wolfensteller, U., Schubotz, R., & von Cramon, D. Y. (2007). Understanding nonbiological dynamics with your own premotor system. Neuroimage, 36, T33–T43.CrossRefPubMed Wolfensteller, U., Schubotz, R., & von Cramon, D. Y. (2007). Understanding nonbiological dynamics with your own premotor system. Neuroimage, 36, T33–T43.CrossRefPubMed
go back to reference Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B, 358, 593–602.CrossRef Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London B, 358, 593–602.CrossRef
go back to reference Wuhr, P., & Müsseler, J. (2001). Time course of the blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 27, 1260–1270.PubMed Wuhr, P., & Müsseler, J. (2001). Time course of the blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 27, 1260–1270.PubMed
go back to reference Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10, 585–596.CrossRefPubMed Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10, 585–596.CrossRefPubMed
go back to reference Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.CrossRefPubMed Zago, M., & Lacquaniti, F. (2005). Visual perception and interception of falling objects: a review of evidence for an internal model of gravity. Journal of Neural Engineering, 2, S198–S208.CrossRefPubMed
go back to reference Zentgraf, K., Munzert, J., Bischoff, M., & Newman-Norlund, R. D. (2011). Simulation during observation of human actions—theories, empirical studies, applications. Vision Research, 51, 827–835.CrossRefPubMed Zentgraf, K., Munzert, J., Bischoff, M., & Newman-Norlund, R. D. (2011). Simulation during observation of human actions—theories, empirical studies, applications. Vision Research, 51, 827–835.CrossRefPubMed
go back to reference Zwickel, J., & Prinz, W. (2012). Assimilation and contrast: the two sides of specific interference between action and perception. Psychological Research, 76, 171–182.CrossRefPubMed Zwickel, J., & Prinz, W. (2012). Assimilation and contrast: the two sides of specific interference between action and perception. Psychological Research, 76, 171–182.CrossRefPubMed
Metagegevens
Titel
An action-incongruent secondary task modulates prediction accuracy in experienced performers: evidence for motor simulation
Auteurs
Desmond Mulligan
Keith R. Lohse
Nicola J. Hodges
Publicatiedatum
29-05-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 4/2016
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-015-0672-y

Andere artikelen Uitgave 4/2016

Psychological Research 4/2016 Naar de uitgave