Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Neuropraxis 2/2020

18-03-2020 | Artikel

Activatie van neuronale compensatienetwerken als behandeling van de ziekte van Parkinson

Auteur: Ingrid Philippens

Gepubliceerd in: Neuropraxis | Uitgave 2/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

In de substantia nigra bevinden zich dopamine-producerende zenuwcellen die de motorcoördinatie regelen. Bij de ziekte van Parkinson sterven deze cellen af. Het feit dat de eerste parkinsonsymptomen pas optreden zodra er meer dan 60 % van die specifieke cellen is afgestorven, toont aan dat het brein tot op zekere hoogte in staat is te compenseren voor de veranderde balans na schade. Neuronale compensatie richt zich deels op de plasticiteit van de nog aanwezige zenuwcellen binnen het verstoorde hersengebied (vooral het striatum). Daarnaast kunnen andere netwerken in de hersenen de functie overnemen en zodoende het schadegebied omzeilen (via het cerebellum). Dit artikel geeft de nieuwste inzichten uit recent preklinisch onderzoek bij apen naar mechanismen van neuronale compensatie bij schade aan dopamineproducerende cellen in de substantia nigra. De naastgelegen rode kern blijkt een belangrijke rol te spelen in de compensatie bij de ziekte van Parkinson. Dit onderzoek draagt bij aan de ontwikkeling van alternatieve behandelmethoden voor de ziekte van Parkinson.
Literatuur
1.
go back to reference Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13(7):266–71. PubMed Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 1990;13(7):266–71. PubMed
3.
go back to reference Philippens IHCHM, Verhave PS. Preclinical solutions for insight in premotor Parkinson. In: Rana AQ, redactie. Symptoms of Parkinson’s disease. Kroatië: IntechOpen Access Publisher; 2011. Philippens IHCHM, Verhave PS. Preclinical solutions for insight in premotor Parkinson. In: Rana AQ, redactie. Symptoms of Parkinson’s disease. Kroatië: IntechOpen Access Publisher; 2011.
4.
go back to reference Postuma RB, Lang AE, Massicotte-Marquez J, Montplaisir J. Potential early markers of Parkinson disease in idiopathic REM sleep behavior disorder. Neurology. 2006;66(6):845–51. PubMed Postuma RB, Lang AE, Massicotte-Marquez J, Montplaisir J. Potential early markers of Parkinson disease in idiopathic REM sleep behavior disorder. Neurology. 2006;66(6):845–51. PubMed
5.
go back to reference Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, et al. Alpha-synuclein in Parkinson’s disease: causal or bystander? J Neural Transm. 2019;126(7):815–40. PubMed Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, et al. Alpha-synuclein in Parkinson’s disease: causal or bystander? J Neural Transm. 2019;126(7):815–40. PubMed
6.
go back to reference Philippens IHCHM, ’t Hart BA, Torres G. The MPTP marmoset model of parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases. Drug Discov Today. 2010;15(23–24):985–90. PubMed Philippens IHCHM, ’t Hart BA, Torres G. The MPTP marmoset model of parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases. Drug Discov Today. 2010;15(23–24):985–90. PubMed
7.
go back to reference Mehanna R, Moore S, Hou JG, Sarwar AI, Lai EC. Comparing clinical features of young onset, middle onset and late onset Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(5):530–4. PubMed Mehanna R, Moore S, Hou JG, Sarwar AI, Lai EC. Comparing clinical features of young onset, middle onset and late onset Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(5):530–4. PubMed
8.
go back to reference Gasser T. Genetics of Parkinson’s disease. Curr Opin Neurol. 2005;18(4):363–9. PubMed Gasser T. Genetics of Parkinson’s disease. Curr Opin Neurol. 2005;18(4):363–9. PubMed
9.
go back to reference Migliore L, Coppede F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res. 2009;667(1–2):82–97. PubMed Migliore L, Coppede F. Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res. 2009;667(1–2):82–97. PubMed
10.
go back to reference Tolosa E, Gaig C, Santamaria J, Compta Y. Diagnosis and the premotor phase of Parkinson disease. Neurology. 2009;72(7 Suppl):S12–S20. PubMed Tolosa E, Gaig C, Santamaria J, Compta Y. Diagnosis and the premotor phase of Parkinson disease. Neurology. 2009;72(7 Suppl):S12–S20. PubMed
11.
go back to reference Jellinger KA. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis. 2008;5(3–4):118–21. PubMed Jellinger KA. Neuropathological aspects of Alzheimer disease, Parkinson disease and frontotemporal dementia. Neurodegener Dis. 2008;5(3–4):118–21. PubMed
12.
go back to reference Appel-Cresswell S, Fuente-Fernandez R de la, Galley S, McKeown MJ. Imaging of compensatory mechanisms in Parkinson’s disease. Curr Opin Neurol. 2010;23(4):407–12. PubMed Appel-Cresswell S, Fuente-Fernandez R de la, Galley S, McKeown MJ. Imaging of compensatory mechanisms in Parkinson’s disease. Curr Opin Neurol. 2010;23(4):407–12. PubMed
13.
go back to reference Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58. PubMed Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16(3):448–58. PubMed
14.
go back to reference Mao Z, Ling Z, Pan L, Xu X, Cui Z, Liang S, et al. Comparison of efficacy of deep brain stimulation of different targets in Parkinson’s disease: a network meta-analysis. Front Aging Neurosci. 2019;11:23. PubMedPubMedCentral Mao Z, Ling Z, Pan L, Xu X, Cui Z, Liang S, et al. Comparison of efficacy of deep brain stimulation of different targets in Parkinson’s disease: a network meta-analysis. Front Aging Neurosci. 2019;11:23. PubMedPubMedCentral
15.
go back to reference Hayes MW, Fung VS, Kimber TE, O’Sullivan JD. Updates and advances in the treatment of Parkinson disease. Med J Aust. 2019;211(6):277–83. PubMed Hayes MW, Fung VS, Kimber TE, O’Sullivan JD. Updates and advances in the treatment of Parkinson disease. Med J Aust. 2019;211(6):277–83. PubMed
16.
go back to reference Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev. 2018;42:72–85. PubMed Deng H, Wang P, Jankovic J. The genetics of Parkinson disease. Ageing Res Rev. 2018;42:72–85. PubMed
17.
go back to reference Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302(5646):819–22. PubMed Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302(5646):819–22. PubMed
18.
go back to reference Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909. PubMed Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909. PubMed
19.
go back to reference Philippens IHCHM. Non-human primate models for Parkinson’s disease. Drug Discov Today: Dis Model. 2008;5(2):105–11. Philippens IHCHM. Non-human primate models for Parkinson’s disease. Drug Discov Today: Dis Model. 2008;5(2):105–11.
20.
go back to reference Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N‑methyl-4-phenyl‑1,2,3,6 -tetrahydropyridine: uptake of the metabolite N‑methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A. 1985;82(7):2173–7. PubMedPubMedCentral Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH. Parkinsonism-inducing neurotoxin, N‑methyl-4-phenyl‑1,2,3,6 -tetrahydropyridine: uptake of the metabolite N‑methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A. 1985;82(7):2173–7. PubMedPubMedCentral
21.
go back to reference Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979–80. PubMed Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979–80. PubMed
22.
go back to reference Wichmann T, DeLong MR. Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci. 2003;991:199–213. PubMed Wichmann T, DeLong MR. Pathophysiology of Parkinson’s disease: the MPTP primate model of the human disorder. Ann N Y Acad Sci. 2003;991:199–213. PubMed
23.
go back to reference Vliet SA van, Vanwersch RA, Jongsma MJ, Gugten J van der, Olivier B, Philippens IH. Neuroprotective effects of modafinil in a marmoset Parkinson model: behavioral and neurochemical aspects. Behav Pharmacol. 2006;17(5–6):453–62. PubMed Vliet SA van, Vanwersch RA, Jongsma MJ, Gugten J van der, Olivier B, Philippens IH. Neuroprotective effects of modafinil in a marmoset Parkinson model: behavioral and neurochemical aspects. Behav Pharmacol. 2006;17(5–6):453–62. PubMed
24.
go back to reference Verhave PS, Jongsma MJ, Van den Berg RM, Vis JC, Vanwersch RA, Smit AB, et al. REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep. 2011;34(8):1119–25. PubMedPubMedCentral Verhave PS, Jongsma MJ, Van den Berg RM, Vis JC, Vanwersch RA, Smit AB, et al. REM sleep behavior disorder in the marmoset MPTP model of early Parkinson disease. Sleep. 2011;34(8):1119–25. PubMedPubMedCentral
25.
go back to reference Rothblat DS, Schneider JS. Repeated exposure to MPTP does not produce a permanent movement disorder in cats recovered from MPTP-induced parkinsonism. Neurodegeneration. 1995;4(1):87–92. PubMed Rothblat DS, Schneider JS. Repeated exposure to MPTP does not produce a permanent movement disorder in cats recovered from MPTP-induced parkinsonism. Neurodegeneration. 1995;4(1):87–92. PubMed
26.
go back to reference Colotla VA, Flores E, Oscos A, Meneses A, Tapia R. Effects of MPTP on locomotor activity in mice. Neurotoxicol Teratol. 1990;12(4):405–7. PubMed Colotla VA, Flores E, Oscos A, Meneses A, Tapia R. Effects of MPTP on locomotor activity in mice. Neurotoxicol Teratol. 1990;12(4):405–7. PubMed
27.
go back to reference Schmidt N, Ferger B. Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm. 2001;108(11):1263–82. PubMed Schmidt N, Ferger B. Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm. 2001;108(11):1263–82. PubMed
28.
go back to reference Philippens IHCHM, Wubben JA, Franke SK, Hofman S, Langermans JAM. Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease. Sci Rep. 2019;9(1):880. PubMedPubMedCentral Philippens IHCHM, Wubben JA, Franke SK, Hofman S, Langermans JAM. Involvement of the Red Nucleus in the Compensation of Parkinsonism may Explain why Primates can develop Stable Parkinson’s Disease. Sci Rep. 2019;9(1):880. PubMedPubMedCentral
29.
go back to reference Babinski J, Jarkowski J, Plechet V. Kinésie paradoxale. Mutisme parkinsonien. Rev Neurol. 1921;37(12):1266–70. Babinski J, Jarkowski J, Plechet V. Kinésie paradoxale. Mutisme parkinsonien. Rev Neurol. 1921;37(12):1266–70.
31.
go back to reference Glickstein M, Stein J. Paradoxical movement in Parkinson’s disease. Trends Neurosci. 1991;14(11):480–2. PubMed Glickstein M, Stein J. Paradoxical movement in Parkinson’s disease. Trends Neurosci. 1991;14(11):480–2. PubMed
32.
go back to reference Philippens IHCHM, Vanwersch RA. Neurofeedback training on sensorimotor rhythm in marmoset monkeys. Neuroreport. 2010;21(5):328–32. PubMed Philippens IHCHM, Vanwersch RA. Neurofeedback training on sensorimotor rhythm in marmoset monkeys. Neuroreport. 2010;21(5):328–32. PubMed
33.
go back to reference Philippens IHCHM, Wubben JA, Vanwersch RAP, Estevao DL, Tass PA. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson’s disease. Ann Clin Transl Neurol. 2017;4(8):585–90. PubMedPubMedCentral Philippens IHCHM, Wubben JA, Vanwersch RAP, Estevao DL, Tass PA. Sensorimotor rhythm neurofeedback as adjunct therapy for Parkinson’s disease. Ann Clin Transl Neurol. 2017;4(8):585–90. PubMedPubMedCentral
34.
go back to reference Thompson M, Thompmson L. Biofeedback for movement disorders (Dystonia with parkinson’s disease): theory and preliminary results. J Neurother. 2002;6(4):51–70. Thompson M, Thompmson L. Biofeedback for movement disorders (Dystonia with parkinson’s disease): theory and preliminary results. J Neurother. 2002;6(4):51–70.
35.
go back to reference Thompson M, Thompson L. Improving quality of life using biofeedback plus neurofeedback. NeuroConnections. 2011; Winter:18–21. Thompson M, Thompson L. Improving quality of life using biofeedback plus neurofeedback. NeuroConnections. 2011; Winter:18–21.
36.
go back to reference Roth SR, Sterman MB, Clemente CD. Comparison of EEG correlates of reinforcement, internal inhibition and sleep. Electroencephalogr Clin Neurophysiol. 1967;23(6):509–20. PubMed Roth SR, Sterman MB, Clemente CD. Comparison of EEG correlates of reinforcement, internal inhibition and sleep. Electroencephalogr Clin Neurophysiol. 1967;23(6):509–20. PubMed
37.
go back to reference Martinu K, Monchi O. Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behav Neurosci. 2013;127(2):222–36. PubMed Martinu K, Monchi O. Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson’s disease: pathophysiology or compensation? Behav Neurosci. 2013;127(2):222–36. PubMed
38.
39.
go back to reference Cheney PD, Fetz EE, Mewes K. Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res. 1991;87:213–52. PubMed Cheney PD, Fetz EE, Mewes K. Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog Brain Res. 1991;87:213–52. PubMed
40.
go back to reference Habas C, Cabanis EA. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5‑T MRI machine. Neuroradiology. 2006;48(10):755–62. PubMed Habas C, Cabanis EA. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5‑T MRI machine. Neuroradiology. 2006;48(10):755–62. PubMed
41.
go back to reference Ralston DCD. Red nucleus of macaca fascicularis: an electron microscopic study of its synaptic organization in relation to afferent and efferent connectivity and proposals for the role of the red nucleus in motor mechanisms. [Proefschrift]. Groningen: Rijksuniversiteit Groningen; 1995. Ralston DCD. Red nucleus of macaca fascicularis: an electron microscopic study of its synaptic organization in relation to afferent and efferent connectivity and proposals for the role of the red nucleus in motor mechanisms. [Proefschrift]. Groningen: Rijksuniversiteit Groningen; 1995.
42.
go back to reference Paxinos G, Huang XF. Atlas of the human brainstem. San Diego: Academic Press; 1995. Paxinos G, Huang XF. Atlas of the human brainstem. San Diego: Academic Press; 1995.
43.
go back to reference Donkelaar HJ ten. Evolution of the red nucleus and rubrospinal tract. Behav Brain Res. 1988;28(1–2):9–20. PubMed Donkelaar HJ ten. Evolution of the red nucleus and rubrospinal tract. Behav Brain Res. 1988;28(1–2):9–20. PubMed
44.
go back to reference Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. Plos One. 2009;4(8):e6623. PubMedPubMedCentral Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. Plos One. 2009;4(8):e6623. PubMedPubMedCentral
45.
go back to reference Padel Y, Angaut P, Massion J, Sedan R. Comparative study of the posterior red nucleus in baboons and gibbons. J Comp Neurol. 1981;202(3):421–38. PubMed Padel Y, Angaut P, Massion J, Sedan R. Comparative study of the posterior red nucleus in baboons and gibbons. J Comp Neurol. 1981;202(3):421–38. PubMed
46.
go back to reference Colpan ME, Slavin KV. Subthalamic and red nucleus volumes in patients with Parkinson’s disease: do they change with disease progression? Parkinsonism Relat Disord. 2010;16(6):398–403. PubMed Colpan ME, Slavin KV. Subthalamic and red nucleus volumes in patients with Parkinson’s disease: do they change with disease progression? Parkinsonism Relat Disord. 2010;16(6):398–403. PubMed
47.
go back to reference Franke SK, Kesteren RE van, Hofman S, Wubben JA, Smit AB, Philippens IH. Individual and familial susceptibility to MPTP in a common marmoset model for Parkinson’s disease. Neurodegener Dis. 2016;16(5–6):293–303. PubMed Franke SK, Kesteren RE van, Hofman S, Wubben JA, Smit AB, Philippens IH. Individual and familial susceptibility to MPTP in a common marmoset model for Parkinson’s disease. Neurodegener Dis. 2016;16(5–6):293–303. PubMed
48.
go back to reference Nathan PW, Smith MC. The rubrospinal and central tegmental tracts in man. Brain. 1982;105(Pt 2):223–69. PubMed Nathan PW, Smith MC. The rubrospinal and central tegmental tracts in man. Brain. 1982;105(Pt 2):223–69. PubMed
49.
go back to reference Yamaguchi K, Goto N. Development of the human magnocellular red nucleus: a morphological study. Brain Dev. 2006;28(7):431–5. PubMed Yamaguchi K, Goto N. Development of the human magnocellular red nucleus: a morphological study. Brain Dev. 2006;28(7):431–5. PubMed
50.
go back to reference Onodera S, Hicks TP. Evolution of the motor system: Why the elephant’s trunk works like a human’s hand. Neuroscientist. 1999;5(4):217–26. Onodera S, Hicks TP. Evolution of the motor system: Why the elephant’s trunk works like a human’s hand. Neuroscientist. 1999;5(4):217–26.
51.
go back to reference Garcia-Cabezas MA, Martinez-Sanchez P, Sanchez-Gonzalez MA, Garzon M, Cavada C. Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex. 2009;19(2):424–34. PubMed Garcia-Cabezas MA, Martinez-Sanchez P, Sanchez-Gonzalez MA, Garzon M, Cavada C. Dopamine innervation in the thalamus: monkey versus rat. Cereb Cortex. 2009;19(2):424–34. PubMed
52.
go back to reference Raghanti MA, Edler MK, Stephenson AR, Wilson LJ, Hopkins WD, Ely JJ, et al. Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: a comparative analysis of the primate basal ganglia. J Comp Neurol. 2016;524(10):2117–29. PubMed Raghanti MA, Edler MK, Stephenson AR, Wilson LJ, Hopkins WD, Ely JJ, et al. Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: a comparative analysis of the primate basal ganglia. J Comp Neurol. 2016;524(10):2117–29. PubMed
53.
go back to reference Matsunaga E, Nambu S, Oka M, Okanoya K, Iriki A. Comparative analysis of protocadherin-11 X‑linked expression among postnatal rodents, non-human primates, and songbirds suggests its possible involvement in brain evolution. Plos One. 2013;8(3):e58840. PubMedPubMedCentral Matsunaga E, Nambu S, Oka M, Okanoya K, Iriki A. Comparative analysis of protocadherin-11 X‑linked expression among postnatal rodents, non-human primates, and songbirds suggests its possible involvement in brain evolution. Plos One. 2013;8(3):e58840. PubMedPubMedCentral
54.
go back to reference Pomberger T, Risueno-Segovia C, Loschner J, Hage SR. Precise motor control enables rapid flexibility in vocal behavior of marmoset monkeys. Curr Biol. 2018;28(5):788–794.e3. PubMed Pomberger T, Risueno-Segovia C, Loschner J, Hage SR. Precise motor control enables rapid flexibility in vocal behavior of marmoset monkeys. Curr Biol. 2018;28(5):788–794.e3. PubMed
Metagegevens
Titel
Activatie van neuronale compensatienetwerken als behandeling van de ziekte van Parkinson
Auteur
Ingrid Philippens
Publicatiedatum
18-03-2020
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Neuropraxis / Uitgave 2/2020
Print ISSN: 1387-5817
Elektronisch ISSN: 1876-5785
DOI
https://doi.org/10.1007/s12474-020-00247-2